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Abstract: Dynamic Heterogeneous Multi-Population Cultural Algorithm (D-HMP-CA) is a novel algorithm to solve
global optimization problems. It incorporates a number of local Cultural Algorithms (CAs) and a shared
belief space. D-HMP-CA benefits from its dynamic decomposition techniques including the bottom-up and
top-down strategies. These techniques divide the problem dimensions into a number of groups which will be
assigned to different local CAs. The goal of this article is to evaluate the algorithm scalability. In order to do
so, D-HMP-CA is applied on a benchmark of large scale global optimization problems. The results show that
the top-down strategy outperforms the bottom-up technique by offering better solutions, while within lower
size optimization problems the bottom-up approach presents a better performance. Generally, this evaluation
reveals that D-HMP-CA is an efficient method for high dimensional optimization problems due to its compu-
tational complexity for both CPU time and memory usage. Furthermore, it is an effective method such that it
offers competitive solutions compared to the state-of-the-art methods.

1 INTRODUCTION

Optimization problems are a set of problems where
the goal is to make a system as effective as possible.
Minimizing the total assembly cost of a huge com-
puter system and maximizing the resource utilization
within a manufacturing system are two samples of op-
timization problems. The goal of this research area is
to design an algorithm to be able to find the optimal
solution within an acceptable time. In other words, an
optimization algorithm should be effective in terms of
finding optimal solutions and it is expected to be effi-
cient in terms of the resources it requires to converge
to the optimal solution.

The research area of optimization is very well-
known due to its wide range of applications within
both continuous and discrete problem domains. The
problems within continuous domains are called global
optimization problems. The focus of this paper is to
deal with large scale global optimization problems in
which the number of problem dimensions is a large
number.

To solve optimization problems, different kinds of
algorithms are introduced in the literature. Cultural
Algorithm (CA) developed by Reynolds (Reynolds,
1994) is a subset of population-based methods which

are successfully applied to deal with optimization
problems. CA incorporates knowledge to guide its
search mechanism. CA incorporates two spaces in-
cluding population space and belief space such that
the former one is responsible for evolving solutions
and the latter one is designed to extract, update and
record the knowledge over generations.

The most recent architecture to implement CAs
is Heterogenous Multi-Population Cultural Algorithm
(HMP-CA) (Raeesi N. and Kobti, 2013) in which
the given problem is decomposed into a number of
sub-problems and sub-problems are assigned to dif-
ferent local CAs to get optimized separately in paral-
lel. HMP-CA (Raeesi N. et al., 2014) is designed to
deal with only static dimension decomposition tech-
niques, but its improved version, Dynamic HMP-CA
(D-HMP-CA) (Raeesi N. and Kobti, 2014), covers
dynamic decomposition techniques as well. Although
D-HMP-CA offers a great performance to solve nu-
merical optimization functions, there is no informa-
tion reported regarding its scalability to show its per-
formance on high dimensional problems. In this ar-
ticle, the performance of D-HMP-CA on large scale
global optimization problems is evaluated in terms of
both effectiveness and efficiency.

The remaining of this article is structured as fol-
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lows. Section 2 briefly describes HMP-CA and the
existing dimension decomposition techniques, fol-
lowed by representing large scale global optimization
in Section 3. D-HMP-CA and its dynamic decompo-
sition techniques are characterized with more details
in Section 4. Section 5 illustrates conducted experi-
ments, results and their corresponding discussion. Fi-
nally Section 6 represents concluding remarks and fu-
ture directions.

2 RELATED WORK

HMP-CA (Raeesi N. and Kobti, 2013) incorporates
only one belief space which is shared among its local
CAs instead of one local belief space for each local
CA. The shared belief space records the best parame-
ters found for each dimension.

The local CAs within this architecture are de-
signed to optimize different subsets of problem di-
mensions. Therefore, HMP-CA requires a dimension
decomposition technique which has a major effect
on the algorithm performance. The first HMP-CA
(Raeesi N. and Kobti, 2013) incorporates a static di-
mension decomposition approach. The static decom-
position techniques are the ones in which the number
of dimension groups is predefined and the dimensions
are assigned to a group initially such that they are not
going to be re-assigned to another group later.

