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Abstract: Advance of measurement system permits the measurement of high accuracy data. This study proposes 
analysis of shaft movement using this system. Firstly, we made a shaft model using finite element method 
and a club head model as concentrated mass. Secondly, we reduced amount of calculation by applying 
mode synthetics method. Input data for simulation is inertia force and torque calculated from swing data 
that is measured by motion capturing system and is treated data manually. Finally, we simulated shaft 
movement using these data, we cloud repeat shaft movement of face direction and toe direction. 

1 INTRODUCTION 

Golf is the sport that can enjoy valuable generation 
of people. Victory or defeat of this sport is decided 
by score that move a golf ball to fixed location. 
Therefore players want to get a golf club that is able 
to hit a golf ball more accuracy and more far for 
improving their playing. This study focuses on 
driver among some clubs because hitting with a 
driver determines score. For this reason, club head 
of driver was improved bigger and more reactive. 
However, not only volume of head of the golf club 
but also coefficient of the golf club was restricted 
by the effect rule of the spring of the United States 
golf society. Therefore, it is becoming hard to 
differentiate golf clubs for clubs spec. Then, the 
implementers of golf club increase the lineup of 
shaft and it provides the club fits for an individual. 
As one of techniques, “Database fitting” was 
established by SRI. “Database fitting” is the method 
that recommends adequate shaft to a player by 
analyzing the swing using grip end sensor.  

In the future, the implementers would like to 
provide custom-made shaft for each golfer. In order 
to make this idea possible, the implementers need to 
repeat movement of shaft that don’t exist in the 
lineup in swinging.  

Some studies of prediction movement of shaft in 
swinging have using multi body dynamics (Inoue, 

2000,2004)，using vibration feature (Iwatsubo, 
1990)．However, the study using multi body 
dynamics needs huge amount of calculation because 
that has iterative calculation on that simulation. The 
study using vibration feature has smaller amount of 
calculation then multi body dynamics, but its 
simulation is calculated on 2-dimension and don’t 
repeat realistic movement of shaft in swinging that 
need for its prediction. 

Wherein, we intend to simulate movement of 
shaft by 3-dimension input data using motion 
capture system and by small amount of calculation 
applying mode synthetics method. 

2 SIMULATION MODEL 

Simulation model of shaft is constructed with 
multistage beam (Fig.1). Simulation model is 
formulated by finite element method with beam type 
element. 
 

 

Figure 1: Simulation Model with Multistage Beam. 
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2.1 Beam Element 

2.1.1 Displacement Function 

Coordinate system of shaft is defined as Fig.2. In 
this study, x direction is defined as toe of club head 
direction and y direction is defined as face of club 
head direction. Displacement function of each 
directions on this coordinate system is shown in 
eq.(1), eq.(2). 
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Deflection and deflection angle of each direction of 
the i th element from grip end is defined as Fig.3, 
deflection and deflection angle of each direction is 
as follows. 
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L is Element width. Each coefficients of eq.(1) and 
eq.(2) are derived from eq.(3) and eq.(4). 
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Figure 2: Coordinate System of Shaft. 

 

Figure 3: Each Deflection and Deflection angle. 

2.1.2 Mass Matrix, Rigid Matrix 

Motion energy of each directions Tx, Ty and potential 
energy of each directions Ux, Uy are led as following 
equations. 
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A is cross-section area, ρ is density, E is Young’s 
modulus, Ix, Iy are second moment of area. By 
substituting eq.(5) and eq.(9) into eq.(11-14), we 
obtain element mass matrix of each directions as 
Mele_x,y and element rigid matrix of each directions as 
Kele_x,y. 
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Index x,y of eq.(15) and eq.(16) show each direction. 
By assembling these element matrixes, we compose 
full mass matrix and full rigid matrix.  

