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Abstract: This paper introduces a comparison of a linear and nonlinear one step predictive models that were used to 
describe the relationship between human emotional signal – excitement – as a reaction to a virtual 3D face 
feature – distance between eyes. An input-output model building method is proposed that allows building a 
stable model with the least output prediction error. Validation was performed using the recorded signals of 
six volunteers and the following measures: prediction error standard deviation, relative prediction error 
standard deviation, and average absolute relative prediction error. Validation results of the models showed 
that both models predict excitement signal in relatively high prediction accuracy. 

1 INTRODUCTION 

Lots of systems and classification methods are used 
for emotion recognition problem, but not so many 
systems and methods are used for emotion control in 
virtual environment. For this purpose plenty of bio-
signals are used for human state monitoring. We use 
EEG-based signals because of their reliability and 
quick response (Sourina and Liu, 2011; Hondrou 
and Caridakis, 2012). 

We have investigated linear input-output 
structure models for exploring dependencies 
between virtual 3D face features and human reaction 
to them in Vidugirienė et al. (2013) and Vaškevičius 
et al. (2014). Four reaction signals were used: 
excitement, meditation, frustration, and engagement/ 
boredom. It was shown that features of a virtual face 
have the largest influence to human excitement 
signal from the previously mentioned four human 
reaction signals (Vaškevičius et al., 2013). 

In this investigation we compare a linear and one 
type nonlinear input-output models to describe the 
dependencies between human reaction – excitement 
signal – to a virtual 3D face feature – distance-
between-eyes.  

2 OBSERVATIONS AND DATA 

A virtual 3D face with changing distance between 
eyes was used for input as stimulus (shown in a 
monitor) and EEG-based pre-processed excitement 

signal of a volunteer was measured as output 
(Figure 1). The output signals were recorded with 
Emotiv Epoc device that records EEG inputs from 
14 channels (according to international 10-20 
locations): AF3, F7, F3, FC5, T7, P7, O1, O2, P8, 
T8, FC6, F4, F8, AF4 (Emotiv Epoc specifications). 
A dynamic stimulus was formed from a changing 
woman face. One 3D face created with Autodesc 
MAYA was used as a “neutral” one (Figure 1, left). 
Other 3D faces were formed by changing distance-
between-eyes in an extreme manner (Figure 2). 

 

Figure 1: Input-Output scheme for the experiments. 

 

Figure 2: A 3D virtual face with the smallest (left), normal 
(middle) and the largest (right) distance-between-eyes. 

The transitions between normal and extreme 
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stages were programmed.  
Experiment plan for input is shown in Figure 3. 

At first “neutral” face (Figure 2, middle) was shown 
for 5 s, then the distance-between-eyes was 
increased continuously and in 10 s the largest 
distance between eyes (Figure 2, right) was reached, 
then 5 s of steady face was shown and after that the 
face came back to “normal” in 10 s. Then “normal” 
face was shown for 5 s, followed by 10 s long 
continuous change to the face with the smallest 
distance between eyes (Figure 2, left), again 5 s of 
steady face was shown and in the next 10 s the face 
came back to “normal”. Then everything was 
repeated from the beginning using 3 s time intervals 
for steady face and 5 s for continuous change. 
“Neutral” face has 0 value, largest distance-between-
eyes corresponds to value 3 and smallest distance-
between-eyes corresponds to value -3.  

Values of the output signal – excitement – vary 
from 0 to 1. If excitement is low, the value is close 
to 0 and if it is high, the value is close to 1. The 
signals were recorded with the sampling period of 
T0=0.5 s.  

Six volunteers (three females and three males) 
were tested. Their excitement signals are shown in 
Figures 4-5. 

 

Figure 3: Input signal: experiment plan.  

 

Figure 4: Excitement signal, volunteers no. 1-3 (females).  

 

Figure 5: Excitement signal, volunteers no. 4-5 (males).  

Each volunteer was watching one animated scene of 
approximately 100 s, and EEG-based signals were 
measured and recorded simultaneously.  