The effects of different decomposition techniques
on the algorithm performance are also evaluated by
incorporating a number of static decomposition tech-
niques which can be categorized into two groups
of balanced and imbalanced approaches (Raeesi N.
et al., 2014). The former approaches assign the same
number of dimensions to the local CAs, while the
techniques in the latter group assign different num-
bers of problem dimensions to different local CAs.
The results of this evaluation reveal that the im-
balanced techniques highly outperform the balanced
ones in terms of both effectiveness and efficiency. The
point is that assigning one dimension to each local
CA results in a better performance in solving fully-
separable problems, while assigning a number of di-
mensions to each local CA works better for solving
non-separable problems. Therefore, the imbalanced
techniques which cover both types of assignments re-
sult in a better performance compared to the balanced
techniques.

HMP-CA is further improved by incorporat-
ing dynamic dimension decomposition techniques
(Raeesi N. and Kobti, 2014). D-HMP-CA introduces
two different dynamic approaches called top-down
and bottom-up strategies. In this article, the perfor-

mance of these techniques to solve high dimensional
problems is evaluated and compared with the state-of-
the-art methods.

Dimension decomposition is also incorporated by
another MP-CAs called Cultural Cooperative Parti-
cle Swarm Optimization (CCPSO) (Lin et al., 2009).
In CCPSO, each dimension is assigned to one local
CA such that it needs D local CAs to solve a D-
dimensional optimization problem. CCPSO incorpo-
rates Particle Swarm Optimization (PSO) within each
local CA to evolve its sub-population.

Dimension decomposition techniques are also
well-known in other research areas specially in the
area of Cooperative Coevolution (CC) (Potter and
De Jong, 1994). CC introduces a framework incor-
porating a divide-and-conquer approach such that it
decomposes a problem into a number of smaller sub-
problems. Then each sub-problem is getting opti-
mized by an EA separately in parallel. Although
both CC and HMP-CA have the similar frameworks,
HMP-CA has an additional component compared
to CC, namely its belief space, which incorporates
knowledge to improve the search mechanism.

The first CC algorithm which is called Coop-
erative Co-evolutionary Genetic Algorithm (CCGA)
(Potter and De Jong, 1994) incorporates the same
dimension decomposition technique as CCPSO (Lin
et al., 2009). This approach is also used in the first at-
tempt for applying CC to large scale global optimiza-
tion (Liu et al., 2001).

Another well-known decomposition technique is
cooperative split algorithm (van den Bergh and Engel-
brecht, 2000; Olorunda and Engelbrecht, 2009) which
initially decomposes a problem into K sub-problems
by considering almost the same number of dimen-
sions for each sub-problem. The K parameter is re-
ferred by split factor in this algorithm.

Random grouping is also another decomposition
technique which is introduced in DECC-G algo-
rithm (Yang et al., 2008a). In random grouping,
a D-dimensional problem is decomposed into m s-
dimensional problems satisfying m�s=D. Although
the number of dimension groups is constant in this
strategy, the groups are dynamic such that the dimen-
sions are re-assigned to different groups every cycle.
Since it is using a constant group size, selecting the
best group size is the main limitation of DECC-G due
to the fact that for separable problems it works bet-
ter with a smaller group size, while for non-separable
problems it works better with a larger group size.

Multilevel Cooperative Coevolution (MLCC)
(Yang et al., 2008b; Li and Yao, 2012) solved the
limitation of DECC-G by incorporating a multilevel
strategy for selecting a group size. A pool of different
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Figure 1: A sample run of the dynamic top-down approach on a 10-dimensional generalized Rosenbrock’s function ( f2).

group sizes are defined within MLCC and it selects
one group size based on the problem under investiga-
tion and the stage of the evolution. Incorporating the
pool strategy outperforms DECC-G, but determining
a good pool of group sizes is remained as an issue
with MLCC.

Considering variable interactions in designing di-
mension decomposition technique may results in a
better performance. Cooperative Coevolution with
Variable Interaction Learning (CCVIL) (Chen et al.,
2010) benefits from a module called Variable Interac-
tion Learning (VIL) to detect the dimensions interde-
pendencies. Although VIL module improves the op-
timization process by merging interdependent dimen-
sions into one group and preserve the independent di-
mensions within different groups, it is computation-
ally expensive which limits its applicability.

