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Abstract: The classical particle swarm optimization (PSO) algorithm is inspired on biological behaviors such as the 
social behavior of bird flocking and fish schooling. In this context, many significant improvements related 
the updating formulas and new operators have been proposed to improve the performance of the PSO 
algorithm in the literature. On the other hand, recently, as an alternative to the classical PSO, a quantum-
behaved particle swarm optimization (QPSO) algorithm was proposed. The contribution of this paper is 
linked with a modified QPSO based on beta probability distribution and mutation differential operator. The 
effectiveness of the proposed modified QPSO algorithm is demonstrated by solving three kinds of 
optimization problems including two benchmark functions and a circular antenna design problem. 

1 INTRODUCTION 

Particle swarm optimization (PSO) is a population-
based algorithm of the swarm intelligence field 
proposed in Kennedy and Eberhart (1995) and 
Eberhart and Kennedy (1995). Its basic idea was 
based on simulation of simplified animal social 
behaviors. Over the years, PSO has gained 
significant popularity due to its simple structure and 
high performance. Furthermore, PSO has been 
shown to be efficient in a plethora of applications 
(Aote et al., 2013; Rini et al., 2011). However, many 
studies and several variants of the PSO algorithm 
(Sedighizadeh and Masehian, 2009; Eslami et al., 
2012) have been done to improve the performance 
of PSO in continuous optimization.  

Recently, novel optimization methods have been 
motivated from the concepts of quantum mechanics 
and computation (Han and Kim, 2002). One of the 
recent developments in PSO proposed by Sun et al. 
(2004a, 2004b) called quantum-behaved particle 
swarm optimization (QPSO). It is based on the 
perspective of quantum mechanics view rather than 
the Newtonian rules assumed in previous versions of 

PSO. QPSO is characterized by good search ability 
and fast convergence. Although QPSO is an efficient 
algorithm for solving continuous optimization 
problems, it is still necessary to pay enough attention 
to the inherent problem of possible premature. 

To enhance the searching ability of PSO and 
accelerate its convergence, several studies (Coelho 
and Mariani, 2008; Fang et al., 2010; Sun et al., 
2012; Mariani et al., 2012; Kamberaj, 2014) propose 
modifications in the QPSO.  

Based on the mentioned considerations, we 
proposed in this paper a modified QPSO (MQPSO) 
based on beta probability distribution and mutation 
operator inspired by differential evolution paradigm. 
The differential evolution (DE) algorithm (Storn and 
Price, 1997; Das and Suganthan, 2011) is an 
evolutionary algorithm that uses a rather greedy and 
less stochastic approach to problem solving than do 
some evolutionary algorithms. The advantages of 
DE are simple structure, efficiency and robustness. 

To judge the performance of the proposed 
algorithm, a set of two benchmark functions and a 
circular antenna design problem are solved. The 
results of simulations and convergence performance 
are compared with the classical PSO. 
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The remainder of this paper is organized as follows: 
The fundamentals of the PSO, QPSO and MQPSO 
are provided in Sections 2 and 3, respectively. The 
description of the circular antenna array design 
problem is given in Section 4. Experiments on 
numerical optimization used to illustrate the 
efficiency of the proposed MQPSO are given in 
Section 5. Finally, a conclusion and future research 
are conducted in Section 6. 

2 CLASSICAL PSO ALGORITHM  

The classical PSO algorithm maintains a swarm of 
particles, where each particle represents a potential 
solution to the objective problem. The particles are 
initially placed at random positions in the search-
space, moving (flying) in randomly defined 
directions in the n-dimensional search space. Their 
velocities are changed based on the results of the 
populational (gbest, global best) or personal (pbest, 
personal best) locations search, and they move 
toward the function optimum. 

The procedure for implementing the global 
version of PSO is given by the following steps: 

Step 1: Initialization of swarm: Initialize a 
population of particles with random positions and 
velocities in the n-dimensional problem space using 
uniform probability distribution function. 

Step 2: Evaluation of particle’s fitness: Evaluate 
each particle’s fitness value. 

Step 3: Comparison to pbest: Compare each 
particle’s fitness with the particle’s pbest. If the 
current value is better than pbest, then set the pbest 
value equal to the current value and the pbest 
location equal to the current location in n-
dimensional space. 

Step 4: Comparison to gbest: Compare the 
fitness with the population’s overall previous best. If 
the current value is better than gbest, then reset gbest 
to the current particle’s array index and value.  