3 BUILDING OF 
MATHEMATICAL MODELS 

Dependency between virtual 3D face feature 
(distance-between-eyes) and human excitement is 
described by input-output structure linear and 
nonlinear models (Kaminskas, 1982) in (1) and (2) 
correspondingly: 

௧ݕଵሻିݖሺܣ ൌ ߠ  ௧ݔଵሻିݖሺܤ  ௧ (1)ߝ

and 

௧ݕଵሻିݖሺܣ ൌ ߠ  |௧ݔ|ଵሻିݖሺܤ  ௧ (2)ߝ

where 

ଵሻିݖሺܤ ൌ ܾିݖ,



ୀ

 

ଵሻିݖሺܣ ൌ 1 ܽିݖ


ୀଵ

 

(3)

-௧ is an input (distanceݔ ,௧ is an output (excitement)ݕ
between-eyes) signal respectively expressed as  

௧ݕ ൌ ݐሺݕ ܶሻ, ௧ݔ ൌ ݐሺݔ ܶሻ (4)

with sampling period ܶ, ߠ is a constant value, ߝ௧ 
corresponds to noise signal, and z-1 is the backward-
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shift operator (zିଵx୲ ൌ x୲ିଵ). A sign | | denotes 
absolute value.  

These type of models were chosen to examine if 
a volunteer reacts to the changes of a 3D face 
(increase or decrease of distance-between-eyes) 
directly (model 1) or he/she reacts to the absolute 
values of the changes (model 2).  

Parameters (coefficients of the polynomials (3)), 
orders (degrees m and n of the polynomials (3)) and 
constant ߠ of the models (1) or (2) are unknown. 
They have to be estimated according to the 
observations obtained during the experiments with 
the volunteers.  

Eqs. (1) and (2) can be expressed in the 
following forms: 

௧ݕ ൌ ߠ  ܾݔ௧ି



ୀ

െܽݕ௧ି



ୀଵ

 ௧, (5)ߝ

௧ݕ ൌ ߠ  ܾหݔ௧ିห



ୀ

െܽݕ௧ି



ୀଵ

 ௧, (6)ߝ

It is not difficult to see that eqs. (5) and (6) can be 
expressed as the linear regression equations: 

௧ݕ ൌ ௧ (7)ߝ+ࢉ௧்ࢼ

where  

௧்ࢼ ൌ ሾ1, ,௧ݔ ,௧ିଵݔ … ,  ,௧ିݔ
െݕ௧ିଵ, … ,െݕ௧ି		ሿ 

(8)

for model (1),  

௧்ࢼ ൌ ሾ1, ,|௧ݔ| ,|௧ିଵݔ| … ,  ,|௧ିݔ|
െݕ௧ିଵ, … ,െݕ௧ି		ሿ 

(9)

for model (2), and 

்ࢉ ൌ ,ߠൣ ܾ, ܾଵ, … , ܾ,ܽଵ, ܽଶ, … , ܽ൧, (10)

for both models, and T is a vector transpose sign.  
For the estimation of unknown parameter vector 

c we use a method of least squares (Kaminskas, 
1982):  

ොࢉ ൌ (11) ,ଵିࡽ

where ࡽ and  are expressed as follows 

ࡽ ൌࢼ௧ࢼ௧்
ெ

௧ୀଵ

, (12)

 ൌݕ௧ࢼ௧

ெ

ఛୀଵ

, (13)

and M is a number of observation values that are 
used to build a model.  

After calculating the estimates of model 
parameters, model’s stability condition is verified 
(Kaminskas, 1982). It means that the roots  

ݖ
: ሻݖመெሺܣ ൌ 0, ݅ ൌ 1, 2, … , ݊ (14)

of the following polynomial 

ሻݖመெሺܣ ൌ ଵሻିݖመெሺܣݖ ൌ ݖ  ොܽݖି


ୀଵ

 (15)

have to be in the unit disk 

หݖ
ห  1. (16)

Estimates of the model orders – ෝ݉  and ො݊ – are 
defined from the following conditions (Kaminskas, 
1982):  

ො݊ : ቤ
,ఌሾ݉ߪ ݊  1ሿ െ ,ఌሾ݉ߪ ݊ሿ

,ఌሾ݉ߪ ݊ሿ
ቤ   ,ߜ

݊ ൌ 1,2, … 

(17)