Omidvar et al. (Omidvar et al., 2010) introduced
a systematic approach to detect interacting variables
in their proposed DECC-DML algorithm. Their pro-
posed module which is called delta grouping consid-
ers the low-improved dimensions to be interacting.
Although this kind of detection is not precise, there
is no major computational cost associated with it.

3 LARGE SCALE GLOBAL
OPTIMIZATION

As described before, numerical optimization is a sub-
set of global optimization problems in which there is a
mathematical function to be optimized. In numerical
optimization, the given function should be considered
as a black box such that it gets a D-dimensional vec-
tor of real numbers as input and returns a real num-
ber as the objective value for the given vector. Gen-

eralized Rosenbrock’s function which is presented in
Equation 1 is a sample numerical optimization func-
tion with both upper and lower bounds constraints on
each dimension.

f20(X) =
D�1

å
i=1

���100
�
xi+1� xi

2�2
+(xi�1)2

��� (1)

Constraints : 8i 2 f1; :::;Dg �30� xi � 30
Optimum : min( f20) = f20 (< 1; :::;1 >) = 0

The high dimensional numerical optimization
problems are also known as large scale global op-
timization. One of the well-known benchmarks for
high dimensional problems is the benchmark of the
CEC’2010 competition on large scale global opti-
mization (Tang et al., 2009) which includes twenty
1000-dimensional numerical optimization functions.
Although recently other benchmarks are introduced
for high dimensional problems, this benchmark is se-
lected due to its usage in evaluating related methods.

4 DYNAMIC HMP-CA

Dynamic HMP-CA (D-HMP-CA) (Raeesi N. and
Kobti, 2014) is the improved version of HMP-CA
which is capable to deal with dynamic decomposi-
tion techniques. During the process of evolution, it
generates new local CAs and assigns them different
dimension subsets. D-HMP-CA incorporates two dif-
ferent dynamic approaches including bottom-up and
top-down techniques which are further characterized
with examples in the following sub-sections.

D-HMP-CA is evaluated over twelve 30-
dimensional benchmark functions (Raeesi N. and
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Figure 2: A sample run of the dynamic bottom-up approach on a 10-dimensional generalized Rosenbrock’s function ( f2).

Kobti, 2014). The evaluation results reveal that for
both dynamic techniques, D-HMP-CA presents a
very good performance such that it is able to find the
optimal solutions for every single run. However, in
terms of algorithm efficiency, the results show that
the bottom-up approach is more efficient due to its
better convergence rate. In this article, D-HMP-CA is
applied on large scale global optimization problems
to be evaluated in terms of algorithm scalability.

D-HMP-CA incorporates two algorithm parame-
ters which are as follows:

• PopSize: The sub-population size of local CAs.

• NoImpT : A threshold for the number of genera-
tions a local CA cannot find a better solution.

These parameters are adjusted by conducting exten-
sive experiments, the results of which show that the
algorithm works better generally over all the consid-
ered problems by assigning 10 and 5 to PopSize and
NoImpT , respectively (Raeesi N. and Kobti, 2014).

4.1 Dynamic Top-Down Dimension
Decomposition Technique

The top-down technique starts with a local CA de-
signed to optimize all the problem dimensions to-
gether. When the local CA cannot find a better so-
lution after NoImpT generations, it will be split and
two new local CAs will be generated, each of which is
designed to optimize one half of the dimensions of its
parent. It should be noted here that the decomposed
local CA cooperates with the two new local CAs for
the next generations such that the decomposed local
CA will not be split again. Local CAs with only one
assigned dimension will not be decomposed as well.

Figure 1 illustrates a sample run of D-HMP-
CA with the proposed top-down dimension decom-

position approach on a 10-dimensional generalized
Rosenbrock’s function ( f2) represented in Equation 1.
In this experiment, PopSize and NoImpT parameters
are set to 10 and 5, respectively. The figure shows that
the proposed method starts with a local CA designed
to optimize all the 10 dimensions. In generation 57,
the local CA reaches to its 5th generation that it can-
not find a better solution. Therefore, it will be split
into two new local CAs 2 and 3 with assigned dimen-
sions (1,2,3,4,5) and (6,7,8,9,10), respectively. These
three local CAs continue to optimize their assigned
dimensions until generation 110 in which the 3rd lo-
cal CA gets ready to be split. This routine continues
until generation 595 in which the optimal solution is
obtained. It should be noted that the optimal solution
is reached without requiring local CA 15 to be split.

