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Abstract: This paper presents an investigation on the performance of Unscented HybridSLAM using two different 
mapping strategies. The global map estimation using Unscented Kalman Filter is scrutinized for different 
scenarios, with and without the influence of a data association process. The accuracy of generated global 
map under different vehicle speed settings and with different process time is demonstrated using computer 
simulation. Results are discussed in terms of Root Mean Square (RMS) position error, orientation error, and 
time of navigation process. Results show that depending on the application, and on a desired speed, a 
compromise has to be done to get the best efficacy.  

1 INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) 
problem is often implemented in autonomous mobile 
robots applications. SLAM is a situation in which a 
mobile robot steers in an unknown environment and 
constructs an instantaneous map and uses that map 
to localize. Once localized, the robot updates the 
map from its new location and this process occurs 
simultaneously and in consequent fragments of time 
(Durrant-Whyte, Bailey, 2006). SLAM was 
introduced about three decades ago in terms of 
uncertainty estimation of an erroneous dynamic 
Bayesian network (Smith, Cheesman, 1986). Since 
then, a continuous development of SLAM structure 
and different solutions to the problem were 
accomplished. Nowadays, SLAM is presented in 
two major categories; feature-based and location-
based (Jaulin, 2011). This study focuses on some 
aspects of the feature-based SLAM which furthers 
the research on a new approach called Unscented 
HybridSLAM (UHS) (Monjazeb et al., 2013). The 
approach is combined of Unscented Kalman filter 
(Julier, Uhlmann, 2001) and FastSLAM 
(Montemerlo, et al., 2002) which is using the similar 
navigational strategies in HybridSLAM (HS) 
structure (Brooks, Bailey, 2009) and constrained 
local sub-map filter (CLSF) technique (Williams, et 

al., 2002). More specifically, this paper analyses the 
UHS performance improvement using different 
Scheduling of the application on CLSF. Some 
aspects of sensor fusion were considered as well 
(Sasiadek, 2002). 

2 CONSTRAINED LOCAL  
SUB-MAP FILTER 

Constrained Local Sub-Map Filter (CLSF) is a 
technique to fuse a local map to a global map. A 
local map can be estimated using FastSLAM into the 
whole picture of features in the environment 
previously estimated by UKF. This technique 
updates the full covariance matrix of the system 
generated by UKF to be scheduled at “appropriate 
intervals” (Williams, et al., 2002) defined by 
FastSLAM based on Rao-Blackwellised Particle 
Filter (RBPF) (Doucet, et al., 2000). This method 
provides an independent, local sub-map estimate of 
the point features in the environment in a small scale 
and compares the local map that is statistically 
sampled by particles (Bailey et al., 2006) with the 
global map produced by UKF-SLAM algorithm. 
Previous use of such method resulted in a map with 
the reduction of uncertainty in EKF-SLAM (Brooks, 
Bailey, 2009). Instead of using EKF to estimate 
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global and local maps separately and reducing 
uncertainty, this approach may be substituted by a 
combination of RBPF and UKF. The observations 
are fused to create a local map by FastSLAM 
referenced to a local frame of reference where its 
global position is already estimated by UKF (Julier, 
Uhlmann, 2004). At appropriate intervals, the 
information contained in the local map is transferred 
into the global map using formulated constraints 
between the point landmark estimates. The 
constraint would produce a map of the environment 
and an estimated path that are identical to the ones 
previously estimated by UKF. When the vehicle is at 

location x R
k  at time step k, a new frame of reference 

is initiated (Negenborn, 2003). At this moment, the 
path up to and including time step k is already 
estimated in the same frame of reference with 
respect to the global frame of reference and with its 
minimum uncertainty (assuming it is zero). At the 
same time step, the global local frame is initialized 
under UKF calculation. However, the estimation in 
the local frame of reference by RBPF is completely 
independent of the estimation that is already done by 
UKF in the Global frame of reference (Monjazeb et 
al., 2012). At this time step, only a small state 
covariance matrix of the system in the global frame 
of reference is updated with the new observation. 
Prior to the beginning of time step k+1, the key is 
switched off to produce a fused map with minimum 
uncertainty in the system. Once again, at the 
beginning of time step k+1, the switch turns on to 
send a local map and to fuse it into the global map 
estimated by UKF to initiate the process of 
generating a new global map (Monjazeb et al., 
2011). 

