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Abstract: At CT-RSA 2014, Armknecht and Mikhalev presented a new technique for increasing the throughput of stream
ciphers that are based on Feedback Shift Registers (FSRs) which requires practically no additional memory.
The authors provided concise sufficient conditions for the applicability of this technique and demonstrated its
usefulness on the stream cipher Grain-128. However, as these conditions are quite involved, the authors raised
as an open question if and to what extent this technique can be applied to other ciphers as well. In this work,
we revisit this technique and examine its applicability to other stream ciphers. On the one hand we show on
the example of Grain-128a that the technique can be successfully applied to other ciphers as well. On the other
hand we list several stream ciphers where the technique is not applicable for different structural reasons.

1 INTRODUCTION

Stream ciphers are designed for efficiently encrypting
data streams of arbitrary length. Ideally a stream ci-
pher should not only be secure but also have a low
hardware size and high throughput. Consequently
several papers address the question of optimizing
the hardware implementation of stream ciphers, e.g.,
(Gupta et al., 2013; Mansouri and Dubrova, 2010;
Mansouri and Dubrova, 2013; Nakano et al., 2011;
Stefan and Mitchell, 2008; Yan and Heys, 2007;
Z. Liu and Pan, 2010).

Armknecht and Mikhalev (Armknecht and
Mikhalev, 2014) presented a new technique for in-
creasing the throughput of stream ciphers without (or
only little) additional memory. The technique adapts
the principle of pipelining of the output function.
The core difference however is to identify ”unused”
regions within the FSR for storing intermediate
values, hence mitigating the need for additional
memory. Here, ”unused” means registers of the FSRs
that are only used for storing values and that are
neither involved in the update function nor the output
function.

The authors described concise sufficient condi-
tions for the applicability of their technique and
demonstrated it on the stream cipher Grain-128.
However, as the conditions are quite complicated, the
authors mentioned as an open question if and how this
technique can be applied to other FSR-based stream

ciphers as well. In this work, we revisit this technique
and shed new light on this technique. More precisely,
we provide both positive and negative results. On the
positive side, we successfully apply this technique to
Grain-128a. On the negative side we explain for sev-
eral FSR-based stream ciphers that the technique can-
not be used for structural reasons.

2 PRELIMINARIES

Let F2 denote the finite fieldGF(2). For a Boolean
function f (x0, . . . ,xn−1) ∈ F2[x0, . . . ,xn−1], we de-
fine its support to be the smallest set of variables
{xi1, . . . ,xiℓ} ⊆ {x0, . . . ,xn−1} which is required to
specify f . That is f ∈ F2[xi1, . . . ,xiℓ ] but f 6∈ F2[X]
for any real subsetX ⊂ {xi1, . . . ,xiℓ}.

A Feedback Shift Registers (FSR)is a regularly
clocked finite state machine that is composed of a reg-
ister and an update mappingF = ( f0, . . . , fn−1). F
maps the whole state of a Feedback Shift Register to
the new state andfi refers to the individual update
function of thei-th bit of the register. While in most
cases the output ofF only depends on the register val-
ues, in (Armknecht and Mikhalev, 2014) the authors
considered a broader class of FSRs where also exter-
nal values may be involved in the update procedure:

Definition 1 (FSR with external input). A FSRFSR
with external inputof lengthn consists of an inter-
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nal state of lengthn, an external source which pro-
duces a bit sequence(bt)t≥0, and update functions
fi(x0, . . . ,xn−1,y0, . . . ,yℓ) for i = 0, . . . ,n− 1. Given
some initial stateS0 = (S0[0], . . . ,S0[n−1]) ∈ F

n
2, the

following steps take place at each clockt:

1. The valueSt [0] is given out and forms a part of the
output sequence.

2. The stateSt ∈ F
n
2 is updated toSt+1 where

St+1[i] = fi(St ,bt , . . . ,bt+ℓ−1).

We denote bySt [i] the state of thei-th register bit dur-
ing the clock-cyclet, by St the whole state of the reg-
ister during the clock-cyclet.