4.2 Dynamic Bottom-Up Dimension
Decomposition Technique

The bottom-up approach starts with a number of lo-
cal CAs, each of which is designed to optimize only
one dimension. The number of initially generated lo-
cal CAs equals to the number of problem dimensions.
These local CAs starts to optimize their assigned di-
mensions until two of them reach to the no improve-
ment threshold. In this stage, a new local CA is gener-
ated to optimize all the dimensions of those two local
CAs. Like the top-down approach, each local CA is
merged only one time. Therefore, a local CA with all
the problem dimensions never get merged.

Similar to the top-down technique, D-HMP-CA
with the bottom-up approach is applied on a 10-
dimensional generalized Rosenbrock’s function ( f2)
with the same parameters. As illustrated in Figure 2,
the proposed HMP-CA starts with 10 local CAs, each
of which is designed to optimize only one dimension.
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Table 1: The results of applying D-HMP-CA incorporating two different dynamic approaches on CEC’2010 benchmark
functions for large scale global optimization (Tang et al., 2009)

Functions
Bottom-Up Top-Down

Evolved Dimensions Mean Std Dev Evolved Dimensions Mean Std DevTotal In Average Total In Average
f1 1.36E+07 4.54 4.04E-06 1.23E-05 1.95E+07 6.51 3.69E+05 1.43E+06
f2 1.28E+07 4.28 1.99E-10 2.15E-10 2.00E+07 6.67 9.68E-11 8.93E-11
f3 1.16E+07 3.88 1.92E-07 1.32E-07 1.94E+07 6.46 6.90E-06 2.59E-05
f4 1.35E+07 4.51 3.01E+12 1.18E+12 2.01E+07 6.70 1.42E+11 3.75E+11
f5 1.43E+07 4.76 1.94E+08 1.68E+08 1.96E+07 6.54 3.72E+07 2.79E+07
f6 1.43E+07 4.78 5.32E+06 8.10E+05 1.93E+07 6.43 4.80E+06 5.24E+05
f7 1.38E+07 4.59 4.98E+08 2.92E+08 2.02E+07 6.73 3.91E+06 9.09E+06
f8 1.50E+07 5.00 5.94E+07 5.38E+07 2.02E+07 6.74 2.29E+07 3.42E+07
f9 1.38E+07 4.59 2.93E+07 2.91E+06 2.02E+07 6.74 2.11E+05 3.70E+04
f10 1.43E+07 4.76 4.13E+03 2.06E+02 2.01E+07 6.71 7.68E+01 3.03E+01
f11 1.43E+07 4.78 5.82E+01 6.64E+00 1.90E+07 6.35 5.46E+01 6.35E-01
f12 8.94E+06 2.98 1.23E+04 2.08E+03 1.99E+07 6.63 1.17E+01 4.43E+00
f13 1.39E+07 4.63 9.96E+02 5.77E+02 2.09E+07 6.96 3.75E+02 1.57E+02
f14 9.30E+06 3.10 6.89E+07 5.32E+06 2.01E+07 6.72 4.43E+05 5.24E+04
f15 1.43E+07 4.77 1.19E+03 2.38E+03 2.01E+07 6.70 1.86E+02 1.70E+02
f16 1.44E+07 4.79 1.13E+02 7.86E+00 1.90E+07 6.33 1.09E+02 1.25E+00
f17 8.46E+06 2.82 3.50E+04 4.97E+03 1.98E+07 6.60 5.07E+01 2.19E+01
f18 1.34E+07 4.48 1.82E+03 2.45E+02 2.09E+07 6.98 6.52E+02 2.11E+02
f19 9.89E+06 3.30 3.79E+05 5.17E+04 2.01E+07 6.71 8.88E+03 8.86E+03
f20 1.35E+07 4.48 1.24E+03 1.41E+02 2.11E+07 7.02 1.04E+03 2.52E+02

Average 1.29E+07 4.29 2.00E+07 6.66

They continue optimizing their assigned dimension
until generation 40 when local CAs 9 and 10 reach
to their no improvement threshold. Therefore, a new
local CA is generated to optimize their assigned di-
mensions concurrently which would be local CA 11
with dimensions (9,10). In the next generation, local
CAs 1 and 2, 3 and 4, and 5 and 6 are merged together
and generate local CAs 12, 13, and 14, respectively.
This routine continues until generation 65 in which a
local CA with all the 10 problem dimensions is gen-
erated. These 19 local CAs continue to optimize their
own assigned dimensions until generation 650 when
an optimal solution is found.

