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Abstract: Self-configuring evolutionary algorithm of fuzzy rule bases automated deign for solving classification 
problems, which combines Pittsburgh and Michigan approaches, is introduced. The evolutionary algorithm 
is based on the Pittsburgh approach where every individual is a rule base and the Michigan approach is used 
as a mutation operator. A self-configuration method is used to adjust probabilities of the usage of selection, 
mutation and Michigan part operators. Testing the algorithm on a number of real-world problems 
demonstrates its efficiency comparing to several other commonly used approaches. 

1 INTRODUCTION 

Today the most popular methods for the automated 
design of fuzzy rule bases and fuzzy systems are 
evolutionary algorithms. Genetic algorithms (GA) 
are mostly used, as well as their modifications, so 
this field received the name of genetic fuzzy systems 
(Cordon et al., 2001). The techniques for forming 
fuzzy controllers take a special place here, but in this 
paper we will focus on classification problems 
solving. 

The first works on data classification with fuzzy 
rule bases appeared in the 90’s (Wang et al., 1992), 
and several methods were developed, for example 
(Alcala et. al., 2007) and (Fernández et. al, 2009). In 
most of the works the design of a fuzzy logic system 
was transformed into the problem of choosing rules 
from a predefined set of good individual rules. There 
are basically two approaches – the Michigan 
approach (building rules) and the Pittsburg approach 
(building an entire rule base). The first method 
allows the formation of individual rules which 
describe some part of the sample, but without a rule 
base, so that classification is impossible. The second 
method forms an entire rule base and is much more 
difficult in terms of computational efforts, but it 
provides a ready solution to the problem. Today 
there appear more and more methods that combine 
these two approaches (Bodenhofer et. al., 1997). 

In this paper we consider a modification of an 
algorithm, combining the Pittsburg and Michigan 

approaches, that was described in (Ishibuchi et al., 
2005). One of the disadvantages of this algorithm, as 
well as of any other evolutionary method, is the 
existence of several genetic operators that influence 
the properties of the search algorithm and must be 
properly adjusted according to each problem. So, it 
seems reasonable to use some self-configuration 
methods, which adjust the operators’ application 
probabilities during the algorithm run.  

2 CLASSIFICATION WITH 
FUZZY RULE BASES 

Let the classification problem be given in n-
dimensional space with m measurements and M 
classes. Every measurement is represented as a 
vector xp=(xp1, xp2… xpn), p=1…m. We assume that 
every variable has been normalized into the [0,1] 
interval. The rules used look as follows: 

Rq: if X1 is Aq,1 and X2 is Aq,2 and … and Xn is 
Aq,n then 

X is from class Cq with level CFq. 

Rq is a rule, Aq,i is a fuzzy set, Cq is the number of 
the corresponding class, CFq is the rule weight. This 
is the standard rule representation, which is used in 
classification problems. Unlike some other 
representations, this rule has a weight CFq , which is 
determined using the learning sample. 
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There are four different variables’ space partitions 
into 2, 3, 4 and 5 fuzzy sets plus a “don’t care” term, 
so that a coded rule is an integer string with a 
number from 0 to 14. 

 
Figure 1: Fuzzy sets partitions. 

The class number Cq and the weight value CFq 
are captured separately. The “don’t care” term 
means that the value of this variable is not 
considered in the rule. This kind of technique allows 
the creation of more general rules, reduces their 
number and length, and gradually simplifies the rule 
base. The compatibility grade of a certain 
measurement xp in the rule Rm is calculated as the 
product of compatibility grades over all the 
variables. For the ignored variables the compatibility 
grade is considered as equal to one. Alternatively, a 
minimum operator can be used instead of 
multiplication. 

The class number and the weight value are 
calculated based on the confidence value in the same 
way as in (Ishibuchi et al., 2005). For the rule Rm the 
class Cq, is set if the confidence value for this class 
is maximal among all other classes. If the confidence 
value is less than 0.5, the rule is not generated. The 
classification procedure is performed using the 
winner-rule principle. This means that the rule that 
has the highest product of compatibility by the 
weight value is the winner rule. The measurement is 
classified into the class number equal to the winner 
rule class. 