Two FSRsFSR andFSR′ of the same length with
access to the same external source are calledequiva-
lent, denoted byFSR≡ FSR′, if for any initial stateS0
for FSR there exists an initial stateS′0 for FSR′ (and
vice versa) such that both produce the same output se-
quence for any external bit sequence(bt)t≥0. A trans-
formation which takes as input some FSRFSR (and
possible other inputs) and outputs a FSRFSR′ such
thatFSR ≡ FSR′ is calledpreserving.

In (Armknecht and Mikhalev, 2014) the following
class of stream ciphers has been considered. They de-
ploy one or several regularly clocked finite state ma-
chines, typically including at least one FSR. At each
clock several values of these components are fed into
an output functionh which eventually produces the
current keystream bit. The stream ciphers contains on
a high level three components only: a FSRFSR of
length n, an output functionh, and an external block
EB. The external blockEB is in principle a black box
which may contain further FSRs, additional memory,
etc. The only requirement is that a bitstream(bt)t≥0
can be specified which contains all bits produced in-
side ofEB which are relevant for the state updates of
FSR and/or for computing the next keystream bit. The
notions ofequivalenceandpreserving transformation
given for FSRs (see above) are extended for for FSR-
based stream ciphers in a straightforward manner.

In general any hardware implementation can be
described by circuits. The time period between get-
ting the input and producing the output is called its
delay: Delay(C). Observe that circuits may run in
parallel, e.g., for decreasing the delay of the overall
circuit. Each of the connections between inputs, reg-
isters, and outputs of a stream cipher forms atiming
path. The path which has the biggest delay is called
critical path. It defines the maximum operating clock
frequency of the cipher. For a given cipher maximum
throughput is specified by the delay of its critical path.
The amount of silicon used for the hardware imple-
mentation is calledarea. A common method to make
the area consumption of different circuits compara-
ble is to calculate the Gate Equivalence (GE) which is

the total area divided by the lowest power two-input
NAND gate area (Good and Benaissa, 2008).

3 THE CT-RSA 2014
TRANSFORMATION

In this section we summarize the technique presented
in (Armknecht and Mikhalev, 2014). In a nutshell
the authors described a preserving transformation for
stream ciphers that fall into the categorization given
in Sec. 2. The goal of the transformation is to reduce
the total delay of a circuit by parallelizing computa-
tions within the output function such that the critical
path becomes as short as possible.

To this end a part of the output function is inte-
grated intotwo different update functionsfα and fβ
of the FSR. At its first occurrence, i.e., infα, it alters
the state entry to a value which can be used directly
in the output function. At its second occurrence, i.e.,
in fβ, this value is cancelled out again, ensuring that
the entry at index 0 (which defines the FSR output) is
not affected by the transformation. The latter requires
that the value is still extractable from the system, giv-
ing rise to the following definition:

Definition 2 (Function with Sustainable Output).
Consider a FSR-based stream cipher, being composed
of an FSRFSR of length n with update mapping
F = ( f0, . . . , fn−1), an external block with bit stream
(bt)t≥0, and a function h(x0, . . . ,xn−1,y0, . . . ,yℓ).
We say that h produces values which arer-
sustainableif there exists a supplemental function
h∗(x0, . . . ,xn−1,y0, . . . ,yℓ) such that for allt ≥ 0:

h(St ,bt , . . . ,bt+ℓ−1) = h∗(St+r ,bt+r , . . . ,bt+r+ℓ−1).

Informally the definition means that the output of
h at some clockt can likewise be computedr clocks
later byh∗ without requiring additional storage. The
idea is now to identify parts of the output function that
are sustainable for a number of clocks and to tem-
porarily store its output in the FSR. However, care
needs to be taken that change of the registers do not
affect any other computations. Thus one needs inter-
vals which are isolated with respect to the other func-
tions used in the stream cipher. This has been formal-
ized as follows:

Definition 3 (Isolated Interval). Consider a FSR-
based stream cipher, being composed of an FSRFSR
of lengthn with update mappingF = ( f0, . . . , fn−1),
a functionh(x0, . . . ,xn−1,y0, . . . ,yℓ), and an external
block with bit stream(bt)t≥0. An interval [α . . .β]
with 1 ≤ α ≤ β ≤ n− 1 of the FSR-state isisolated
with respect toF andh if the following conditions are
met:

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

380



1. The feedback functionsfα−1, . . . , fβ−1 have all the
form

fi(x0, . . . ,xn−1,y0, . . . ,yℓ−1) = x(i+1) modn+

gi(x0, . . . ,xn−1,y0, . . . ,yℓ−1)

with supp(gi)∩{xα, . . . ,xβ}= /0. That is feedback
function fi is independent of the values at indices
{α, · · · ,β} except ofi + 1 and the value at index
i +1 is simply shifted.

2. The remaining feedback functions
f0, . . . , fα−2, fβ, . . . , fn−1 and the out-
put function h are completely indepen-
dent of the values at indices{α, · · · ,β},
that is supp( fi) ∩ {xα, . . . ,xβ} = /0 for all
i ∈ {0, · · · ,n−1} \ {α, · · · ,β}.

We are now ready to repeat the transformation
given in (Armknecht and Mikhalev, 2014). In a nut-
shell it works as follows:

• Identify a part of the output function which pro-
duces sustainable outputs and where an appropri-
ate isolated interval does exist

• Remove this part from the output function and in-
sert it at the update function at the beginning of
the isolated interval

• For cancelling out this modification, insert the
corresponding supplementary function into the
update function at the end of the isolated interval

The following theorem specifies formally this trans-
formation:

Theorem 1 (Preserving Cipher Transformation).
(Armknecht and Mikhalev, 2014) Consider a
FSR-based stream cipherC , being composed
of an FSR FSR of length n with update map-
ping F = ( f0, . . . , fn−1), an external block
with bit stream (bt)t≥0, and an output function
h(x0, . . . ,xn−1,y0, . . . ,yℓ). Assume that h can be writ-
ten as h(x0, . . . ,xn−1,y0, . . . ,yℓ) = xβ + h1() + h2()
such that the outputs of h1 could be computed one
clock earlier as well. Formally, this means that there
exists a function g((x0, . . . ,xn−1,y0, . . . ,yℓ) such that
it holds for all clocks t≥ 1:

h(St ,bt , . . . ,bt+ℓ−1) = St [β]+
g(St−1,bt−1, . . . ,bt+ℓ−2)+h2(St ,bt , . . . ,bt+ℓ−1)

Moreover the following conditions need to be met:

1. There exist integers1≤ α < β < n−1 such that
the interval[α, . . . ,β] is isolated with respect to F
and h2 and the interval[α+ 1, . . . ,β+ 1] is iso-
lated with respect to g.

2. g produces(β − α)-sustainable outputs with g∗

being the corresponding supplementary function.

A second cipher is defined asC ′ with an FSRFSR′

and an output function h′ which are derived from
FSR and h, respectively. The update mapping F′ =
( f ′0, . . . , f ′n−1) ofFSR′ is defined as f′α−1 := fα−1+g∗,
f ′β := fβ +g, and f′i := fi for all i 6= α,β. and the out-

put function h′ of C ′ as h′() = xβ +h2(). Then both
ciphers are equivalent.

4 ON THE APPLICABILITY OF
THE TRANSFORMATION

Obviously the conditions mentioned in Section 3 are
quite involved, making it hard to estimate the gen-
eral applicability of this approach. In fact although in
(Armknecht and Mikhalev, 2014) the authors demon-
strated its principle usefulness on the stream cipher
Grain-128, they stated likewise the open question if it
can be applied to other ciphers as well. This question
will be considered in this section.

