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Abstract: Robot dynamics is commonly modeled as a linear function of the robot kinematic state from a set of dynamic
parameters into motor torques. Base parameters (i.e. the set of theoretically demonstrated linearly-independent
parameters) can be reduced to a subset of “essential” parameters by eliminating those that are negligible with
respect to their contribution in motor torques. However, generic trajectories, if not properly defined, couple
the contribution of such essential parameters into the motor torques, actually reducing the estimation accuracy
of the dynamics parameters. The work presented here introduces an index for evaluating correlation influence
among essential parameters along an executed trajectory. Such index is then exploited for an optimal search
of excitatory patterns consistent with the kinematical coupling constraints. The method is experimentally
compared with the results achievable by one of the most popular IRs dynamic calibration method.

1 INTRODUCTION

Model-based strategies have been introduced in in-
dustrial robots (IRs) control since three decades.
Nonetheless, in spite of the vast literature, methods
for the identification of the dynamic parameters still
remain a matter of substantial investigation.

In fact, an a priori knowledge of the robot dy-
namic parameters is often unavailable (e.g. CAD data
obtained from the design data of manipulators) and
weight tolerances of robot links are remarkable due
to the inaccuracy of the casting process (e.g. around
5-10%, mean value provided by different IR manu-
facturer). Additionally, the real friction model identi-
fication is an experimental procedure per se, with pa-
rameters varying along production batches and time.

In pioneering works (Atkeson et al., 1986; Gau-
tier and Khalil, 1988), the analysis of energy models
led to the identification of a base sub-set of parame-
ters (BP) that are observable through the measure of
motor torques and positions. However, (Pham, 1991)
experimentally demonstrated that only a smaller sub-
set of essentials parameters (EP) are really significant,
i.e. their contribution is not influenced by the preci-
sion and the noise of measuring systems. The set of
EP is valid over and can be numerically computed in

the entire workspace (Antonelli et al., 1999).

Figure 1: Identification Trajectories.

Different identification procedures for EP have
been proposed in literature (Wu et al., 2010). In gen-
eral, the common purpose is to identify the set of dy-
namic parameters that minimizes torque prediction er-
rors (see Section 2 for analytical details). The identi-
fication requires an “optimal” trajectory able to excite
to the best of some metrics the torque produced by
the parameters to be identified (Swevers et al., 1997;
Indri et al., 2002; Park, 2006), see Figure 1. The defi-
nition of “most exciting” trajectory is not unique, and
three main issues have to be faced: (i) the identifica-
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tion of metrics for evaluating the excitation capabil-
ity; (ii) the consistent comparison of trajectories with
different time-spans; (iii) the selection of the class of
trajectory to be used for robot dynamic excitation.

About the metrics, two indexes (and their com-
binations) are mainly used for quantifying the exci-
tatory power (Presse and Gautier, 1993; Pukelsheim,
2006; Wu et al., 2010): the determinant of the dy-
namic regressor (i.e. estimation with minimal uncer-
tainty bounds); the conditioning number of the dy-
namic regressor (for minimizing the bias of estimates
due to un-modeled dynamics errors). Such kind of
metrics derive from standard mathematic techniques
used in the analysis of observability of linear systems.
However, these methodologies do not allow to over-
come the limitations in observability of EP (Gautier
and Venture, 2013). In fact, both metrics could be
ideally reliable in case of constant uncorrelated exci-
tation of parameters along the full trajectory, which is
never the case: for a generic instant time of a generic
trajectory the complete set of the EP should be not
observable, and the coupling of the parameters should
vary during the trajectory execution. The second key-
aspect in trajectory selection, poorly investigated in
literature, is that standard metrics (e.g. the determi-
nant of the regressor) depend on the number of sam-
ples of the trajectory. A common solution consists
in extracting an equal number of points from different
trajectories. However, the coupling in robot dynamics
does not maintain a constant rate, so differently down-
sampled trajectories may fail in reproducing the cou-
pling effects. The selection of trajectory classes has
instead been deeply investigated in literature, because
it is interpreted as the main tool for improving the
estimation procedure. Many examples of trajectories
have been considered for the proper excitation of the
dynamics (e.g. 5th order polynomials in (Caccavale
and Chiacchio, 1994), splines in (Rackl et al., 2012),
a combination of cosine and ramp in (Otani and Kak-
izaki, 1993), finite sums of harmonic sine and cosine
in (Swevers et al., 1997), etc.). However, (Villagrossi
et al., 2013) displays the limited extrapolation power
of classes of excitatory trajectories and how the esti-
mation of EP is affected by such classes: estimated
parameters provide a high prediction power only over
trajectories of the same family of those used during
estimation.