Step 5: Updating of each particle’s velocity and 
position: Change the velocity, vi, and position of the 
particle, xi, according to equations (1) and (2): 
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where i=1,2,…,N indicates the number of particles 
of population; t=1,2,…,tmax indicates the generations 

(iterations);  T,...,2 ,1 inviviviv   stands for the 

velocity of the i-th particle,  T,...,2 ,1 inxixixix   

stands for the position of the i-th particle of 

population, and  T,...,2 ,1 inpipipip  represents the 

best previous position of the i-th particle. Positive 
constants c1 and c2 are referred to as the cognitive 
and social parameter, respectively. Index g 
represents the index of the best particle among all 
the particles in the swarm. The stochastic variables 
ud and Ud are random numbers generated uniformly 
distributed in [0,1]. Equation (2) represents the 
position update, according to its previous position 
and its velocity, considering 1t . 

Step 6: Repeating the evolutionary cycle: Return 
to Step 2 until a stop criterion is met. In this paper 
the maximum number of generations is adopted. 

In this paper, this is done by bounding a 
particle’s velocity to the 20% of the full range of the 
search space, so the particle can at most move from 
one search space boundary to the other in one step. 

PSO has some advantages over other similar 
optimization techniques such as genetic algorithm. It 
is easier to implement and needs fewer parameters to 
adjust. On the other hand, the original PSO is easily 
fall into local optima in many optimization 
problems.  

Recent studies (Rini et al., 2011; Aote et al., 
2013) have also attempted various ways to analyze 
and improve PSO. Proper selection of these w, c1 
and c2 parameters can improve the convergence rate. 
However, the design of an effective method to select 
PSO’s parameters using the relationship between w, 
c1 and c2 parameters can be a complex task.  

3 QPSO ALGORITHM 

The core idea of classical PSO is the exchange of 
information among the velocity, global best, local 
best, and current particles. In the QPSO, the velocity 
equation in the PSO algorithm is neglected. 
Experimental results performed on some well-
known benchmark functions show that the QPSO 
method has better performance than the PSO method 
(see Sun et al. (2004a, 2004b, 2011)). 

The probability of the particle’s appearing in 
position xi from probability density function |(x,t)|2, 
the form of which depends on the potential field the 
particle lies. In this context, each particle in a 
quantum state formulated by wavefunction (x, t). 

Using the Monte Carlo method, the position of 
the particles can be obtained at iteration t+1 as (Sun 
et al., 2004a, 2004b): 
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If 0.5 k  then 
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where xi,j(t+1) is the position for the j-th dimension 
of i-th particle in t-th generation (iteration); Mbestj(t) 
is the global point called Mainstream Thought or 
Mean Best (Mbest) for the j-th dimension;   is a 
design parameter called contraction-expansion 
coefficient in range [0,1]; u and k are numbers 
generated according to a uniform probability 
distribution in range [0,1]; and pi(t) is a local point. 
Trajectory analysis in Clerc and Kennedy (2002) 
demonstrated that the convergence of the PSO 
algorithm may be achieved if each particle 
converges to its local attractor.  

The Mainstream Thought or Mean Best (Mbest) 
is defined as the mean of the pbest positions of all 
particles and it given by 
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where g represents the index of the best particle 
among all the particles’ swarm in j-th dimension. In 
this case, it is adopted  
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where pk,i (pbest) represents the best previous i-th 
position of the k-th particle and pg,i (gbest) 
represents the i-th position of the best particle of the 
population. In the same form that the classical PSO, 
constants c1 and c2 are the cognitive and social 
components, respectively. The procedure for 
implementing the QPSO is given by the following 
steps:  

Step 1: Initialization of swarm positions: 
Initialize a population of particles with random 
positions in the n dimensional problem space using a 
uniform probability distribution function. 

Step 2: Evaluation of particle’s fitness: Evaluate 
the fitness value of each particle. 

Step 3: Comparison of each particle’s fitness 
with its pbest (personal best): Compare each 
particle’s fitness with the particle’s pbest. If the 
current value is better than pbest, then set a novel 
pbest value equals to the current value and the pbest 
location equals to the current location in n-
dimensional space. 

Step 4: Comparison of each particle’s fitness 

with its gbest (global best): Compare the fitness with 
the population’s overall previous best.  If the current 
value is better than gbest, then reset gbest to the 
current particle’s array index and value.  

Step 5: Updating of global point: Calculate the 
Mbest using equation (5). 

Step 6: Updating of particles’ position: Change 
the position of the particles using equations (3) or 
(4), and (6). 

Step 7:  Repeating the evolutionary cycle: Loop 
to Step 2 until a stopping criterion is met.  

3.1 MQPSO Algorithm 

QPSO may be trapped in local minima, because it 
easily loses the diversity of swarm during the search. 
To overcome the disadvantage of QPSO, a modified 
QPSO (MPQSO) combining strategy of QPSO and 
DE is introduced in this study.  