As explained in Sec. 3 the goal of the transforma-
tion is the outsource part of the computation of the
output function into the FSR. In principle this tech-
nique may be useful for stream ciphers where the out-
put is simply the XOR of several internal bits, e.g.,
Trivium (Cannière and Preneel, 2008) and MICKEY
2.0 (Babbage and Dodd, 2008), for example to re-
duce the overall area size. However we think that
its main field of application are ciphers that deploy
a complicated output function. Consequently, we
consider in the following several ciphers that use a
more involved output function: Grain-128a (Agren
et al., 2011) (Sec. 4.1), DECIM v2 and DECIM-128
(Berbain et al., 2008) (Sec. 4.2), Achterbahn-128/80
(Gammel et al., 2007) (Sec. 4.3), and Hitag2 (Cour-
tois et al., 2009) (Sec. 4.4). It will turn out that the
transformation can be applied to Grain-128a and al-
lows to improve the throughput. However, we will
also explain why forstructural reasonsthe transfor-
mation (in its current form) cannot be applied to the
other ciphers.

4.1 Grain-128a

Specification. In (Armknecht and Mikhalev, 2014)
the transformation has been successfully applied to
the stream cipher Grain-128 (Hell et al., 2006), which
is included into e-Stream portfolio (eSt, ). How-
ever, in order to resist recently introduced cube at-
tacks (Dinur and Shamir, 2011) the designers have
improved the algorithm and proposed the Grain-128a
stream cipher (Agren et al., 2011). Both variants
consists of an 128-bit LFSRL with update mappings
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F = ( f0, . . . , f127), an 128-bit NLFSRN with update
mappingsQ = (q0, . . . ,q127), and an output function
h and have the same structure.

There are two main differences, that were intro-
duced into the structure of Grain-128a compared to
Grain-128. First, Grain-128a can operate in two dif-
ferent ways: with and without authentication. Sec-
ond, the update functions of NLFSRN used in Grain-
128a contains additional terms (compared to the case
of Grain-128) so that the overall degree increased
from two (Grain-128) to four (Grain-128a).

In (Mansouri and Dubrova, 2013) it was shown
that the part of the circuit which is responsible for
the authentication can be isolated from the encryp-
tion part of Grain-128a by using flip-flops. Moreover
it has been confirmed that if such an instantiation is
chosen, the critical path does not go through the au-
thentication section and it has no effect on the delay
of the whole circuit. For these reasons and to keep the
presentation and analysis as simple as possible, we do
not consider the authentication part of Grain-128a in
this work and focus on the encryption part only.

We provide now a detailed specification of Grain-
128a. We denote at clockt the state of the LFSR to be
Lt = (Lt [0], · · · ,Lt [127]) and the state of the NLFSR
asNt = (Nt [0], · · · ,Nt [127]).

The update functions of the LFSRL and the
NLFSRN are as follows:

Lt+1[i] = Lt [i +1] andNt+1[i] = Nt [i +1]

for i = 0, . . . ,126

Lt+1[127] = Lt [0]+Lt [7]+Lt [38]+Lt [70]+

Lt [81]+Lt [96]

Nt+1[127] = Lt [0]+Nt [0]+Nt [26]+Nt[56]+

Nt [91]+Nt [96]+Nt [3]Nt [67]+

Nt [11]Nt [13]Nt [17]Nt [18]+

Nt [27]Nt [59]+Nt [40]Nt [48]+

Nt [61]Nt [65]+Nt [68]Nt [84]+

Nt [88]Nt [92]Nt [93]Nt [95]+

Nt [22]Nt [24]Nt [25]+

Nt [70]Nt [78]Nt [82]

Note that both FSRs are specified in the so-called Fi-
bonacci configuration, meaning that all bits except
the 127th are updated just by shifting the adjacent
value. This is a special case of the Galois configura-
tion where these update functions can be more com-
plex (see below).

The output functionh of Grain-128a is almost the
same as of Grain-128. The only difference is that
in Grain-128a the variableLt [94] instead ofLt [95] is

used:

h = Nt [2]+Nt [15]+Nt [36]+Nt [45]+Nt [64]+

Nt [73]+Lt [93]+Nt[89]+Nt [12]Lt [8]+

Lt [13]Lt [20]+Nt [95]Lt [42]+Lt[60]Lt [79]+

Nt [12]Nt [95]Lt [94]

Grain-128a uses two different modes: initialization
and keystream generation. In the keystream genera-
tion mode, the result ofh forms the output. During
the initializing mode the cipher does not produce any
output for 256 clock-cycles. Instead the outputs ofh
are fed back to the LFSR and NLFSR.