3 HYBRID EVOLUTIONARY 
ALGORITHM OF FUZZY RULE 
BASES FORMATION 

The developed algorithm implements the Ishibuchi 
approach (Ishibuchi et al., 2005). This algorithm can 
be described in the following way: 
 Population initialization; 
 Rule bases fitness calculation; 
 Selection, crossover, mutation; 
 Applying the Michigan part to every individual; 
 Forming a new generation; 
 If the stop condition is satisfied, then exit, else 

go to step 2; 

The Michigan part contains the following steps: 

 Classify the learning sample with a rule base and 
set the rules’ fitness; 

 Generate or delete rules from the population with 
one of the methods; 

 Return the obtained rules base into the Pittsburg 
part. 
The number of rules in the algorithm is not fixed 

and it can be changed for every individual. 
Nevertheless, the maximum number of rules is set. 
So, the rule base is a matrix where every row is the 
rule. Some of these rules can be muted and have 
zero weight. During the initialization step every rule 
of the rule base is formed based on randomly 
selected examples from the learning sample. To 
form a rule, the compatibility grades are calculated 
for every term, and the greater these numbers are, 
the more chances this fuzzy set has of being 
included in the rule. 

The fitness is calculated as a combination of 
three objectives: the error in the learning sample in 
percent, the number of rules in the base and the 
overall length of all the rules. For the first criterion 
the weight is equal to 100, and for the two others – 
1. Multi-objective approaches can also be used, and 
there are several examples, such as (Fazzolari et al., 
2013). 

In a genetic algorithm, three selection types are 
used – fitness proportional, rank-based and 
tournament selection with a tournament size of 
three. The crossover operator combines the genetic 
information of parents and generates a new rule base 
using the parents’ rules. The number of rules for the 
offspring is equal to a random number from 1 to the 
overall number of parents’ rules, if it does not 
exceed the stated maximum number of rules. 

The mutation operator is almost the same as the 
mutation in standard GA, i.e. the mutation 
probability depends on the number of rules and for 
an average mutation equal to 1/(n*|S|), |S| is the 
number of rules in the rule base. The weak and 
strong mutations have probabilities 1/(3*n*|S|) and 
3/(n*|S|) respectively in this algorithm. 

The Michigan stage contains two main 
operations – adding new rules and deleting them. 
There are three possible types of Michigan stage – 
only adding new rules, only deleting rules, and 
replacement of rules by deleting and adding new 
rules instead. The adding of new rules involves two 
methods – genetic and heuristic. The heuristic 
method includes new rules into the base, which are 
formed using the misclassified measurements from 
the sample in the same way as during the 
initialization procedure. In the genetic method the 
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number of objects classified by this rule is used as a 
fitness value. The rules are selected, then they 
undergo crossover and mutation to form an 
offspring. The tournament selection, uniform 
crossover and average mutation are used. The 
genetic and heuristic approaches are applied with 
probability of 0,5. During the deleting procedure the 
rules with the lowest fitness are removed from the 
base. 

The number k of deleted or added rules depends 
on the current number of rules in the base and is 
calculated so that 5(k-1) < |S| <= 5k. If the number 
of rules in the base reaches the given maximum 
number, new rules are not added to it. 

The forming of a new population in the Pittsburg 
part includes the best offspring and parents into the 
new generation. 

4 EVOLUTIONARY 
ALGORITHM  
SELF-CONFIGURATION 
TECHNIQUE 

Self-configuration means setting the application 
probabilities of evolutionary operators based on the 
success of the operators. Self-configuration needs to 
be used as the algorithm efficiency highly depends 
on the operators used. 

The applied self-configuration method 
(Semenkin et al., 2012-1) is based on encouraging 
those operators which received the highest total 
fitness in the current generation. This approach has 
proved its efficiency in the solving of hard real 
world optimization problems (Semenkin et al., 2012-
2, Semenkin et al., 2014) and has been 
recommended for practical use.  

Let z be the number of different operators of i-th 
type. The starting probability values are set to 
pi=1/z. The success estimation for every type of 
operator is performed based on the averaged fitness 
values: 
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where ni is the number of offspring formed with i-th 
operator, fij is the fitness value of j-th offspring, 
obtained with i-th operator, AvgFiti is the average 
fitness of the solutions, obtained with i-th operator. 

Then the probability of applying the operator, 

whose AvgFiti value is the highest among all the 
operators of this type, is increased by (zK-K)/(zN), 
and the probabilities of applying other operators are 
decreased by K/(zN), where N is the number of 
evolutionary algorithm generations, K is the constant 
equal to 0,5. 

The probabilities of the selection operators, the 
mutation operators and the Michigan operators are 
adjusted during the algorithm operation. In the first 
generation equal probabilities are applied to all the 
operators. For example, for the Michigan operators, 
the probabilities of adding, deleting and replacement 
procedures are equal when the algorithm starts. 

