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Abstract: The efficient sharing of information is a commonly overlooked problem in methods proposed for cooperative
multi-robot tasks. However, in multi-robot scenarios, especially when the communication network’s quality of
service is less than desirable, either in bandwidth or reliability, efficient information exchange is a key aspect
for the successful deployment of coordinated robotic teams with proper exchange of information.
Compression is a popular, well-studied solution for transmitting data through constrained communications
channels, and many general-purpose solutions are available as free and open-source software (FOSS) projects.
There are various benchmarking tools capable of comparing the performance of these techniques, but none
that differentiate between them in the compression of the typical data exchanged among robots in a coopera-
tive task. Thus, choosing a compression technique to be used in this context is still a challenge.
In this paper, the issue of efficiently communicating data among robots is addressed by comparing the per-
formance of various compression techniques in a case study of multi-robot simultaneous localization and
mapping (SLAM) scenarios using occupancy grids, a cooperative task usually requiring the exchange of large
amounts of data.

1 INTRODUCTION

Cooperation among mobile robots almost always in-
volves interaction via explicit communication, usu-
ally through the use of a wireless network. Com-
monly, this network is taken for granted and little
care is taken in minimizing the amount of data that
flows through it, namely to assist the robot’s naviga-
tion though the environment.

However, in real-world applications, the naviga-
tional effort can be but a small part of the tasks
that must be dealt with by a complete robotic sys-
tem (Rocha et al., 2013). Therefore, it should oper-
ate as efficiently as possible. Additionally, in harsher
scenarios, such as search and rescue operations, con-
strained connectivity can become an issue, and cau-
tion must be taken to avoid overloading the network.
An efficient model of communication is also a key el-
ement of a scalable implementation: as the number
of robots sharing the network increases, the amount
of data that needs to be communicated does as well.
Thus, greater care in preparing data for transmission
is needed, so as to avoid burdening the network by
transmitting redundant or unnecessary data.

In this paper, we analyze the data transmitted by

a team of robots on a cooperative mission that in-
cludes mapping and navigation. With this purpose,
we use a multi-robot simultaneous localization and
mapping (SLAM) task (Lazaro et al., 2013) as a case
study of the exchange of information among robots,
though the ideas proposed herein can be generalized
to other cooperative tasks, at different abstraction lev-
els. In our case study, mobile robots are required to
communicate occupancy grids (Elfes, 1989) among
themselves, in order to obtain a global representation
of the environment based on partial maps obtained lo-
cally by individual robots.

Occupancy grids are metric representations of the
environment, being repetitive by nature (Elfes, 1989).
In their simplest form, they consist of a matrix of cells
that are commonly in one of three states: free, oc-
cupied or unknown. These can be seen as the result
of a “thresholding” operation applied to a more com-
plex occupancy grid, which is composed of cells that,
instead of one of three values, contain a probability
value or distribution (Rocha, 2006) of the occupancy
of the space they represent.

In larger environments, or at greater resolutions,
these simpler grids are composed of large matrices
filled with only three different values, often contain-
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ing very long chains of repeated cells. Keeping this
data in memory in this form is a sensible approach.
The data is very easily accessible, with no computa-
tional overhead. However, transmitting it in this form
is most likely a wasteful use of bandwidth.

Compression methods are widely used in the
transmission and storage of bulky data, such as large
numbers of small files, logs, sound and video. Com-
pression is even being used by default in specific file
systems, offering a possible solution for this problem.
These exploit the data’s inherent compressibility in or-
der to represent it using fewer bits of data than origi-
nally.

In the following pages, various general-purpose,
lossless compression techniques are analyzed and
compared, in an effort to determine which, if any, is
more suitable as a solution to the large bandwidth re-
quirements of multi-robot systems. We will start by
presenting a review of previous work in efficient com-
munication between coordinated robots, followed by
a short presentation of the various techniques being
compared. We then present and discuss our results,
and summarily conclude by taking an outlook into fu-
ture work.