To be able to determine possible improvements
that result from the transformation, we made our own
implementation of Grain-128a which serves as the ba-
sis for the further analysis. Our implementations were
done using the Cadence RTL Compiler1 for synthesis
and simulation. Two implementations with different
compiler settings were examined: optimizing the out-
put for timing and optimizing for the area size. The
implementation results for Grain-128a in Fibonacci
configuration are the following.

1. When the compiler is set tooptimize timing, the
area size is 1888 GE and the maximum through-
put in the initialization mode is 1,02 GHz, when
in the keystream generation mode the maximum
throughput is 1,23 GHz

2. When the compiler is set forarea optimization,
the area size is 1640 GEs and the maximum
throughput in initialization mode is 0,57 GHz,
when in keystream generation mode it is 0,84
GHz

Similar to the case of Grain-128 (see also
(Armknecht and Mikhalev, 2014)), in the original
specification of Grain-128a the critical path goes
through the FSRs. Hence, a direct application of the
transformation would yield no benefit. Therefore, we
followed the same approach and first applied a trans-
formation to the FSRs for reducing the delays within
the FSRs. This had the effect that after the trans-
formations of the FSRs, the criticial path were no
longer going through the FSRs but through the output
function. In particular a situation was created were
the transformation from (Armknecht and Mikhalev,
2014) may help to further decrease the delay. In the
following, we will first explain the FSRs transforma-
tion that we applied to the original instantiation and
point out the throughput of the resulting instantiation
(termed instantiation 1). Afterwards we explain a pos-
sible application of the transformation to instantiation

1See http://www.cadence.com/products/ld/rtlcompiler
/pages/default.aspx
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1 that results into instantiation 2. The change of the
delay between instantiations 1 and 2 then gives the in-
crease of the throughput gained by the transformation
from (Armknecht and Mikhalev, 2014).

Specification of the FSRs. We used the Galois con-
figuration of Grain-128a suggested by (Mansouri and
Dubrova, 2013) that we recall in the following. For
an easy distinguishing between the update functions
from the original instantiation and the update func-
tions of instantiation 1, i.e., after the change, we mark
the latter with an upper index (g). That is( f0, . . . , f127)
and (q0, . . . ,q127) denote the original update func-
tions of the LFSRL and the NLFSRN, respectively,
while ( f g

0 , . . . , f g
127) and(qg

0, . . . ,q
g
127) refer to the up-

date functions after changing the FSRS configuration.
Likewise we denote at clockt the state of the LFSR
to be Lg

t = (Lg
t [0], · · · ,L

g
t [127]) and the state of the

NLFSR asNg
t = (Ng

t [0], · · · ,N
g
t [127]). The modified

update functions of the FSRs of Grain-128a in Galois
configuration are given in the Table 1.

All the other update functions that are not spec-
ified are the same as in the original specification of
Grain-128a.

Of course this transformation is preserving, i.e.,
for all initial states of the FSRs in the original specifi-
cation there exist corresponding initials states for in-
stantiation 1 such that both instantiations produce the
same outputs. However these initials states are not
equal but need to be changed. A general treatment of
this topic can be found in (Dubrova, 2010). For our
configuration the initial state needs to be changed as
follows.

Lg
0[i] = L0[i],0≤ i ≤ 96

Lg
0[i] = L0[i]+ f g

i−1(L0)+ f g
i−2|+1

(L0)+ · · ·+

f g
97|+i−98

(L0),97≤ i ≤ 127

Ng
0 [ j] = N0[ j],0≤ j ≤ 96

Ng
0 [ j] = N0[ j]+qg

j−1(N0)+qg
j−2|+1

(N0)+ · · ·+

qg
97|+ j−98

(N0),97≤ j ≤ 127

wereqi|+k
and fi|+k

denote that every index in the ar-
guments of the functionsqi|+k

and fi|+k
is increased

by k.
We implemented this variant of Grain-128a (in-

stantiation 1) and measured the following improve-
ments:

1. For thetime-optimizedsolution the area size de-
creased from 1888 to 1816 GEs. The maximum
throughput in the initialization mode increased to
1,17 GHz (by 15 %) and in the keystream genera-
tion mode increased to 1,51 GHz (by 22 %)

2. For the area-optimizedsolution the area size
slightly decreased from 1640 to 1632 GEs. The
maximum throughput in both modes increased by
7 %. In the initialization mode it became 0,61
GHz, and in the keystream generation mode it is
0,90 GHz.