In addition to these dynamic decomposition tech-
niques, D-HMP-CA incorporates a shared belief
space of size 3 which influences the search mecha-
nism only by providing complement parameters for
evaluating partial solutions. In D-HMP-CA, each lo-
cal CA uses a simple DE incorporating DE=rand=1
mutation operator, binomial crossover operator and a
selection mechanism (Raeesi N. and Kobti, 2013).

5 EXPERIMENTS AND RESULTS

The D-HMP-CA incorporating both dynamic decom-
position techniques is experimented on the CEC’2010
benchmark for large scale global optimization prob-
lems (Tang et al., 2009). This benchmark provides

some rules and regulations which are as follows. The
number of dimensions for all 20 optimization func-
tions should be set to 1000. Although the maximum
number of fitness evaluations is 3.00E+6, the obtained
solutions for 1.20E+5 and 6.00E+5 fitness evaluations
should be recorded. Furthermore, it is declared that
each experiment should be conducted for 25 indepen-
dent runs.

The results of applying D-HMP-CA on CEC’2010
benchmark (Tang et al., 2009) are presented in Ta-
ble 1 illustrating the mean and the standard devia-
tion of the solutions obtained for 25 independent runs.
The better mean value is emphasized with bold face1.
The results presented in these tables reveal that the
top-down approach offers better results such that it
can find better solutions for all optimization functions
except two functions f1 and f3. Therefore, the re-
sults indicate that although the bottom-up approach
presents better performance in small scale optimiza-
tion problems (Raeesi N. and Kobti, 2014), the top-
down approach is a more effective method in high di-
mensional problems. This could be due to the fact
that in the earlier generations the local CAs are look-
ing for the promising regions and this is happening
by lower number of local CAs with higher number

1To see the more detailed results includ-
ing the solutions obtained by 1.20E+5 and
6.00E+5 fitness evaluations please refer to
http://cs.uwindsor.ca/~raeesim/ECTA2014/AllResults.pdf
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of dimensions in the top-down approach, while in the
bottom-up approach it takes the resources of higher
number of local CAs with lower number of dimen-
sions. Therefore, it is expected for the top-down ap-
proach to have more resources (fitness evaluations)
for exploiting the promising regions which results in
its better performance for non-separable optimization
functions. Conversely for the fully separable func-
tions, the top-down approach uses too much resources
to generate the local CAs with only one assigned di-
mensions, while the bottom-up approach starts by ini-
tializing these local CAs. This could be the main
reason which makes the bottom-up approach a bet-
ter strategy for functions f1 and f3 and a competitive
approach for function f2.

D-HMP-CA is also evaluated in terms of effi-
ciency to deal with high dimensional problems. D-
HMP-CA incorporates the concept of partial solution
which is a solution including values for a number of
dimensions instead of for all the problem dimensions.
D-HMP-CA design each sub-population to handle the
partial solutions including the values for the dimen-
sions assigned to the corresponding local CA. In these
experiments, 3.00E+6 partial solutions are evolved
over various generations such that the numbers of di-
mensions within these partial solutions are different.
One partial solution, for instance, may have only one
dimension while another one may have up to 1000 di-
mensions.

The total number of dimensions within 3.00E+6
partial solutions are counted for all the experiments.
The total number of dimensions is averaged over the
25 independent runs which is represented in Table 1.
For instance, the average total number of dimensions
incorporated by the bottom-up strategy to solve opti-
mization function f1 is 1.36E+07. Since this number
of dimensions are incorporated by 3.00E+6 partial so-
lutions, it can be said that a partial solution in these
experiments incorporates 4.54 dimensions in average.
Table 1 also illustrates the average number of dimen-
sions for one partial solution.

Averaged over all the optimization functions, the
bottom-up strategy in average incorporates 4.29 di-
mensions within one partial solution, while the top-
down approach incorporates 6.66 dimensions. This
difference is mainly due to the fact the top-down strat-
egy starts with partial solutions with higher number of
dimensions compared to the bottom-up approach.