ෝ݉ : ቤ
ఌሾ݉ߪ  1, ݊ሿ െ ,ఌሾ݉ߪ ݊ሿ

,ఌሾ݉ߪ ݊ሿ
ቤ   ,ߜ

݉ ൌ 0,1, … , ݊ 

(18)

where 

,ఌሾ݉ߪ ݊ሿ ൌ ඩ
1
ܰ
ߝ௧̂

ଶሾ݉, ݊ሿ
ே

௧ୀଵ

 (19)

is one step output prediction error standard 
deviation, 

,௧̂ሾ݉ߝ ݊ሿ ൌ ௧ݕ െ ,ො௧|௧ିଵሾ݉ݕ ݊ሿ (20)

is one step output prediction error, 

ො௧|௧ିଵݕ ൌ ߠ  1ൣݖ െ ௧ିଵݕଵሻ൧ିݖመெሺܣ  
ܤெሺିݖଵሻݔ௧ 

(21)

is one step forward output prediction in the case of 
model (1) and  

ො௧|௧ିଵݕ ൌ ߠ  1ൣݖ െ ௧ିଵݕଵሻ൧ିݖመெሺܣ  
ܤெሺିݖଵሻ|ݔ௧| 

(22)

in the case of model (2) (Kaminskas, 2007), z is the 
forward-shift operator (zy୲ ൌ y୲ାଵ), and ߜ  0 is a 
chosen constant value. Usually in the practice of 
identification ߜ ∈ ሾ0,001 ൊ 0,01ሿ what corresponds 
to a relative variation of prediction error standard 
deviation from 0,1% to 1%.  

This way stable input-output models are built 
that ensure the best one step output signal prediction. 
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4 VALIDATION OF PREDICTIVE 
MODELS 

Validation of the models (1) and (2) was performed 
for each of six volunteers (three female and three 
male).  

Figs. 6-9 demonstrate prediction error standard 
deviations for an input-output pair when n=1, 2 and 
m=0, 1, for one male (volunteer no.4) and one 
female (volunteer no.2) using model (1) and 
model (2).  

Each model is selected from four possible 
models (when n=1, 2; m=0, 1) using the rules (17) 
and (18).  

The analysis of two volunteers’ data showed that 
relations between distance-between-eyes input and 
excitement output signal can be modelled when 
model order is ෝ݉ ൌ 0, and ො݊ ൌ 1.  

 

Figure 6: Prediction error standard deviations with 
different model (1) orders for a volunteer no. 2 (female).  

 

Figure 7: Prediction error standard deviations with 
different model (2) orders for a volunteer no. 2 (female). 

 

Figure 8: Prediction error standard deviations with 
different model (1) orders for a volunteer no. 4 (male). 

 

Figure 9: Prediction error standard deviations with 
different model (2) orders for a volunteer no. 4 (male). 

The predicted output signals of every model have 
the following expressions (Kaminskas, 1982) 

ො௧ାଵ|௧ݕ ൌ ߠ  1ൣݖ െ ௧ݕଵሻ൧ିݖመሺܣ  

ܤሺିݖଵሻݔ௧ାଵ ൌ 
ൌ ߠ െ ොܽଵݕ௧  ܾ

ݔ௧ାଵ 

(23)

in the case of model (1) and  

ො௧ାଵ|௧ݕ ൌ ߠ  1ൣݖ െ ௧ݕଵሻ൧ିݖመሺܣ  

ܤሺିݖଵሻ|ݔ௧ାଵ| ൌ 
ൌ ߠ െ ොܽଵݕ௧  ܾ

|ݔ௧ାଵ| 

(24)

in the case of model (2).  
Prediction accuracies were evaluated using the 

following measures:  
 prediction error standard deviation 

ఌߪ ൌ ඩ
1
ܰ
൫ݕ௧ାଵ െ ො௧ାଵ|௧൯ݕ

ଶ
ேିଵ

௧ୀ

, (25)

 relative prediction error standard deviation 
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ఌߪ ൌ ඩ
1
ܰ
ቆ

௧ାଵݕ െ ො௧ାଵ|௧ݕ
௧ାଵݕ

ቇ
ଶேିଵ

௧ୀ

∗ 100%, (26)

 and average absolute relative prediction 
error 

̅|ߝ| ൌ
1
ܰ
 ቤ

௧ାଵݕ െ ො௧ାଵ|௧ݕ
௧ାଵݕ

ቤ

ேିଵ

௧ୀ

∗ 100%. (27)

Predictions were performed using the observation 
data that were used to build a model (M=124, in (12) 
and (13)) and the additional ones that were not used 
to build a model (N=200, in (25)-(27)). Prediction 
accuracies and parameters of the models are 
provided in Table 1 and Table 2 for female and male 
volunteers respectively.  