Application of the Transformation. Even though
the output function has only small differences com-
pared to Grain-128, we could not use exactly the
same transformation as was done in (Armknecht and
Mikhalev, 2014). The update functions of both
NLFSR and LFSR are different and therefore the in-
tervals in the FSRs, where it is possible to move the
monomials from the output fucntion, had to be chosen
differently. In the following we provide the results
of our transformation applied to Grain-128a. We use
the upper index (T ) to indicate the FSR states and up-
date functions after the transformation (instantiation
2). The exact transformations are provided in the Ta-
ble 2. Again we only provide these functions where
the transformation induced changes. Observe that the
modified output functionhT is linear as opposed to
the cubic output functionh of original Grain-128a.

Also here it is necessary to modify initials states
of instantiation 1 such that instantiation 2 produces
the same output. The concrete mapping is given in
Tab. 3. State entries that are not mentioned remained
unchanged.

Below we summarize the results of the implemen-
tation of Grain-128a where the transformations have
been applied (instantiations 2) and state the increase
of throughput compared to instantiation 1 (i.e., Grain-
128a where the FSRs have been changed into Galois
configuration).

1. Timing Optimization. With these compiler-
settings the area size slightly decreased from 1816
to 1736 GEs. The maximum throughput in the ini-
tialization mode increased to 1,3 GHz (by 11%)
and in the keystream generation mode it was in-
creased to 1,78 GHz (by 18 %)

2. Area Optimization. The area-size slightly in-
creased (from 1632 GE to 1652 GE), when the
maximum throughput increased by 20 % in the
initialization mode and became 0,73 GHz; when
in the keystream generation mode it increased by
18 % and became 1,06 GHz.

As in the case for Grain-128 (see (Armknecht and
Mikhalev, 2014) for details), the transformation al-
lowed an increase of the throughput. The improve-
ments in both cases (Grain-128 and Grain-128a) are
summarized in the Table 4
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Table 1: The Update Functions of the FSRs after Transforminginto Galois Configuration.

LFSRLg:
f g
127= Lg

t [0]+Lg
t [7] f g

123= Lg
t [124]+Lg

t [34]
f g
119= Lg

t [120]+Lg
t [62] f g

115= Lg
t [116]+Lg

t [85]
f g
111= Lg

t [112]+Lg
t [80]

f g
i = Lg

t [i +1],0≤ i ≤ 127, i /∈ {127,123,119,115,111}

NLFSRNg:
qg

127= Lg
t [0]+Ng

t [0] qg
126= Ng

t [127]+Ng
t [39]Ng

t [47]
qg

125= Ng
t [126]+Ng

t [59]Ng
t [63] qg

124= Ng
t [125]+Ng

t [0]N
g
t [64]

qg
123= Ng

t [124]+Ng
t [52] qg

116= Ng
t [117]+Ng

t [0]N
g
t [2]

qg
110= Ng

t [111]+Ng
t [0]N

g
t [1] qg

105= Ng
t [106]+Ng

t [0]N
g
t [2]N

g
t [3]

qg
102= Ng

t [103]+Ng
t [71] qg

101= Ng
t [102]+Ng

t [0]
qg

100= Ng
t [101]+Ng

t [0]N
g
t [32] qg

99= Ng
t [100]+Ng

t [63]
qg

98= Ng
t [99]+Ng

t [59]Ng
t [63]Ng

t [64]Ng
t [66] qg

97= Ng
t [98]+Ng

t [38]Ng
t [54]

qg
96= Ng

t [97]+Ng
t [39]Ng

t [47]Ng
t [51]

qg
i = Ng

t [i +1] i /∈ {127,126,125,124,123,116,110,105,102,101,100,99,98,97,96}

Table 2: The Update and Output Functions after our Transformation.