Considering 3 operations to be calculated for the
DE=rand=1 mutation operator and 3.00E+6 solu-
tions to be mutated, an algorithm requires to execute
6:00E + 6� #Dimensions operations in total where
#Dimensions denotes the number of dimensions of a

sample solution.

#TotalOperations
= 3 Operations�#TotalDimensions
= 3� (3:00E +6) Solutions�#Dimensions
= 9:00E +6�#Dimensions

Therefore, based on this calculation if an algorithm
works with only complete solutions, it needs to calcu-
late 9.00E+9 operations, while the number of opera-
tions required by the bottom-up and top-down strate-
gies are only 3.86E+7 and 6.00E+7, respectively.
Comparing 9.00E+9 operations with 3.87E+7 and
5.99E+7 operations shows that the efficiency of calcu-
lating the mutation operator is improved by more than
99%. The same improvement is also obtained for the
crossover operator. Conversely, the concept of partial
solutions does not affect the efficiency of the selection
mechanism in which the new partial solutions are re-
quired to be completed for their evaluation.

In order to evaluate the effectiveness of D-HMP-
CA, its results on large scale global optimization
problems are compared with the results of the state-
of-the-art methods including DECC-G (Yang et al.,
2008a), MLCC (Yang et al., 2008b), DECC-DML
(Omidvar et al., 2010) and CCVIL (Chen et al., 2010).
These methods are considered for the comparison due
to the fact that they are the most recent methods in-
troducing new dimension decomposition techniques.
The results of this comparison which is represented in
Table 2 illustrate the corresponding rank obtained by
both versions of D-HMP-CA compared to the state-
of-the-art methods. The best results are also empha-
sized with bold face. In order to statistically evalu-
ate this comparison, a non-parametric procedure is in-
corporated (Garca et al., 2009) which includes Fried-
man’s ranking test followed by Bonferroni-Dunns test
with the two most common significance levels in the
literature which are a = 0:05 and a = 0:10.

The Friedman’s statistic value of Friedman’s rank-
ing test is 28.57, for which the p-value in a chi-
squared distribution is less than 0.0001. It means
that there are significant differences between the com-
pared algorithms. These differences will be deter-
mined by the second part of this statistical analysis.
In order to do so, the algorithm with the minimum av-
erage rank should be selected as the control algorithm.
In this case, the control algorithm would be our pro-
posed D-HMP-CA with the top-down strategy. With
respect to each significance level, Bonferroni-Dunns
test calculates a critical difference (CD) for the con-
trol algorithm, the results of which are as follows:

CD =

�
1:5240 for a = 0:05
1:3761 for a = 0:10
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Table 2: Comparing the results of applying D-HMP-CA with both dynamic approaches on CEC’2010 benchmark functions
for large scale global optimization (Tang et al., 2009) with state-of-the-art methods.