Table 1: Prediction errors and model parameter estimates 
for the volunteers no. 1-3 (females). 

V
ol

un
te

er
 

no
. 

M
od

el
 

 ࢿ࣌
 	,ࢿ࣌
% 

  ,|തࢿ|
% 

b0 a1 ߠ 

1 1 0.0246 4.46 6.59 -0.0014 -0.9856 0.0006
2 0.0246 4.47 6.57 -0.0018 -0.9822 0.0036

2 1 0.0174 3.51 5.63 0.0007 -0.9097 0.0085
2 0.0176 3.55 5.69 -0.0006 -0.9099 0.0093

3 1 0.0271 5.23 7.94 -0.0002 -0.8676 0.0399
2 0.0275 5.32 8.13 -0.0029 -0.8574 0.0469

Figures 10-15 show prediction results when using 
linear model (1) for all six volunteers. Thin solid 
line denotes an observed signal and thick dotted line 
denotes predicted signal. 

Table 2: Prediction errors and model parameter estimates 
for the volunteers no. 4-6 (males). 

V
ol

un
te

er
 

no
. 

M
od

el
 

 ࢿ࣌
 	,ࢿ࣌
% 

  ,|തࢿ|
% 

b0 a1 ߠ 

4 1 0.0248 4.64 7.21 0.0012 -0.9139 0.0189
2 0.0253 4.75 7.43 -0.0042 -0.8898 0.0303

5 1 0.0258 5.12 8.26 0.0005 -0.9594 0.0066
2 0.0260 5.19 8.68 -0.0088 -0.9362 0.0251

6 1 0.0245 4.80 7.94 -0.0001 -0.9674 0.0079
2 0.0249 4.91 8.09 -0.0040 -0.9869 0.0079

Vertical thin dotted line denotes M position as 
model parameters were estimated in the interval 
from 0 to M (that is equal to 124). As the signal was 
measured with the sampling period of T0=0.5 s, M 
value corresponds to 62 s.  

 

Figure 10: Prediction error standard deviations for 
volunteer no. 1 (female). Thin solid line denotes a real 
observed signal and thick dotted line denotes predicted 
signal. Vertical thin dotted line denotes M position. 

 

Figure 11: Prediction error standard deviations for 
volunteer no. 2 (female). Thin solid line denotes a real 
observed signal and thick dotted line denotes predicted 
signal. Vertical thin dotted line denotes M position. 

 

Figure 12: Prediction error standard deviations for 
volunteer no. 3 (female). Thin solid line denotes a real 
observed signal and thick dotted line denotes predicted 
signal. Vertical thin dotted line denotes M position. 
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Figure 13: Prediction error standard deviations for 
volunteer no. 4 (male). Thin solid line denotes a real 
observed signal and thick dotted line denotes predicted 
signal. Vertical thin dotted line denotes M position. 

 

Figure 14: Prediction error standard deviations for 
volunteer no. 5 (male). Thin solid line denotes a real 
observed signal and thick dotted line denotes predicted 
signal. Vertical thin dotted line denotes M position. 

 

Figure 15: Prediction error standard deviations for 
volunteer no. 6 (male). Thin solid line denotes a real 
observed signal and thick dotted line denotes predicted 
signal. Vertical thin dotted line denotes M position. 

 

5 CONCLUSIONS 

Two alternative predictive models – linear and 
nonlinear – were proposed to describe the 
dependencies between 3D face feature (distance-
between-eyes) and excitement. The first model 
describes the reaction of a volunteer to the direct 
changes of a 3D face (increase or decrease of 
distance-between-eyes). The second describes the 
reaction of a volunteer to the absolute values of the 
changes of a 3D face.  

A method for building input-output models was 
proposed that allows building stable models for the 
predictions of excitement signals with the least 
prediction error. 

Validation of the models showed that each 
volunteer has an individual reaction to the given 
stimuli, and the reactions can be described using first 
order (n=1, m=0) models. The absolute relative 
predictions errors for the excitement signals are 
between 5.5 % and 8.5 % in both model cases.  
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