The here presented identification method, at-
tempts to overcome all the three issues reported in
the standard methods. First, an index derived from
the conditioning number index (Presse and Gautier,
1993) is introduced for the evaluation of the coupling
effect in robot dynamics along a trajectory. Second,
a scaling factor over the samples size is introduced

for the determinant of the robot dynamics linearized
regressors, in order to align for comparison different
trajectories, preserving all the sampled dynamics.
Last, the excitatory method is an extension of the
approach in (Villagrossi et al., 2013) to the whole
joint workspace. The method employs at identifica-
tion time a template-class of trajectories applied in
most manufacturing tasks, i.e. general trajectories
described by a set of discrete poses to be interpolated
by the built-in IR motion planner on the basis of
global user-tunable parameters (fly-by accuracy,
velocity profiles, etc.)1.

Notation
q =

�
q1; ::;qdo f

�t : Joint positions.
qtk ; q̇tk ; q̈tk ;ttttk : Joint Positions Velocities, accelera-

tions, torques at k-th sample time.
˜(�); ˆ(�); (�)�: Measured, estimated value and opti-

mum estimation respectively.
(�)+: is the Moore-Penrose Pseudo-inverse.

2 PROBLEM FORMALIZATION

The robot dynamics at time tk is commonly re-
duced (Gautier and Khalil, 1988) to:

ttttk = fff
�
q̈tk ; q̇tk ;qtk

�
ppp; (1)

where ppp is the set EP and matrix function fff is a gener-
alized accelerations. ppp includes only combination of
parameters that are experimentally observable along
any excitatory trajectory that generates fff. The min-
imal size Np of ppp depends on the robot kinematic
topology (Presse and Gautier, 1993; Antonelli et al.,
1999). In addition, other N f coefficients of the friction
model yield the compound parameters set ppp. The se-
lected friction model (Indri et al., 2002) provides the
j-th joint friction torque function of three parameters,
f j
0 , f j

1 , f j
2 as:

t
j
f = f j

0 sign(q̇ j)+ f j
1 q̇ j + f j

2 sign(q̇ j)
�
q̇ j�2

:

For a trajectory of S-samples eq. (1) is expanded as:

TS �

264 tttt1
...

ttttS

375=

264 fff(q̈t1 ; q̇t1 ;qt1)
...

fff(q̈tS ; q̇tS ;qtS)

375ppp = FFFSppp; (2)

where FFFS is the trajectory full regressor matrix. Ac-
tually, experimental sampling eT and eFFF includes also
measurements noise, so that eq. (2) is expressed as:eTS = eFFFSp̂pp+nnn; nnn�N (0;sn) : (3)

1COMAU ORL library (COMAU Robotics, 2010) has
been used for the motion interpolation.
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Several techniques are known (Benimeli et al., 2006)
for a pseudo-inversion solution of eq. (3). The
weighted least-squares technique as in (Gautier,
1997) has been here implemented. Denoting WWW as
a suitable weight matrix (computed from the standard
deviation of measured torques), the system is solved
as:

p̂pp =
h
(eFFFt

SWWW eFFFS)
�1 eFFFt

SWWW
i eTS: (4)

3 DECOUPLED DYNAMICS
IDENTIFICATION

The method here presented implements a GA for the
identification of “best” exciting trajectories. The fit-
ness function provides two terms similarly to what
proposed in (Presse and Gautier, 1993): one pro-
portional to the logarithm of the determinant of
det
�
FFF

t
SFFFS

�
, and one proportional to the coupling in-

dex introduced in the next Section.