3 SCHEDULINGS TECHNIQUES 

The Unscented HybridSLAM algorithm is arranged 
in such way so that UKF-SLAM estimates the whole 
map of the environment and the RBPF estimates the 
path and the local map in the vicinity of the current 
robot position (Lijun, et al., 2011). At the CLSF 
part, there will be an update only on features that are 
observed in the current local frame of reference 
(Lindemann, et al., 2006), and the remaining map 
information will be untouched (Norgard et al., 
2000). When the information in the local map is 
fused into the global map (Sasiadek, Hartana, 2000), 
the resulting map is replaced with the map in the 
previous time step. There are two distinct state 
estimates independent from each other (Neira, 

Tardos, 2001), and as a result, the augmented form 
of posterior state in the process of map fusion can be 
expressed as 


kx̂ (CLSF)={

G 
kx̂ (robot),

G
m,

L 
kx̂ (robot),

L
m} (1)

where, G 
kx̂ (robot)  is the global posterior position of 

the robot estimated by UKF, L 
kx̂ (robot) is the local 

posterior position of the robot estimated by RBPF, 
G m is the map of landmarks estimated by UKF and 
L m is the map of landmarks in the vicinity of the 
robot’s pose only and estimated by RBPF. The 
system covariance is defined as  
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
k

L
RR P  is the robot covariance in the local frame of 

reference, 
k

L
mm P  indicates covariance in the local 

frame of reference related to landmarks, 
k

L
Rm P  and 


k

L
mR P  

represent covariance on robots and landmarks 

in the local frame of reference as well. 
kmL PG , 

kmL PG , 

and 
kmm PG represent same covariance matrices as 

above but in the global frame of reference. Finally, 

kLL PG  is the covariance of the estimate of the local 

frame of reference with respect to the global frame 
of reference. In this approach, the position of the 
robot and the map in the vicinity of the robot 
position is estimated using particle filters. The 
resulted data is converted to a single Gaussian and 
by the use of CLSF the estimated local map is fused 
to the Global map previously estimated by UKF 
(Sasiadek et al., 2008). The position of the robot 
estimated by RBPF in the local map is considered to 
be as an additional landmark (Thrun, 2000). When 
the local map covariance matrix is fused to the 
global map, the related data stays in the main 
covariance matrix until the next time step (Thrun, et 
al., 2003). 

Figure 1 illustrates a block diagram of the sub-
mapping strategy using RBPF, UKF, and CLSF. The 
strategy in this scheduling is to give the posterior 
sate of the system at time step k (previously 
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estimated by RBPF) to the UKF algorithm in order 
to make an individual map of the environment (the 
global map). The local map estimated by RBPF is 
partially used to make an estimation of the path. 
This local map is then added to the CLSF algorithm, 
where it is matched with the global map previously 
estimated by UKF. A new map will be generated 
based on CLSF algorithm to moment-match the 
features estimated by each individual algorithm; 
UKF and RBPF. 

 

Figure 1: Scheduling without data association 
incorporation in UKF. 

 

Figure 2: Scheduling with data association incorporation 
in UKF. 

A modified scheduling technique is presented as 
depicted in figure 2. Instead of updating the global 
map using a straight forward mean, the ambiguity of 
the data association is reduced using a data 
association process algorithm to reduce a cluster of 
information (Bar-Shalom, Fortmann, 1998). The 
UKF is then using this modified posterior to 
generate the global map. The rest of the process is 
the same as what explained in figure 1. The main 
difficulty in the mapping process would be to add 
new landmarks into the map when global and local 
maps are matched by CLSF. There is a need for a 
proper formulation in order to make the mapping 
process reliable (Guivant, Nebot, 2001). If a specific 
measurement is insufficient to constrain the new 
landmark in all dimensions, the decision to add a 
new landmark could be quite challenging. In 

Kalman-based algorithms, only a single 
measurement is made to initialize a new landmark. 
In the RBPF, each observation may be represented 
in a Gaussian form (Montemerlo, Thrun, 2003) as: 

z k ~ N ( kẑ + k ( ik ,z – n
ik ,1μ  ), R k ) (5)

This Gaussian can be written as 

|Z
~

2π|

1

i,k

exp [A . B] 
(6)

A = –
2

1
(z k − kẑ − k ( ik ,z – n

ik ,1μ  ))T 
(7)

B= R 1
k (z k − kẑ − k ( ik ,z – n

ik ,1μ  )) (8)

Q is defined as a function equal to the negative of 
the exponent of this Gaussian: 

Q = 
2

1
 C . D (9)

C = (z k − kẑ − k ( ik ,z – n
ik ,1μ  ))T (10)