2.2 Equation of Motion 

In this study, simulation model of shaft is divided 
into 24 elements (Fig.1). By rearranging each 
element matrixes, the i th element equation of 
motion is composed as follows. 
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Index (i) shows the i th node, f(i) is nodal force 
acting of the i th node,  d(i)(t) is nodal point 
displacement, C(i) is damping matrix. Mass of club 
head is added to final node as concentrated  mass．
Then, substituting element mass matrix on final  
element  as M(n), the element of M(n) in the 1 row and 
1 column and in the 2 th row and 2 column is as 
follow equations.  
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Me(n) is the element mass matrix led from eq.(5),  
    

Mhead is mass of club head. By assembling each 
elements, full motion of equation is follow equation. 
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2.3 Mode Synthetics Method 

Simulation model of shaft is divided into two area 
that are c area and e area (Fig.4). By dividing its 
model area, nodal point displacement and mass 
matrix, rigid matrix are divided into each area. Then, 
reduction matrix  tT  is calculated. By multiplying 
 tT from the front of eq.(20), eq.(20) is reduced to 

cd that shows area c and ξ  that shows mode area 

(Nagamatsu, 1985). 
 

       
      
      
      
     fTf

TKTK

TCTC

TMTM

fKCM

T

t

t

T

t

t

T

t

t

T

t

cc




































~

~

~

~

~~~~

ξ

d

ξ

d

ξ

d c









 

(21) 

 
Figure 4: Dividing Simulation Model into Each Area. 

2.4 Input Data 

In this study, we model swing movement as 2-link 
model that is composed of arm and club for 
repeating shaft movement (Fig.5). Shaft is modelled 
by finite element method. Inertia force made by arm 
movement is added to shaft in swinging. Therefore, 
we need to calculate input data of this inertia force 
for repeating shaft movement. The method of 
calculating this input data is as follows. 

 
Figure 5: 2 Link Model of Swing. 

Area e Area c

  

Dynamic�Analysis�for�Golf�Swing�using�of�Mode�Synthetics�Method�for�Suggesting�an�Optimal�Club

29



 

 

2.4.1 Coordinate System 

We define a shoulder shown on Fig.5 as origin point 
of inertial coordinate system [a]. Then, we define the 
vector that shows from shoulder to shaft’s point of 
union as r0 and fixed coordinate system that origin 
point is its point of union as [b].We also define the 
vector that shows from this fixed coordinate 
system’s origin point to the i th node as ρ(i). And 
then, by defining movement by elastic deformation 
of the i th node as n(i), the vector u(i) that shows from 
inertial coordinate system to the i th node obtains as 
follow. 
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Each coordinate system and relationship of each 
vector is shown on Fig.6. The relationship of each 
coordinated system is obtained as follow. 
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S is coordinate transform matrix. Then, rate vector is 
obtained as follow by eq.(22). 
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vn(i) is component of rate vector of the i th node, ω~ is 
angle rate tensor. 

 

Figure 6: Each Coordinate System and Relationship of 
Each Vector. 

2.4.2 Input Force 

Gravity vector g is shown by its component ĝ . 
 

 ĝag   (25) 
 

Then, we define linear momentum of the i th node as 
P(i) and obtain follow equation by low of 
conservation of liner momentum. 
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 shows integral of mass．By substituting 

eq.(24)

into eq.(26), we obtain follow equation. 
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an(i) is the component of acceleration vector of the i 
th node on fixed coordinate system. Second on the 
right-hand side of eq.(27) is deformed as follow.  
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Then, we deform eq.(28) by substituting  eq.(23). 
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And then, by assuming inertia force that act to the i 
th node is composed by each next element, the first  
on the right-hand side of eq.(29) is explicated as 
follow equation. 
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In a similar way, the second on the right-hand side 
of eq.(29) is explicated as follow equation. 
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Input force F(i) of the i th node is led from eq.(29-31) 
as follow equation. 
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Especially, by considering influence of club head, 
input force of final node is led as follow equation. 

0r  iu
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2.4.3 Input Torque 

We define the i th node circular torque as  iT . 
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 iT̂
 
is component of the i th node circular torque on 