5 ALGORITHM 
IMPLEMENTATION AND 
TESTING RESULTS 

One of the advantages of this algorithm is that for 
every rule in the base the compatibility grades for 
every variable, as well as the class number and 
weight, can be calculated only once and then 
updated only for those rules that changed during the 
algorithm run. This allows the sample to be used 
fewer times, that results in a better computation 
time. 

Six heterogeneous classification problems from 
the UCI repository (Asuncion et al., 2007) and the 
KEEL repository (Alcalá-Fdez et al., 2009) were 
chosen for the approach performance evaluation, 
namely: 
 Australian credit card problem, 690 instances, 14 

variables, 2 classes – Australian; 
 German bank client classification problem, 1000 

instances, 24 variables, 2 classes – German; 
 Image segments classification problem, 2310 

instances, 19 variables, 7 classes – Segment; 
 Text recognition sections classification problem, 

5472 instances, 10 variables, 5 classes – 
Pageblocks; 

 Nasal and oral sounds classification problem, 
5404 instances, 5 variables, 2 classes, – 
Phoneme; 

 Satellite image pixels classification problem, 
6435 instances, 36 variables, 6 classes, – 
Satimage. 
To measure the classification quality the 10-fold 

cross-validation procedure was used. In this method 
the sample is split into 10 parts, 9 of them are used 
as a learning sample, and the residual part as a test 
sample, and then the parts are exchanged with each 
other. The procedure is performed 10 times, so that 

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

320



all the instances have been in the test sample at least 
once. All the cross-validation procedures were 
repeated three times, and the accuracy values on the 
test and learning samples were averaged. 

The maximum number of rules was set to 40 for 
all the problems, the number of individuals in the 
population – 100, the number of generations – 500, 
the minimum probability of operators’ application 
for self-adjustment – 0,125. Neural network models 
and SVMs were built for all the problems using the 
STATISTICA 10 program. 

To see the effect of self-adjustment on the 
algorithm performance, a set of tests of the standard 
algorithm were performed with the parameters 
presented in table 1. 

Table 1: Algorithm configurations. 

Configuration Selection type Mutation type 
1 

Proportional 
Weak 

2 Average 
3 Strong 
4 

Rank 
Weak 

5 Average 
6 Strong 
7 

Tournament (2) 
Weak 

8 Average 
9 Strong 

The next table represents a comparison of the 
self-configured and standard algorithm efficiency for 
six problems. The average classification rate of the 
standard algorithm is also included. 

Table 2: Test sample classification rates. 

Cfg. Austr. Germ. Segm. Phon. Page. Satimage 
1 0.839 0.701 0.791 0.784 0.920 0.790 
2 0.839 0.707 0.790 0.790 0.931 0.785 
3 0.841 0.710 0.767 0.789 0.932 0.782 
4 0.872 0.759 0.880 0.805 0.942 0.831 
5 0.869 0.748 0.888 0.807 0.950 0.840 
6 0.861 0.768 0.893 0.810 0.947 0.835 
7 0.857 0.743 0.878 0.806 0.939 0.827 
8 0.860 0.746 0.885 0.810 0.945 0.836 
9 0.874 0.743 0.883 0.806 0.950 0.830 

Avg. 
Std. 

0.857 0.736 0.851 0.801 0.934 0.817 

Self-
conf. 

0.857 0.749 0.876 0.806 0.945 0.833 

On average the self-configured algorithm 
appears to be better than the standard algorithm but 
worse than the best standard configuration for the 
corresponding problem. One should mention that the 
best results obtained by the standard algorithm were 
found using different configurations for the different 
problems solved. That is, the end user trying to solve 

his/her problem in hand with fuzzy classifiers 
designed automatically with a genetic algorithm can 
occasionally choose the wrong configuration with a 
very low performance. A self-configuring genetic 
algorithm can guarantee at least average 
effectiveness. 

The accuracy of the self-configured algorithm on 
the learning and test samples compared to alternative 
methods are shown in tables 3 and 4. The 
implemented method is called FHEA (Fuzzy hybrid 
evolutionary algorithm). 

Table 3: Learning accuracy. 

Algorithm 
FHEA SVM 

Neural 
Network Problem 

Australian 0.910 0.858 0.923
German 0.801 0.786 0.863
Segment 0.914 0.932 0.909 

Pageblocks 0.958 0.944 0.966 
Phoneme 0.830 0.768 0.815 
Satimage 0.843 0.876 0.843 

Table 4: Testing accuracy. 