D = R 1
k (z k − kẑ − k ( ik ,z – n

ik ,1μ  ) (11)

The second derivative of Q with respect to ik ,z will 

be the inverse of the covariance matrix of the 
Gaussian in landmark coordinates. 
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As a result, an invertible observation can be used to 
create a new landmark as 

n
ik ,1μ   = h 1

 ( n x R
k , z k ) (14)

n
ik , = T

k  R 1
k k  (15)

n ŵ k =P0 (16)

The initialization of landmarks may be calculated 
through a simpler formulation. By setting the 
variance of each landmark parameter to a high value 
and incorporating the initial observation, the exact 
initial covariance does not have to be considered. 
Higher KG values lead the process to a more 
accurate approximation regarding the observation of 
each landmark (Thrun et al,  2000).  
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n
ik ,1μ   = h 1

 ( n x R
k , z k ) (17)

 
n

ik , = K I (18)

4 SIMULATIONS AND RESULTS 

Figure 3 illustrates specifications and dimensions of 
the vehicle defined as A=3.00m, ℓ=2.00m, 
W=0.70m, and B=0.2m. Speed of the vehicle is 
assumed to be a constant but changing from 1m/s to 
5m/s in different scenarios.  

 

Figure 3: Mobile robot dimensions. 

The vehicle is equipped with a range/bearing finder 
device and capable of detecting 100 visible 
landmarks in the environment. The maximum range 
defined for the range/bearing device is assumed 
40.00m. An encoder attached to the vehicle’s rear 
tire measures its revolutions and infers the linear 
displacement. An accelerometer is also used to 
measure the change in heading. A combination of 
heading and displacement measurements is 
incorporated into the UHS algorithm in order to 
dead reckon the vehicle location in the global frame 
of reference. Figure 4 depicts a situation in which 
the autonomous robot is travelling in a 100m by 
100m environment with a speed of 1m/s.  

In order to compare two different scheduling 
techniques, the RMS position error is depicted for 
each situation. Figure 5 demonstrates the error in the 
situation in which the data association is not 
incorporated into the UKF map calculation. The 
error in this case exceeds up to 0.5m. In figure 6, the 
RMS position error fluctuations do not show much 
of a difference if the data association process 
interferes with the UKF map calculation. However, 
the process time increases slightly (around 150s) 

which indicates that adding the data association 
calculation into UKF map building has its effect on 
the   process.  Figures  7   and  8  depict  the  average 
orientation error for both cases demonstrated in 
figures 5 and 6. Results show that the error stays at 
the same level (around 0.03rad) when the speed of 
the vehicle is around 1m/s. It should be mentioned 
that the system function that describes the 
concurrent mapping of the environment is highly 
non-linear. Furthermore, perturbations of the system 
are quite hard to control due to a noisy 
measurement. The significant amount of system 
noise, affects the accuracy of map estimation 
process. In real world applications, it is fair to 
assume that both absolute and relative measurements 
are functions of vehicle speed. As a result, the faster 
the vehicle moves, the less accuracy is expected.  

 

Figure 4: Autonomous robot travelling in a 100m×100m 
square environment. 

 

Figure 5: RMS position error for UKF mapping without 
data association scheduling for ν=1m/s. 

To further investigate the effect of data association 
calculation on the mapping process, the speed of the 
vehicle is set to 5m/s and the UKF mapping 
calculation is done with and without influence of the 
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data association process. The average RMS position 
error stays around 0.6m. The error is relatively 
increased compared to the situation in which the 
speed is 1m/s. It is expected to have such increase in 
error because the accuracy of raw sensor data 
extraction and converting it to lower dimensional 
feature vector highly depends on the speed of the 
vehicle which in turn, affects the accuracy of the 
perception process. Figure 9 shows such increase in 
error when the speed changes from 1m/s to 5m/s. 
However, the increase in RMS position error is not 
as much when the data association calculation is 
influences the UKF mapping process. Figure 10 
shows that as long as the UKF mapping stage takes 
advantage of the data association process, the 
change in speed would not affect the map accuracy. 

 

Figure 6: RMS position error for UKF mapping with data 
association scheduling for ν=1m/s. 

 

Figure 7: Orientation error for UKF mapping without data 
association scheduling for ν=1m/s. 

The process time, however, increases substantially 
which indicates that the mapping process is 
consuming more than regular time when the data 
association is processed in the UKF algorithm. The 

same result is inferred from figures 11 and 12 in 
terms of the orientation error. The orientation error 
is not as much increased when the data association 
process interfere the UKF mapping calculation once 
the speed of the vehicle is increased to 5m/s. 