1.1 Related Work

Data compression is a process through which we aim
to represent a given piece of digital data using fewer
bytes than the original data, and can be seen as a
way of trading excess CPU time for reduced transmis-
sion and storage requirements. Compression methods
are divided into two main groups: lossless methods,
which make it possible to reconstruct the original data
without error; and lossy methods, which make use of
the way humans perceive signals to discard irrelevant
data.

Lossy compression algorithms are commonly
used in the compression of signals intended for hu-
man perception, such as image and sound. These
techniques usually make use of the way we perceive
signals to reduce their size (Salomon, 2007). For
example, given that the human hearing’s capability
ranges from about 20Hz to about 20kHz, sound com-
pression techniques can remove any signal compo-
nents outside that frequency range. Although the
compressed data should be significantly smaller than
the original, humans hearing sound reconstructed
from lossy compressed data should experience much
the same. However, the original signal cannot be re-
covered.

Lossless compression, on the other hand, com-
presses data in a way that it is later fully recover-
able. In 1977 (Ziv and Lempel, 1977) and 1978 (Ziv

and Lempel, 1978), Abraham Lempel and Jacob
Ziv developed two closely related algorithms which
were to become the basis for most of the lossless,
general-purpose compression algorithms currently in
use. LZ77 and LZ78, as their works were to become
known, are methods of dictionary-based lossless com-
pression. Summarily, the LZ77 and LZ78 algorithms
keep a dictionary of byte chains encountered through-
out the uncompressed data, and replace repetitions of
those chains with links to entries in the dictionary,
thus reducing the size of the data.

LZ77 compresses data by running a sliding win-
dow of a given fixed length over the input data, which
is composed of variable-length sequences of bytes.
For each input sequence, the algorithm looks for
matches between the current sequence and a previ-
ous occurrence inside the sliding window. When a
match is found, the repeated sequence is replaced by
an offset and a length, which represent location of the
previous occurrence in the sliding window, and the
length of the repetition. For example, if the string
“abc” existed twice in the window, the second occur-
rence would be replaced by an offset that pointed to
the beginning of the string, and a length of three char-
acters. This simple concept is the basis of dictionary
coding. Furthermore, LZ77 has a way of dealing with
very long repetitions, by specifying a length that is
longer than the source string. This way, when decod-
ing, the source string is copied multiple times into the
output buffer, correctly rebuilding the repetition. For
example, if the string “abc” exists somewhere in the
sliding window, and the string “abcabc” exists some-
where after it, the second string would be replaced
by an offset that pointed to the letter ’a’ in the first
string, and a length of six characters, instead of the
length of three characters one might have expected,
thus encoding the whole six-letter string into a sin-
gle offset-length pair. Once all the data is encoded,
decoding it consists of reversing the process, by re-
placing every offset-length pair in the coded data by
their corresponding byte chains.

Despite technically being a dictionary coder,
LZ77 does not explicitly build a dictionary. Instead,
it relies on offset-length pairs to elliminate repetition.
LZ78, on the other hand, does create an explicit dic-
tionary. The algorithm attempts to find a match in the
dictionary for every sequence that is taken from the
input buffer. If a match is not found, it is added to
the dictionary. Every match that is found is replaced
with a structure analogous to the offset-length pair de-
scribed above, differing in the fact that now the offset
represents an entry in the dictionary. The LZ78 dic-
tionary is allowed to grow up to a given size, after
which no additional entries are added, and input data
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(a) LZ77 operates by running a sliding window over the data. When a sequence in the input data is matched to data that is
still inside the window, it is replaced with an offset-length pair that points to the previous instance of that data. In this figure,
the dark blue segments were matched, and the second one is replaced with the orange, smaller segment, that points to the first
copy of the matched segment.
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(b) LZ78 operates by building an explicit dictionary. As the input data is consumed, the algorithm
attempts to match each input sequence with an existing sequence in the dictionary. If the matching
operation fails, the new data is added to the dictionary. This illustration shows the case where a
match is found. In that case, the dark blue segments are matched to an entry in the dictionary, and
replaced in the output buffer with the orange, shorter segment that points to the correct entry in
the dictionary.