3.1 Dynamics Coupling Evaluation
Index over Trajectory

A metric for the evaluation of the coupling effects
along all the path can be straightforwardly derived
from the analysis of conditioning number of the co-
variance. From eq. (2), and under the assumption that
the regression matrix FFF is built with a trajectory free
of noise, and that the torque measurements provides
zero-mean uncorrelated noise, the variance of the EP
results:

sss2
p = FFF

+
sss2

T FFF
+t

Assuming the same variance value sn for the measure
of each motor torque such that sss2

T = s2
n III, the relation

can be simplified as follow:

sss2
p = FFF

+
sss2

T FFF
+t

= s2
n FFF

+
FFF

+t
= s2

n(FFF
t
FFF)�1

= s2
n YYY;

where the matrix YYY has been introduced for sake of
simplicity. Notably, as a difference from eq. (4), no
weight is applied. Optimal design of the experiment
should correspond to get the matrix YYY equal to diag-
onal matrix. Finally, denote the coupling-index as:

Ic =
Np

å
i=1

Np

å
j>i

jyi; jjp
yi;i y j; j

: (5)

Each element of the sum are normalized within [0;1].
In addition, if the two parameters i and j are un-cor-
related the value of yi; j is zero.
Notably, Ic = 0 corresponds to a diagonal system,
and, thus, it exists a properly scaled system such

that the conditioning number is equal to 1, i.e.
cond(FFFdiag(l1; : : : ;lNp

)) = 1. However, the defini-
tion of the proper scaling factors li needs a good a
priori knowledge of EP (Presse and Gautier, 1993).
In addition, Ic is mathematically simpler and less sen-
sitive to numerical issues to be calculated than the
conditioning number for trajectories with many thou-
sands of points.

3.2 Comparison of Trajectories with
Different Samples Number

Consider eq. (2) and hypothesize to resample the tra-
jectory adding some other S points temporarily each
one near one of the previous points. Thus:

T2S =

2666666664

fff(q̈t1 ; q̇t1 ;qt1)
...

fff(q̈tS ; q̇tS ;qtS)
fff(q̈t1+dt ; q̇t1+dt ;qt1+dt)

...
fff
�
q̈tS+dt ; q̇tS+dt ;qtS+dt

�

3777777775
ppp = FFF2S ppp;

with fff
�
q̈tk ; q̇tk ;qtk

�
’ fff

�
q̈tk+dt ; q̇tk+dt ;qtk+dt

�
. It is

easy to demonstrate that

FFF
t
2SFFF2S ’ 2FFF

t
SFFFS

and, consequently, the determinant results:

det
�
FFF

t
2SFFF2S

�
’ det

�
FFF

t
SFFFS

�
2Np :

In general, if any point generates k points we get

det(FFFk S)’ kNp det
�
FFF

t
SFFFS

�
:

Finally, if N � Np in general the determinant of
FFF

t
NFFFN evaluated on N points is

det
�
FFF

t
NFFFN

�
= aNNp ! a =

det
�
FFF

t
NFFFN

�
NNp

and so a can be used to compare trajectories sampled
with different points.

3.3 Optimal Trajectory Identification

The template-class of trajectory for solving eq. (4) is
directly provided by a real IR interpolator2, as in (Vil-
lagrossi et al., 2013). The input for the algorithm is
the trajectory interpolated (by motion planner func-
tions, MP) from a set of K target via-points in the joint
space:

MP(q1; : : : ;qK ) : (6)

2Many robot producers offer libraries compliant to RCS
standard (Vollmann, 2002) and fork.
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Table 1: GA results (120 generation). N is the samples number. The Ic for algorithm A has been calculated a posteriori.