 

Figure 8: Orientation error for UKF mapping with data 
association scheduling for ν=1m/s. 

One of the major reasons that the process time 
increases is the computational power that is needed 
to extract a real time image. Nowadays, current 
CPUs are quite fast but not fast enough to provide 
processing power for a real time application. 
Depending on how much the data associated with 
landmarks is incorporated into the map estimation 
process, the demanding processing power for data 
extraction varies. At a reasonable cost, a 
compromise between the processing power and a 
real time image must be considered.  

 

Figure 9: RMS position error for UKF mapping without 
data association scheduling for ν=5m/s.  

A number of runs were performed and the UKF 
estimated the global map at different speed. Figures 
13 and 14 depict resulting RMS position error and 
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orientation error for two different scheduling. The 
vehicle speed changes from 1m/s to 10m/s. As 
illustrated in these figures, the error increases for 
both scheduling techniques as the vehicle speed 
increases. Ideally, at a low speed basis, the error 
stays at the same level. Once the speed increases, the 
performance of UKF with data association 
calculation varies from the situation in which the 
data association process does not influence the 
global mapping estimation. At the speed of 5m/s 
there is a substantial difference between two 
techniques and this difference even grows at higher 
speed sets. In practical situations, those scheduling 
techniques may not always reflect the ideal 
condition as plotted in figures 13 and 14. Other 
factors such as system noise or device failures may 
play major roles in the performance of the algorithm. 

 

Figure 10: RMS position error for UKF mapping with data 
association scheduling for ν=5m/s. 

 

Figure 11: Orientation error for UKF mapping without 
data association scheduling for ν=5m/s. 

Nevertheless, the deterioration rate stays similar to 
the ideal condition, meaning that, the higher the 
vehicle speed is set to, the more erroneous 
estimation is resulted. Figure 15 illustrates the 

process time versus vehicle speed for both 
scheduling techniques. Again, in low speed 
conditions the effect of data association process on 
the process time is negligible but as the vehicle 
speed is added up, the process time increases 
substantially. For relatively high speed situations, 
the scheduling technique with the data association 
influence in global mapping becomes nuisance even 
though the error stays at a reasonable level. It should 
be noted that one of the main intentions in a 
scheduling technique is to bring the system enough 
accuracy in estimation of the map and as close to 
real time as possible. In order to achieve these goals, 
an optimal point must be selected for each 
scheduling technique. From figures 13 to 15 and for 
this particular platform the map estimation 
influences the UKF map calculation and with speed 
set to 4m/s is the closest to the desired condition. 

 

Figure 12: Orientation error for UKF mapping with data 
association scheduling for ν=5m/s. 

 

Figure 13: RMS position error for global map estimation 
without data association technique for ν=1m/s to 10m/s.  

It is interesting that the divergence between two 
scheduling techniques occurs around 2m/s. This 
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indicates that as long as the vehicle speed is 
maintained around 2m/s, there is no need to use the 
scheduling in the global map estimation by UKF. 

 

Figure 14: RMS position error for global map estimation 
with data association technique for ν=1m/s to 10m/s. 

 

Figure 15: Computing time versus vehicle speed for 
different scheduling techniques. 

Once a specific combination of map accuracy and 
process time is desired, depending on the 
application, one can extract different variances of 
the speed, time, and map accuracy. It is also evident 
that for high speed settings, the data association 
scheduling in the UKF map estimation process 
causes an exponential increase in the process time. 

5 CONCLUSION 

In this paper, two different scheduling techniques 
were briefly discussed and several mapping 
scenarios were simulated via MATLAB and C++ 
codes for an autonomous robotic vehicle to map the 
environment. The map accuracy through both 

different techniques and in different settings was 
discussed. Variations of each technique were 
demonstrated in terms of Root Mean Square position 
error and orientation error. In order to formalize the 
mapping calculation, a data association process was 
defined and applied for the global mapping 
estimation using Unscented Kalman Filter. It was 
concluded that depending on the application and in 
order to get the best result, a compromise between 
the process time and map accuracy is necessary. In 
this particular scenario and for the specific platform 
used in this study, the scheduling technique can be 
used in global mapping estimation. The speed of the 
vehicle in this case was set between 2m/s to 4m/s. It 
was also concluded that for a desired accuracy, there 
will be an unavoidable increase in the computing 
time that is negligible for low speed settings. 
However, if a shorter computing time is desired, a 
decrease in vehicle speed setting is required. 
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