Figure 1: A simplified pictorial explanation of LZ77 and LZ78’s operation.
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that cannot be matched with any dictionary entries
is output unmodified. Decoding LZ78-encoded data
also consists of simply reversing the process, substi-
tuting each offset-length pair with the appropriate en-
try from the dictionary. The operation of these algo-
rithms is illustrated in Fig. 1.

We have restricted our choice of algorithms to
those based on Lempel and Ziv’s work, for their fo-
cus on reducing redundancy by exploiting repetition,
and for their lossless nature. It is important that the al-
gorithms we are employing be fully lossless, i.e. that
the compressed data can be used to reconstruct the
original data, since we intend to generalize this tech-
nique to other types of data which may not tolerate
any errors. For example, lossy image-based compres-
sion techniques, such as JPEG, could be used to re-
duce the size of an occupancy grid, processing it as
an image. However, compression artifacts and other
inaccuracies could lead to an erroneous representation
of the environment, either by distorting its features or
by hindering other aspects of the multi-robot mapping
effort, such as occupancy grid image-based alignment
and merging (Carpin, 2008).

Efficient inter-robot communication is not an area
devoid of research. Other works, such as (Bermond
et al., 1996), (Lazaro et al., 2013) and (Cunningham
et al., 2010), have worked on a solution for this is-
sue by creating new models of communication for
robotic teams, i.e. by developing new ways of rep-
resenting the data needed to accomplish the mission.
Other research efforts focused on developing infor-
mation utility metrics, e.g. by using information the-
ory (Rocha, 2006), which the robot can use to avoid
transmitting information with a utility measure below
a certain threshold. We could find none, however,
that applied compression to further increase their op-
timization gains. These techniques, while successful
in their intended purpose, rely on modifications to the
inner workings of their respective approaches. In our
case, we intend to create an optimization solution that
is more general, and that does not depend on modifi-
cations to the intricacies of the underlying techniques.

Finally, there are several examples1 of compres-
sion benchmarks. However, we found none that fo-
cus on the algorithms’ ability to optimize inter-robot
communication. Their main focus is on comparing
the techniques’ performance on the compression and
decompression of standard datasets, such as long sec-
tions of text, random numbers, etc. The need to
test these techniques in the compression of specific,
Robotics-related datasets, as well as the need to do so

1Such as Squeeze Chart (http://www.squeezechart.com/)
and Compression Ratings
(http://compressionratings.com/).

in a methodical, unbiased way, compelled us to create
our own solution.

1.2 Contributions

In this paper, we present a novel compression bench-
marking tool and metric, as well as results and dis-
cussion of a series of experiments on the compres-
sion and decompression of occupancy grids, as a case
study for the application of compression techniques
in multi-robot coordinated tasks.

2 FOSS DATA COMPRESSION
ALGORITHMS

As stated previously, occupancy grids, while a practi-
cal way of keeping an environment’s representation in
memory, are cumbersome as transmission objects. At
the typical size of 1 byte per cell, an 800-by-800 cell
grid (e.g. a representation of a somewhat small 8-by-
8 meter environment at 100 cells per meter) occupies
640 kilobytes of memory. Depending on how fast an
updated representation is generated, and how many
robots take part in the mapping effort, this can lead
to the transmission of prohibitively large amounts of
data. If we update that same grid once every three
seconds on each robot, each robot will generate an av-
erage of about 213KB/s. For a relatively small team
of three robots, that equates to generating 640KB per
second of data that needs to be transmitted. This sim-
ple calculation does not take into account the possi-
bility of one of the robots exploring the environment
further away from the others, causing the grids to
expand, which would further enlarge the amount of
repetitive data generated.

If we assume that each robot has to transmit its
map to each of the team members, in a client-server
networking model, each map update carries a band-
width cost of C = S� (n� 1), where C is the total
cost, in bytes, S is the size of the map, in bytes, and
n is the number of robots in the team. We can easily
determine then that a regular 802.11g access point,
operating at the typical average throughput of 22Mb
(or 2.75MB) per second could support a team of 14
robots.

Given the redundancy that is naturally occurring
in the data, there is great potential for optimization in
the team’s usage of bandwidth. Since data compres-
sion methods aim to remove redundancy from data,
and can be applied to any type of data, they seem ad-
equate candidates for network optimization.