N log10

������
det(Ht H)

NNp

������ Ic Notes

A 2000 90:5 127:9 Eq. (8) in Appendix: W = 3; wwwmax = [0:94;2:38;0:53;0:44;0:89;0:44]
and wwwmin = [0:314;0:314;0:314;0:314;0:314]. GA configuration: num-
ber of individuals=100, mutation=0.01, cross-over rate=0.7. Time dura-
tion of optimization process less than 1 s for each individual.

B 15996 30:9 101:2 Eq. (7): l1 = 0:7, and l2 = 0:3. Eq. (6): K = 6. GA configuration:
number of individuals=150, mutation=0.01, cross-over rate=0.9. Time
duration of optimization process less than 1s for each individual.

(a) (b)

Figure 2: The figures represent the plot of correlation-matrix defined in equation eq. (5). Black elements are equal to 1 while
color shade to white for elements equal to 0. In figure (a) is shown matrix yi; j=

p
yi;i y j; j obtained from algorithm A while in

figure (b) is shown yi; j=
p

yi;i y j; j matrix obtained from algorithm B. The plot exclude the term related to the friction.
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Figure 3: Mean error in the torque prediction calculated over 30 randomly wide trajectories covering the whole workspace.
The central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points the algorithm considers to be not outliers. Trajectories have been generated from the IR Motion Planner.

Individual genomes in the GA are therefore the coor-
dinates of the K via-points and each joint maximum
velocity. The selection of individuals is made on a
two-weighted terms fitness function: the first term is
the D-optimal metric defined in equation eq. (9) and
the second term is the coupling index Ic in eq. (5):

f = l1 log10

������
det
�

F̃FF
t
F̃FF

�
NNp

������+l2
Icmax

Ic
(7)

where Icmax is the maximum value of coupling-index,

i.e. Icmax = Np� (Np� 1)=2. Fitness terms are nor-
malized so to consistently weight their contributions
through l1 and l2 in [0;1] such that l1 +l2 = 1. A
trial-and-error procedure has been applied for the op-
timal definition of the value of l1 and l2.
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Figure 4: Value Measured and Estimated with the two Algorithms A, B for the execution of one sample trajectory of the set
are shown (low pass filter, 30Hz).
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Table 2: Parameters list as in (Villagrossi et al., 2013), an extension of (Antonelli et al., 1999) considering also the 18
parameters of the friction model. pC are the data provided from COMAU: from 1 to 40 are the CAD data, while from 41 to
58 are the identified friction values (the parameter from 53 to 58 are zero because COMAU has a linear model of the friction).
COMAU declares a not negligible inaccuracy in the link weight about the 5%-10%.

Par. Id Par. Symb p̂�A p̂�B pC Par. Id Par. Symb p̂�A p̂�B pC

1 mc2y 1.285 0.499 -0.230 2 I2xy -2.241 1.243 0.095
3 I2yz -9.113 1.649 -0.053 4 I3xy -0.659 1.074 0.100
5 I3yz -7.984 0.630 -0.014 6 I3m 15.465 15.765 10.480
7 mc4x 0.465 -0.070 -0.001 8 I4xy -0.038 -0.521 0.000
9 I4xz -1.377 0.295 -0.000 10 I4m -6.308 0.878 0.253
11 mc5x -0.086 0.020 0.000 12 I5xy -2.080 -0.036 -0.000
13 I5xz -2.840 -0.029 0.000 14 I5yz 0.121 0.071 -0.000
15 I5m -0.751 3.059 0.298 16 mc6x 0.186 -0.101 0.001
17 mc6y -0.035 0.056 0.000 18 I6xy -0.036 -0.023 -0.000
19 I6xz -0.901 -0.029 -0.000 20 I6yz -0.040 0.023 -0.000
21 I6zz 0.404 0.029 0.001 22 I6m -2.091 1.527 0.120