The main point of the proposed MPQSO is to 
improve the global performance of the QPSO by 
using DE-inspired mutation operator. In the 
MQPSO, exploration behavior was enhanced at the 
early stage of searching so that more search space 
can be explored by particles. While at the later stage 
the MQPSO emphasized the exploitation to find the 
accurate optimum using a DE-inspired mutation 
operator. Furthermore, the MQPSO uses a linearly 
decreasing parameter to choice the global or local 
search during the generational cycle. 

The Steps (1)-(5) of the QPSO are the same to 
the MQPSO. However, the Step (6) in MQPSO is 
given by following pseudocode: 
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      If r3 > 0.8 - 0.6( t / tmax )  
          Modified approach:  
                )310,210(27.0 rrbetarnd   

          Uses Equation (3) or (4) to update )1(, tjix  

      Else (uses the differential mutation) 
           F = 0.6 + 0.3( t / tmax ) 
            )(,2)(,1)(,)1(, tjsxtjsxFtjixtjix   

      End 

where r1, r2 and r3 are uniformly distributed random 
numbers bound within the range [0,1]; 
s1,s2{1,2,...,N}, and betarnd  is a number 
generated by a beta probability distribution, where 

210 r  and 310 r  generate the shape parameters of 

the beta distribution. In this case, the Matlab's script 
called betarnd.m was employed. 

The beta distribution is very flexible for 
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modeling data that are measured in a continuous 
scale on the open interval (0,1) since its density has 
quite different shapes depending on the values of the 
two parameters that index the distribution. 

4 CIRCULAR ANTENNA ARRAY 
DESIGN PROBLEM 

Consider a circular array of N antenna elements 
spaced on a circle of radius r in the x-y plane. This is 
shown in Fig. 1 and the antenna elements are said to 
constitute a circular antenna array. The array factor 
for the circular array is written as follows (Das and 
Suganthan, 2010): 
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where Ne is the number of antennas, 12    is the 

angular position of the ith element on the x-y plane, 
ar = Nd where a is the wave-number, d is the 
angular spacing between elements and r is the radius 
of the circle defined by the antenna array, 0  is the 

direction of maximum radiation,   is the angle of 

incidence of the plane wave, Ii represents the 
amplitude excitation of the i-th element of the array 
and βi is the phase excitation of the i-th element. 

 

Figure 1: Geometry of circular antenna array (source: Das 
and Suganthan, 2010). 

The purpose of the adopted optimization task is 
modify the current and phase excitations of the 
antenna elements and try to suppress side-lobes, 
minimize beamwidth and achieve null control at 
desired directions. The objective function f is taken 
as: 
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where the first component attempts to suppress the 
sidelobes. sll  is the angle at which maximum 

sidelobe level is attained. The second component 
attempts to maximize directivity (DIR) of the array 
pattern. Nowadays directivity has become a very 
useful figure of merit for comparing array patterns. 
The third component strives to drive the maxima of 

the array pattern close to the desired maxima .des  

The fourth component penalizes the objective 
function if sufficient null control is not achieved. 
num is the number of null control directions and k  

specifies the kth null control direction. 
We adopt the number of antenna elements in 

circular array as Ne=12 for a uniform separation 
distance of d = 0.5, where  is the wavelength. 
The desired maxima des  is set to 180o and null = 

[50,120] in radians (no null control). In this case 
study, 6 excitation amplitudes (Ii) and 6 phase 
perturbations (βi) are optimized. It is considered the 
following search space: 12.0  iI  and 

6,...,1  ,180180  io
i

o  . The source code in 

Matlab of the circular array design benchmark 
problem is provided by IEEE-CEC (2011). 

5 OPTIMIZATION RESULTS  

In this section, two benchmark functions and the 
circular antenna array design are carried out to test 
the validity of the proposed MQPSO, and the results 
are compared with those of PSO and QPSO.  

In the tests, the value of function is defined as 
the fitness function of algorithm. Due to the 
stochastic nature of the proposed approach, these 
four systems were repeatedly solved 25 times by the 
PSO and QPSO approaches.  

The settings adopted in the tested PSO 
approaches for the benchmarks functions is the 
swarm size (population size) equal to 25 particles, 
25 runs, and the stopping criterion is 10,000 
generations. In the antenna case, 70 particles, 25 
runs and the stopping criterion is 800 generations 
was adopted. 

In terms of PSO setting, c1 = c2 = 2.05 and the 
inertia factor linear decreasing of 0.9 to 0.4 during 
the iterations is adopted.  QPSO and MQPSO use a 
linearly decreasing contraction-expansion coefficient 
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( ) which starts at 1 and ends at 0.5.  