qT
89= NT

t [90]+NT
t [3] qT

87 = NT
t [88]+NT

t [1]
qT

73= NT
t [74]+NT

t [13]LT
t [9] qT

71 = NT
t [72]+NT

t [11]LT
t [7]

qT
46= NT

t [47]+LT
t [14]LT

t [21] qT
45 = NT

t [46]+LT
t [13]LT

t [20]
qT

36= NT
t [37]+NT

t [96]LT
t [43] qT

34 = NT
t [35]+NT

t [94]LT
41

qT
15= NT

t [16]+NT
t [13]NT

t [96]LT
t [95] qT

14 = NT
t [15]+NT

t [12]NT
t [95]LT

t [94]
f T
93 = LT

t [94]+LT
t [61]LT

t [80] f T
91 = LT

t [92]+LT
t [59]LT

t [78]
hT = NT

t [15]+NT
t [36]+NT

t [45]+NT
t [64]+NT

t [73]+NT
t [89]+LT

t [93]

Table 3: Mapping of the Initial States after our Transformation.

NT
0 [89] = Ng

0 [89]+Ng
0[2] NT

0 [88] = Ng
0 [88]+Ng

0[1]
NT

0 [73] = Ng
0 [73]+Ng

0[12]Lg
0[8] NT

0 [72] = Ng
0 [72]+Ng

0[11]Lg
0[7]

NT
0 [45] = Ng

0 [45]+Lg
0[13]Lg

0[20]
NT

0 [36] = Ng
0 [36]+Ng

0[95]Lg
0[42] NT

0 [35] = Ng
0 [35]+Ng

0[94]Lg
0[41]

NT
0 [15] = Ng

0 [15]+Ng
0[12]Ng

0[95]Lg
0[94]

LT
0 [93] = Ng

0 [93]+Lg
0[60]Lg

0[79] LT
0 [92] = Ng

0 [92]+Lg
0[59]Lg

0[78]

Table 4: The Perfomance Results for Grain-128 (Armknecht and Mikhalev, 2014) and Grain-128a.

Grain-128
Area-opimizing Time-optimizing

Configuration Initialization Keystream gen. Initialization Keystream gen.
Area size* Througput** Througput Area size Througput Througput

Original (Fibonacci) 1626 0,42 0,89 1853 1,03 1,29
Galois 1627 0,60 (+42%) 0,90 1794 1,11 (+8 %) 1,45 (+12 %)

Our Transformation 1656 0,73 (+20 %) 1,06 (+18 %) 1748 1,31 (+18 %) 1,8 (+24 %)
Grain-128a

Area-opimizing Time-optimizing
Configuration Initialization Keystream gen. Initialization Keystream gen.

Area size Througput Througput Area size Througput Througput
Original (Fibonacci) 1640 0,57 0,84 1888 1,02 1,23

Galois 1632 0,61 (+7%) 0,90 (+7%) 1816 1,17 (+15 %) 1,51 (+22 %)
Our Transformation 1652 0,73 (+20 %) 1,06 (+18 %) 1736 1,3 (+11 %) 1,78 (+18 %)
* Area size is given in gate equivalents (GE)
** Throuhput is given in gigahertz (GHz)
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4.2 DECIM

Description. DECIM is a stream cipher proposal
that passed to phase 3 of the e-Stream competition
but was not selected for the final e-Stream portfo-
lio. After the first version of DECIM (Berbain et al.,
2005) was cryptanalyzed (Wu and Preneel, 2006), two
improved versions were proposed: DECIM v2 and
DECIM 128 (Berbain et al., 2008). The DECIM ci-
phers are composed of an LFSR of lengthn, a filtering
Boolean functionh, a mechanism called ABSG deci-
mation (Gouget et al., 2005), and a buffer.

During the initialization phase for the certain
number of clock-cycles the output ofh is XORed
with the update function of the LFSR and the cipher
doesn’t produce any keystream.