Algorithm 
FHEA SVM 

Neural 
Network Problem 

Australian 0.857 0.826 0.852 
German 0.749 0.770 0.758 
Segment 0.876 0.926 0.898 

Pageblocks 0.945 0.923 0.951 
Phoneme 0.806 0.761 0.794 
Satimage 0.835 0.870 0.819 

 

As one can see from the tables, the proposed 
algorithm has comparable results with other methods 
for all the classification problems. For example, for 
the phoneme problem it has shown even better 
results than SVM and ANN.  

It should be remembered that the main advantage 
of FHEA is its ability to automatically design fuzzy 
classifiers that give us “if-then” rules which can be 
easily interpreted by a human. At the same time, 
ANNs and SVMs, giving slightly better 
computational results, cannot exhibit any kind of 
transparency as they are “black boxes”. 

One should also mention that the algorithm 
performs quite fast, although the speed is not 
comparable to specialized program systems. For 
example, for the Australian problem the calculation 
time is about 25 seconds. However this “drawback” 
has no practical importance for the design of 
classifiers that takes usually many hours. 

To demonstrate the self-configuration procedure, 
a graph showing the adjustment of the probabilities 
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is shown in Figure 2. The graphs demonstrate the 
change in the different Michigan operators’ 
probabilities during one of the runs. The testing was 
performed for the Australian problem.  

In the first stages, good fitness improvements can 
be obtained by adding new rules to the base, so the 
probability for adding increases as we can see and 
the two others decrease. However, later, at about the 
250th generation, the rule deleting operator becomes 
as important as rule adding operator. At the stage of 
about the 400th generation all three operators have 
equal importance for a short time period, i.e. the 
replacement operator receives resources back from 
the other two. And, at the end of process, the 
replacement operator again loses its importance. As 
one can see, computational resources are actively 
redistributed when the algorithm is executed.  

Similar graphs can be obtained for the other 
operator types. 

 

Figure 2: Probabilities change during the algorithm run. 

Table 5: Rule bases parameters. 

Problem Learn Test 
Number 
of rules 

Rule 
length 

Time 

Australian 0.910 0.864 17,7 4,1 25.4s 
German 0.801 0.748 22,3 5,3 48.9s 
Segment 0.914 0.878 16,5 7,7 556s 

Pageblocks 0.958 0.942 7,90 4,4 309s 
Phoneme 0.830 0.807 12,2 2,7 313s 
Satimage 0.843 0.822 27,8 16,6 822s 

Also during the algorithm run the number of 
rules in the best obtained solution, as well as the 
average rule length, was captured. Table 3 contains 
the averaged values of these parameters for all the 
test problems. The number of rules is adjusted by the 
algorithm and is different for every problem. 

As an example, the rule base for the Pageblocks 
(10 variables, 5 classes) problem is shown below. It 
contains 7 rules with an average length of 5.28. The 
learning accuracy with this rule base is 0.964, and 

the testing accuracy is 0.959. 
 If X1 is A11 and X3 is A9 and X6 is A10 and X8 is 

A3 then class 4 with weight 1; 
 If X4 is A4 and X7 is A7 and X8 is A3 then class 1 

with weight 0.869; 
 If X1 is A2 and X3 is A10 and X4 is A1 and X5 is 

A14 and X6 is A2 and X8 is A6 and X9 is A10 and 
X10 is A6 then class 3 with weight 0.693; 

 If X1 is A11 and X5 is A6 and X6 is A3 and X9 is 
A2 and X10 is A6 then class 4 with weight 0.775; 

 If X1 is A2 and X2 is A1 and X4 is A1 and X5 is A2 
and X6 is A2 and X7 is A3 and X8 is A1 and X9 is 
A3 and X10 is A6 then class 0 with weight 0.584; 

 If X1 is A1 and X4 is A2 and X5 is A3 and X8 is A1 
and X9 is A2 then class 0 with weight 0.932; 

 If X1 is A1 and X4 is A6 and X8 is A13 then class 
2 with weight 1. 

6 CONCLUSIONS 

In this paper, the self-configuring evolutionary 
algorithm for automated design of fuzzy rule bases 
was considered.  

This method is much like the genetic algorithm, 
which is often used to form fuzzy systems, but it has 
the ability to adjust the number and the length of 
rules, has special crossover and initialization 
operators and the Michigan part. The Michigan part 
of the algorithm allows accurate adjustment of rule 
bases for the classification problem using 
misclassified objects for building new rules. It also 
deletes the rules that describe only a small part of 
the sample to simplify the rule base. The algorithm 
can find accurate and small rule bases quite quickly, 
and its performance is comparable to other well-
known methods.  

Further improvements of this approach may 
include the use of multi-objective techniques and 
some speed optimization. 
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