5.1 Benchmark Functions 

The Griewank function, first introduced in 
(Griewank, 1981), has been employed as a test 
function for global optimization algorithms in many 
papers. The function is defined as follows: 


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within search space given by [-600,600]n. The global 
minimum value is 0 and the global minimum is 
located in the origin, but the function also has a very 
large number of local minima, which regularly 
distributed, exponentially increasing with n. It is 
similar to the Rastrigin function, but the number of 
local optima is larger in this case. Rosenbrock 
function (Rosenbrock, 1960) is non-convex, non-
separable and quadratic function defined by 

 
 





  1

1
2)1(2)1

2(100)(2
n
i ixixixxf  (9)

with search space given by [-30,30]n  and the global 
minimum value is 0. 

Simulation results presented in Tables 1 and 2 
(best results in boldface) showed that the MQPSO 
outperform the adopted PSO and QPSO on the basis 
of mean and standard deviation of the best objective 
function value of the total runs for the two 
benchmark functions with n = 10. 

Table 1: Results of f1 (Griewank function). 

Index PSO QPSO MQPSO 

Maximum 
(Worst) 

4.48×10-2 2.20×10-1 8.35×10-2 

Mean 2.74×10-2 9.36×10-2 5.07×10-2 

Minimum 
(Best) 

1.11×10-2 3.23×10-2 2.46×10-2 

Standard 
Deviation 

7.82×10-2 4.68×10-2 1.75×10-2 

Table 2: Results of f2 (Rosenbrock function). 

Index PSO QPSO MQPSO 

Maximum 
(Worst) 

19.7794 12.6433 16.2680 

Mean 10.3934 6.3008 6.0639 

Minimum 
(Best) 

5.22×100 4.28×10-1 5.90×10-2 

Standard 
Deviation 

3.5496 3.1631 3.7946 

5.2 Circular Antenna Array Design 

A comparison with PSO, QPSO and MQPSO of 
results presented in IEEE-CEC (2011) shows that 
the MQPSO approach provides quite encouraging 
results. As it is clear from Table 3 (best results in 
boldface), the MQPSO is able to find the global 
minimum and mean f values that outperform other 
10 algorithms mentioned in IEEE-CEC (2011). The 
best result (minimum) using MQPSO presented f=-
21.7586 is presented in Table 4.  

Table 3: Results in terms of the best f values (25 runs). 

Optimization 
method 

f 
minimum 

*B 
f 

mean 
#M 

PSO -20.7274 - -16.9347 - 
QPSO -21.2292 - -19.1884 - 

MQPSO -21.7586 - -21.4360 - 
GA-MPC -21.8425 2 -21.7022 1 
WI_DE -21.8000 6 -21.7000 2 

SAMODE -21.8216 4 -21.6589 3 
OXcoDE -21.8650 1 -21.5910 4 
ED-DE -21.8320 3 -21.4210 5 

EA-DE-MA -21.7956 8 -21.2554 6 
Mod_DE_LS -21.7691 9 -21.0897 7 
AdapDE171 -21.8084 5 -20.9583 8 
mSBX-GA -21.2545 11 -20.8860 9 
DE-RHC -20.5000 13 -18.3000 10 

RGA -21.0188 12 -17.2908 11 
DE-Acr -21.6010 10 -16.7560 12 

ENSML_DE -21.8000 6 -15.6000 13 
CDASA -19.0310 14 -13.5400 14 

*B: ranking based on the best results in terms of f in CEC-2011 
#M: ranking based on the mean results in terms of f in CEC-2011 

Table 4: Best solution found using MQPSO. 

Element i 
Amplitude 

excitation (Ii) 
Phase 

perturbation (βi) 
1 0.9993 -31.1885 
2 0.3916 31.3933 
3 0.4194 -89.5185 
4 0.2026 -56.7929 
5 0.4232 83.9948 
6 0.6186 -16.7231 

SSL (dB) -21.8191 
DIR (dB) 10.0084 

6 CONCLUSIONS 

QPSO is a complex nonlinear system, and accords to 
states superposition principle. In this paper, a 
MQPSO based on beta probability distribution and 
mutation differential operator is proposed and 
validated.  
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Simulation results illustrates that the incorporation 
of the beta probability distribution and mutation 
differential operation scheme enhances the search 
moves of a MQPSO by generating the more 
promising exemplars as the guidance particles. 
Furthermore, it provides the necessary trade-off 
between exploration and exploitation to global 
optimization. In this context, the simulation results 
show the effectiveness of our approach. 

In future research, statistical significance tests to 
compare different optimization approaches with 
MQPSO will be carried out to monobjective  and 
multiobjective cases. 
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