inertial coordinate system. Follow equations is led 
by low of conservation of angular momentum. 
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 i~  is antisymmetrization tensor of fixed coordinate 

vector
  i ．Follow equation is led by explicating 

eq.(38).  
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And then, the left-hand side of eq.(39) is explicated 
by eq.(36) and eq.(37) as follow equation. 
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Component of torque vector on fixed coordinate 
system is led by eq.(38-44) as follow equation. 
 

        gSJJrT T

iiii
ˆ~~~

0     (45) 

In a similar way of input force, by assuming input 
torque is composed by each next element, each 
member of eq.(45) are explicated as follow equation. 
 

         

       

        gSMgSM

JJJJ

rMrMT

T

ii

T

ii

iiii

iiiii

ˆ~
2

1
ˆ~

2

1
2

1

2

1~
2

1~
2

1

~
2

1~
2

1

11

11

0110























 
(46) 

 

Especially, by considering influence of club head, 
final node circular input torque is led as follow 
equation. 
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(47) 

 

head~  is the antisymmetrization tensor of the vector 

that  shows from final node to center of mass of 
head, headJ  is inertia moment of head. 

3 ANALYSIS METHOD 

3.1 Measurement 

Shaft movement in swinging was measured by 3D 
motion capture system. Sampling frequency is 
500[Hz], marker is attached on shaft as Fig.7. While, 
we define coordinate system for measurement on 
Fig.8. 

 
Figure 7: Marker Location. 
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Figure 8: Coordinate System of Measurement. 

3.2 Shaft Movement Prediction 

Shaft movement was calculated by eq. (25) using 
newmark β method. We added damping as adequate 
numerical damping. Boundary condition was fixed 
end, input data was calculated by eq. (32-33) and eq. 
(46-47) using acceleration and angle rate, angle 
acceleration data that have been obtained from 
marker data of motion capture system. Acceleration 
was led using by filtered motion data and Euler’s 
approach. Angle rate and angle acceleration data is 
led by quartanion. These programs were programed 
by Matlab. 

4 RESULTS AND DISCUSSION 

We show each direction’s inertia force of shaft apex 
calculated by motion data on Fig.9 with face 
direction and Fig.10 with toe direction. And then, we 
show movement of each direction of marker S5 in 
close shaft apex on Fig.11 with vertical direction and 
front-back direction, on Fig.12 with vertical 
direction and target line direction. Blue line shows 
motion and red line shows simulation data. Red 
asterisk of Fig. (11-12) shows top of marker position 
in swinging and lime green asterisk of Fig. (11-12) 
shows the moment of impacting golf ball. By 
showing Fig.11, there is the difference of about 
0.035[m] motion line and simulation line near top. 
However, by showing near impacting on Fig.11, 
there is shorter difference of about 0.015[m] motion 
line and simulation line near the moment of 
impacting golf ball. Then, by showing Fig.12, there 
is the difference of about 0.04 [m] motion line and 
simulation line near top. However, by showing near 
impacting on Fig.12, there is shorter difference of 
about 0.015[m] motion line and simulation line near 
the moment of impacting golf ball. For all of these 
reasons, we concluded that we could repeat shaft 
movement in swinging using by this simulation 
model. 

 
Figure 9: Inertia Force of Face Direction. 

 
Figure 10: Inertia Force of Toe Direction. 

 
Figure 11: Position Data as Viewing from behind target 
line direction. 

 
Figure 12: Position Data as Viewing from front - front-
back Direction. 
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5 CONCLUSIONS 

In this study we modelled shaft by finite element 
method. And then, we reduced amount of calculation 
by applying mode synthetics method and simulation 
model calculated input data for this model from 
motion data. By using this simulation model and 
input data, we concluded that we could repeat shaft 
movement in swinging using by this simulation 
model. 

REFERENCES 

Yoshio Inoue, Yoshihiro Kai, Tetsuya Tanioka, 2000, 
Study on Dynamics of Golf Swing (Boundary 
Condition and Elasticity of Shaft), the Japan Society of 
Mechanical Engineering 

Yoshio Inoue, Kyoko Shibata, Koichi Okayama, Kyoji 
Totsugi, 2004, Effect of the shaft elasticity in golf 
swing, the Japan Society of Mechanical Engineering 

Takuzo Iwatsubo, Nobuki Konishi, Tetsuo Yamaguchi, 
1990, Research on Optimum Design of a Golf Club, 
the Japan Society of Mechanical Engineering 

Akio Nagamatsu, 1985, Mode Analysis, baihukan, 4th 
edition, pp.215-216 

Dynamic�Analysis�for�Golf�Swing�using�of�Mode�Synthetics�Method�for�Suggesting�an�Optimal�Club

33