23 I1yy + I1m +0:090 m2 + I2yy +0:580 m3 + I3zz +0:614 m4 +0:614 m5 +0:614 m6 86.800 96.898 79.979
24 mc2x +0:700 m3 +0:700 m4 +0:700 m5 +0:700 m6 71.988 71.148 65.056
25 I2xx� I2yy�0:490 m3�0:490 m4�0:490 m5�0:490 m6 -50.268 -55.411 -45.728
26 I2xz +0:700 mc3y -3.903 -4.422 2.952
27 I2zz + I2m +0:490 m3 +0:490 m4 +0:490 m5 +0:490 m6 102.833 112.234 71.700
28 mc3x +0:185 m4 +0:185 m5 +0:185 m6 11.794 10.408 10.725
29 mc3z +mc4y +0:624 m5 +0:624 m6 12.770 12.466 12.181
30 I3xx� I3zz�0:034 m4 + I4zz +0:355 m5 +0:355 m6 15.805 6.938 2.685
31 I3xz�0:185 mc4y�0:115 m5�0:115 m6 -1.053 -4.269 -1.606
32 I3yy +0:034 m4 + I4zz +0:423 m5 +0:423 m6 4.021 9.244 6.399
33 mc4z�mc5y -0.036 -0.066 -0.061
34 I4xx� I4zz + I5zz -2.040 0.558 0.029
35 I4yy + I5zz -1.725 -0.131 0.070
36 I4yz +0:624 mc5y -1.013 0.031 0.035

37 mc5z +mc6z 0.702 0.707 0.190 38 I5xx� I5zz + I6yy -1.990 -0.066 0.017
39 I5yy + I6yy 2.474 0.214 0.019 40 I6xx� I6yy 0.644 0.067 0.000
41 f0;1 38.190 61.121 68.035 42 f0;2 1.397 0.722 0.719
43 f0;3 37.803 77.093 108.777 44 f0;4 2.850 2.479 1.104
45 f0;5 33.721 37.687 50.446 46 f0;6 1.497 1.700 0.685
47 f1;1 4.811 6.262 9.248 48 f1;2 0.404 0.160 0.057
49 f1;3 6.232 10.112 8.904 50 f1;4 0.676 0.277 0.287
51 f1;5 3.214 0.920 5.148 52 f1;6 1.117 0.228 0.155
53 f2;1 -0.005 -0.000 – 54 f2;2 -0.009 -0.003 –
55 f2;3 -0.004 -0.003 – 56 f2;4 -0.010 -0.001 –
57 f2;5 -0.009 -0.001 – 58 f2;6 -0.128 -0.001 –

4 EXPERIMENTS AND
DISCUSSION

4.1 Design of Experiment

The experimental setup includes a COMAU NS16
manipulator, with C4GOpen controller option and the
Open Realistic Robot Library. No payload has been
attached. The number of BP for this robot is equal to
43, while EP are 40 (Antonelli et al., 1999). In ad-
dition to inertial parameter, 3 friction parameters per
axis have been considered, yielding a total of Np = 58
parameters. The joint positions and the motor cur-

rents have been acquired at 1kHz. The data have been
filtered through approximated spline (MATLAB(R)

command SPAPS) and tolerance has been set equal to
the measure variance (calculated through ad-hoc ex-
periment). Joint velocities and acceleration have been
calculated as first and second analytical derivative of
the so interpolated joint positions.

As a preliminary investigation of the validity of
the approach, one of the most popular state-of-the-
art methods, (Calafiore et al., 2001), has been im-
plemented and compared experimentally to the one
here proposed. For sake of brevity, “A” and “B” will
be used to indicate the method from (Calafiore et al.,
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2001) and the one here proposed respectively. The
method A is shortly reported in the Appendix for sake
of notation consistency.