LZ77 and LZ78 inspired multiple general-purpose
lossless compression algorithms, widely used today
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as Free and Open Source Software (FOSS) implemen-
tations. We have collected the ones that we believe are
the most suitable as solutions to our problem, given
their availability, use and features. We will summar-
ily discuss them next.

DEFLATE2, presented in (Deutsch, 1996), is the
algorithm behind many widely used compressed file
formats such as zip and gzip, compressed image
formats such as PNG, and lossless compression li-
braries such as zlib, which will be the implementa-
tion through which DEFLATE will be tested. This al-
gorithm combines the LZ77 algorithm with Huffman
Coding (Huffman et al., 1952). The data is first com-
pressed using LZ77, and later encoded into a Huffman
tree. Being widely used, this technique was one of the
very first to be considered as a possible solution to this
problem.

LZMA3, which stands for Lempel-Ziv-Markov
Chain Algorithm, is used by the open-source com-
pression tool 7-zip. To test this algorithm, we have
used the reference implementation distributed as the
LZMA SDK. No extensive specification for this com-
pressed format seems to exist, other than its reference
implementation. LZMA combines the sliding dictio-
nary approach of LZ77 with range encoding.

LZ44 is an LZ77-based algorithm focused on
compression and decompression speed. It has been
integrated into the Linux kernel and is used on the
BSD-licensed implementation of ZFS (Rodeh and Te-
perman, 2003), OpenZFS, as well as other projects.

QuickLZ5 is claimed to be “the world’s fastest
compression library”. However, the benchmark re-
sults provided by its authors do not compare this tech-
nique to either LZ4 or LZMA, warranting it a place in
our comparison.

Finally, Snappy6, created by Google, is a
lightweight compression library that aims at maxi-
mizing compression and decompression speed. As
such, and unlike other techniques, it does not employ
an entropy encoder like the Huffman Coding tech-
nique used in DEFLATE.

2zlib is available at http://www.zlib.net/
3The LZMA SDK used is available at http://www.7-
zip.org/sdk.html

4LZ4 is available at http://code.google.com/p/lz4/
5QuickLZ is freely available for non-commercial purposes
at http://quicklz.com/

6Snappy is available at https://code.google.com/p/snappy/.

3 BENCHMARKING
METHODOLOGY

Part of the motivation behind this work consists of
the fact that compression benchmarking tools usually
focus on either looking for the fastest technique, or for
the one that achieves the highest compression ratio, as
defined by:

R =
LU

LC
; (1)

where R is the compression ratio, LU is the size of
the uncompressed data, and LC is the size of the com-
pressed data, both usually measured in bytes.

When choosing among a collection of compres-
sion techniques, compression ratio is a metric of cap-
ital importance, since the better the ratio, the less in-
formation the robots have to send and receive to com-
plete their goal. However, the techniques’ compres-
sion and decompression speeds are also important; an
extremely slow, frequent compression may jeopardize
mission-critical computations. Thus, we cannot sim-
ply find the technique that maximizes one of these
measures; there is a need to define a new, more suit-
able performance metric, in order to find an accept-
able trade-off.

Therefore, we define:

E =
R

Tc +Td
; (2)

in which E is the technique’s temporal efficiency.
It is determined by dividing the compression ratio
achieved by the technique, R, by the total time needed
to compress and decompress the data, Tc and Td , re-
spectively. The purpose of this quantity is to pro-
vide an indication of how efficiently the technique at
hand uses its computational time. The algorithm that
achieves the highest temporal efficiency, while at the
same time achieving acceptable compression ratio, is
a strong candidate for integration in work that requires
an efficient communication solution, provided that its
absolute compression ratio is acceptable.

In order to test these techniques, the authors de-
veloped a benchmarking tool7 that, given a number of
compression techniques, runs them over occupancy
grids generated by SLAM algorithms, outputting all
the necessary data to a file. This tool allows us to
both apply the techniques to the very specific type of
data we wish to compress, as well as test them all in
the same controlled environment. It was designed to
be simple and easily extensible. As such, the addition
of a new technique to the benchmark should be trivial
for any programmer with basic experience.