Functions DECC-G MLCC DECC-DML CCVIL D-HMP-CA
Bottom-Up Top-Down

Mean Mean Mean Mean Mean Rank Mean Rank
f1 2.93E-07 1.53E-27 1.93E-25 1.55E-17 4.04E-06 5 3.69E+05 6
f2 1.31E+03 5.55E-01 2.17E+02 6.71E-09 1.99E-10 2 9.68E-11 1
f3 1.39E+00 9.86E-13 1.18E-13 7.52E-11 1.92E-07 4 6.90E-06 5
f4 5.00E+12 1.70E+13 3.58E+12 9.62E+12 3.01E+12 2 1.42E+11 1
f5 2.63E+08 3.84E+08 2.99E+08 1.76E+08 1.94E+08 3 3.72E+07 1
f6 4.96E+06 1.62E+07 7.93E+05 2.94E+05 5.32E+06 5 4.80E+06 3
f7 1.63E+08 6.89E+05 1.39E+08 8.00E+08 4.98E+08 5 3.91E+06 2
f8 6.44E+07 4.38E+07 3.46E+07 6.50E+07 5.94E+07 4 2.29E+07 1
f9 3.21E+08 1.23E+08 5.92E+07 6.66E+07 2.93E+07 2 2.11E+05 1
f10 1.06E+04 3.43E+03 1.25E+04 1.28E+03 4.13E+03 4 7.68E+01 1
f11 2.34E+01 1.98E+02 1.80E-13 3.48E+00 5.82E+01 5 5.46E+01 4
f12 8.93E+04 3.48E+04 3.80E+06 8.95E+03 1.23E+04 3 1.17E+01 1
f13 5.12E+03 2.08E+03 1.14E+03 5.72E+02 9.96E+02 3 3.75E+02 1
f14 8.08E+08 3.16E+08 1.89E+08 1.74E+08 6.89E+07 2 4.43E+05 1
f15 1.22E+04 7.10E+03 1.54E+04 2.65E+03 1.19E+03 2 1.86E+02 1
f16 7.66E+01 3.77E+02 5.08E-02 7.18E+00 1.13E+02 5 1.09E+02 4
f17 2.87E+05 1.59E+05 6.54E+06 2.13E+04 3.50E+04 3 5.07E+01 1
f18 2.46E+04 7.09E+03 2.47E+03 1.33E+04 1.82E+03 2 6.52E+02 1
f19 1.11E+06 1.36E+06 1.59E+07 3.52E+05 3.79E+05 3 8.88E+03 1
f20 4.06E+03 2.05E+03 9.91E+02 1.11E+03 1.24E+03 4 1.04E+03 2

Avg Rank 4.85 4.25 3.50 3.05 3.40 1.95

The summation of a CD and the average rank of
the control algorithm defines the threshold ranks with
respect to the corresponding significance levels which
are as follows:

T hreshold Rank =
�

3:4740 for a = 0:05
3:3261 for a = 0:10

A threshold rank determines the algorithms which
are significantly outperformed by the control algo-
rithm with respect to the corresponding significance
level. In other words, this statistical procedure states
that the algorithms with average rank higher than a
threshold rank are significantly outperformed by the
control algorithm with respect to the corresponding
significance level. Figure 3 graphically depicts the re-
sults of this statistical analysis. In this figure, the solid
line and the dashed line represent the threshold ranks
for the significance levels a = 0:05 and a = 0:10, re-
spectively. This figure indicates that the control algo-
rithm significantly outperforms the algorithms whose
bar exceeds the threshold lines.

Therefore based on the Friedman’s ranking test
and Bonferroni-Dunn’s method, it can be stated that
the proposed D-HMP-CA with top-down strategy out-
performs DECC-G, MLCC and DECC-DML with the
significance level a = 0:05 and it also outperforms
D-HMP-CA with bottom-up strategy with the signif-
icance level a = 0:10. Furthermore, this statistical
analysis states that although the results obtained by

D-HMP-CA with top-down strategy is better than the
results of CCVIL, the improvement is not significant.

6 CONCLUSIONS

HMP-CA (Raeesi N. and Kobti, 2013) incorporates
a number of heterogeneous local CAs and a shared
belief space to deal with optimization problems. In
HMP-CA, the given problem is decomposed into a
number of sub-problems which are assigned to differ-
ent local CAs to be optimized separately in parallel.

HMP-CA is improved by incorporating dynamic
decomposition techniques (Raeesi N. and Kobti,
2014). The improved version which is called D-
HMP-CA introduces two dynamic techniques in-
cluding bottom-up and top-down strategies. It has
been shown that D-HMP-CA is an effective as well
as efficient method to solve optimization problems
(Raeesi N. and Kobti, 2014).

In this article, the performance of D-HMP-CA is
evaluated over large scale global optimization. The
interesting point of this research study is that the top-
down strategy outperforms the bottom-up technique
by offering better solutions, while within lower size
problems the bottom-up approach presents a better
performance. Generally, the results of this evalua-
tion reveal that D-HMP-CA is an efficient method
due to its computational complexity. Furthermore, it
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Figure 3: The Graphical Representation of Statistical Anal-
ysis with Friedman’s test and Bonferroni-Dunn’s method.

is proved that the proposed D-HMP-CA is a scalable
method such that it offers competitive performance to
solve large scale global optimization problems com-
pared to the state-of-the-art methods.

Although D-HMP-CA offers a great performance
to solve large scale global optimization problems, it
can be further improved by incorporating more ad-
vanced decomposition strategies. Detecting variable
interactions in dimension decomposition approach is
considered as future direction for this research.
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