During the keystream generation phase the output
of h is XORed with the bit with index 1 of the LFSR
and the result is passed to the input of the ABSG
mechanism.

The ABSG decimation mechanism provides a
method for irregular decimation of bit sequences, and
the buffer is used to ensure that at each clock-cycle
there exist an output. However, for the considered
transformation the only important parts are the LFSR
and the filtering functionh.

The filtering function of DECIM is given as:

h(α1, · · · ,α13) =
⊕

1≤i< j≤13

αiα j ⊕
⊕

1≤i≤13

αi (1)

whereα1 · · ·α13 correspond to several LFSR bits.
The differences between DECIM v2 and DECIM-

128 are minor. In DECIM v2 a LFSR of length 192
bits is used while in DECIM the length of the LFSR
is 288 bits. The second difference is the choice of the
bits associated to the inputs of the filtering function
(α1, · · ·α13).

Applicability. We discuss now the applicability of
the transformation to DECIM v2 and/or DECIM-128.
Theorem 1 requires that the output of the filtering
functionh can be represented by

h(St)=St [β]+h1(St)+h2(St)=St [β]+g(St−1)+h2(St)
(2)

whereSt denotes the state of the LFSR at clockt,
and the existence of an indexα such that the inter-
val [α, · · · ,β] is isolated with respect toh2, and the
interval[α+1, · · · ,β+1] is isolated with respect tog.
However, due to the fact that any variable ofh appears
also in other non-linear terms, this is impossible. The
reason is that for any choice ofβ and for any chosen
splitting h1 ⊕ h2, the variable corresponding toSt [β]
appears at least either inh1 andh2. Hence, no interval
can meet the isolation requirement.

Therefore, the transformation is not applicable for
DECIM v2 and DECIM-128.

Please notice, that if during the initialization phase
the value of the bit 1 was included into the computa-
tion of the update function of the LFSR,St [1] could
be chosen asSt [β] and the transformation would be
possible.

4.3 Achterbahn-128/80

Description. Achterbahn-128/80 (Gammel et al.,
2007) are two keystream generators with key sizes
of 128 bits (Achterbahn-128) and 80 bits (for
Achterbahn-80). They have been submitted to the
e-Stream project and passed to phase 2. Both gen-
erators have a similar structure, consisting of several
feedback shift registers whose outputs are combined
by a non-linear output function. We refer to (Gammel
et al., 2007) for a detailed description.

Applicability. The transformation described in
Theorem 1 requires that for at least one of the FSRs
there exist an interval[α, . . . ,β] such that the index
β corresponds to one of the inputs of the output func-
tion. However, in Achterbanh-128/80 the output func-
tion takes its inputs from the last bits of each of the
FSRs - bits with the index 0, meaning thatβ can
only be equal to 0. Therefore, there exist no FSR bit
with the indexα < β. Thus, the straightforward ap-
plication of the transformation cannot be applied to
Achterbahn-128/80.

Nevertheless, in order to solve this problem one
can use the following trick :
1. Instead of using bits with index 0 in the output

function, for each FSRi bit with indexr i is used,
such that intervals[0, · · · , r i ] are isolated;

2. The initial states of each FSRi are modified. The
new states are equal to the ones that each FSRi
would take if it was clocked backr i times.
If this modification is made the output of the ci-

pher will not change.
Unfortunately, for Achterbahn-128/80 we face the

similar problem as with DECIM (see Sec. 4.2). That
is all of the FSR outputs are used as linear terms and
also included in the non-linear terms of the filtering
function, which makes it impossible to find an appro-
priate splitting. Hence, the conditions of Theorem 1
cannot be met and the transformation cannot be ap-
plied.

4.4 Hitag2

Description. The Hitag2 stream cipher (Courtois
et al., 2009) is used for many practical applications
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based on RFIDs. The most common use cases are
building access control mechanisms and car immo-
bilizers. Hitag2 consists of one 48-bit LFSR and a
non-linear filtering function. The external block part
is used during the initialization phase and it is not im-
portant with respect to the considered transformation.

Applicability. In principle the same problem as in
the two previous examples takes place with Hitag2
and we could not apply the transformation.
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