4.2 Estimated Parameters

Table 1 reports the characteristics of the two opti-
mal trajectories implemented from the results of the
two algorithms A and B. As expected, A provides a
higher-determinant trajectory, while its coupling in-
dex is poorer. The trajectory from B, in fact, achieves
a much lower correlation influence among EP, see
Figure 2. Both optimal trajectories have been then
executed 30 times each, and the EP have been esti-
mated in each repetition through eq. (4), so that the
EP reported in Table 2 are the mean over the 30 rep-
etitions of the 30 different random trajectories. Fur-
thermore, in Table 2 the fourth column, indicated as
pC, lists the CAD data provided from the robot manu-
facturer from 1 to 40 and the friction values identified
from COMAU from 41 to 58 (the parameters from 53
to 58 are zero because COMAU has a linear model
of the friction). COMAU declares a not negligible
variability in the link weight about the 5%-10% due
to the inaccuracy of the casting process. Looking at
parameters from 1 to 22 and from 33 to 58, the Algo-
rithm B identifies values that are averagely closer to
CAD (except parameter 3, 15 and 46). On the other
hand, looking at the parameters from 23 to 32, that are
the complex aggregates parameters, the Algorithm A
identifies values averagely closer to CAD. This dif-
ference should derive from the numerical procedures
used for the EP selection (Antonelli et al., 1999). In-
deed, different thresholds may aggregate BP around
different EP. This should indicate that the method here
presented should be better applied to the identifica-
tion of BP set introducing a priori knowledge of the
system to overcome the issues on the observability.
Future works will be done on this topic.

4.3 Torque Prediction Power

The prediction power of the estimated parameters has
been validated by 30 different random test trajecto-
ries generated through the ORL library. The trajecto-
ries were wide, covering the entire workspace. The
mean error in the torque prediction has been calcu-
lated for each repetition and for each axis. Figure 3
displays the statistics (median/quartile) of the distri-
bution of mean error of each axis over the 30 repe-
titions. Figure 4 displays the results of joint torques
reconstruction for one paradigmatic experiment. Av-
eragely, the algorithm B provide lower prediction er-
ror for all axes.

5 CONCLUSION

The paper has introduced a novel index to estimate the
average coupling of the trajectory in term of correla-
tion among the essential parameters. Two different al-
gorithm have been implemented and compared, test-
ing their performances. Experimental results demon-
strate how a decoupling trajectory produce a better
estimation. Future works will focused on the prop-
agation of the covariance taking into account that the
dynamic regressor FFF is not free of noise. Further-
more, a deep analysis of the physical meaning of the
essential parameters will be investigated.
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APPENDIX

For sake of clarity, the Appendix reports a brief sum-
mary of the algorithm described in (Calafiore et al.,
2001). Refers to the original paper for all the details.
The template-class of trajectory used for the optimiza-
tion is:

q j = q j
0 +

W

å
k=1

a j
k sin

�
w

j
k t
�

j = 1; : : : ;do f : (8)

where q j
0 is the initial offset, a j

k and w
j
k is respec-

tively the amplitude and the angular frequency of the
sine. W is a small integer representing the maximum
number of harmonics present in the signal. Collect-
ing the free variables ak = [a1

k ; :::;a
do f
k ]t and wwwk =

[w1
k ; :::;w

do f
k ]t , the set of the decision variables of the

optimization problem results fa1;www1; :::;aW ;wwwWg and

proper constraints are to be imposed coherently with
the kinematics of the robot:

ja j
kj<

q j
max

W
; and jw j

kj<

s
q̈ j

max

q j
max

; j = 1; : : : ;do f :

The set of optimum parameters fa?1;www?
1; :::;a

?
W ;www?

WgA
are obtained from the GA. The selection of individuals
is made on the well-known D-optimal considering the
maximization of the determinant of a quadratic form
associated with FFF

n of each n-th individual trajectory

f = log10 kdet
�
FFF

t
FFF
�
=NNpk: (9)

where N denotes the trajectory samples, and Np the
number of the essential parameters. The scaling of
the determinant by the factor NNp has been introduced
in order to allow the comparison between trajectories
with different number of points.

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

482