7The tool is publicly available under the BSD license at
https://github.com/gondsm/mrgs compression benchmark.
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To account for the randomness in program execu-
tion and interprocess interference inherent to modern
computer operating systems, each algorithm was run
over the data 100 times, so that we could extract re-
sults that were as isolated as possible from momen-
tary phenomena, such as a processor usage peak, but
that reflected the performance we could expect to ob-
tain in real-world usage. Interprocess interference
could have been eliminated by running test process
in the highest priority. However, that does not con-
stitute a real-world use case, and that methodology
would provide results that could not be expected to
occur during normal usage of the techniques. Re-
sults include the average and standard deviation of the
compression and decompression times for each tech-
nique and dataset, as well as the compression ratio
achieved for each case. These results can be seen tex-
tually in Table 1, or graphically in Figs. 3 and 4. Each
technique was tested using their default, slowest and
fastest modes, except for QuickLZ and Snappy, which
only provide one mode of operation, and LZ4, which
only provides a fast (default) and a slow, high com-
pression mode.

All tests were run on an Intel Core i7 M620 CPU,
with 8 GB of RAM, under Ubuntu Linux 12.04.

3.1 Datasets

In order to test the effectiveness of compression algo-
rithms in treating typical occupancy grids, and given
the intention of studying, at least to some degree, how
each algorithm behaves depending on the dataset’s
size, five grids of different environments were chosen:
Intel’s Research Lab in Seattle; the ACES building,
in Austin; MIT’s CSAIL building and, finally, MIT’s
Killian Court, rendered in two different resolutions,
so that differing sizes were obtained. The datasets
are illustrated in Fig. 2. The occupancy grids we
present were obtained from raw sensor logs using the
GMapping8 (Grisetti et al., 2007) SLAM algorithm,
running on the ROS (Quigley et al., 2009) frame-
work. The logs themselves have been collected us-
ing real hardware by teams working at the aforemen-
tioned environments, used for benchmarking SLAM
techniques (Kümmerle et al., 2009), and later made
publicly available.9

8A description of the version of GMapping can be found at
http://wiki.ros.org/slam gmapping.

9The raw log data used to create these maps
is available at http://kaspar.informatik.uni-
freiburg.de/�slamEvaluation/datasets.php.

4 RESULTS AND DISCUSSION

Fig. 3 and Table 1 illustrate the obtained results. In
Fig. 3(a), we show the general trend in temporal ef-
ficiency for each technique as the size of the map
grows. The general tendency is for efficiency to de-
crease as the data increases in size. However, in
Fig. 3(b), we can observe that the compression ra-
tio achieved tends to grow with the data’s size. This
effect can be attributed to the fact that, as the map
grows, there are longer sequences of repetitive data,
such as large open or unknown areas. It can also be
explained, to a much smaller degree, by the fact that
every compression technique adds control informa-
tion to the compressed data, and that the size of this
control data tends to be less significant as the uncom-
pressed data grows. These figures lack error bars or
other uncertainty representations due to the small dis-
persion of results, illustrated in Table 1 by the small
values of standard deviation.

As expected, slower techniques generally achieve
higher compression ratios. However, our results show
that some techniques are indeed superior to others, in
both temporal efficiency and compression ratio. LZ4
has shown both a higher temporal efficiency and com-
pression ratio than that of QuickLZ and Snappy, mak-
ing it a clearly superior technique, in this case. How-
ever, LZ4 HC, LZ4’s slower mode of operation, is
an inferior technique, both in temporal efficiency and
ratio, when compared to LZMA and DEFLATE in
the compression of larger datasets. Its temporal per-
formance diminishes significantly with the growth in
map dimensions, with an insufficient increase in com-
pression ratio.

In applications where compression ratio is sec-
ondary relatively to speed, LZ4 is a strong candi-
date, and clearly the best among the techniques that
were tested. It strongly leans towards speed and away
from compression ratio, but offers acceptable ratios
(around 15 for smaller maps, reaching 50 in larger
ones) given its extremely fast operation. In other
words, for applications which rely on transmitting oc-
cupancy grids, a very significant reduction of data
flow can be achieved by employing this relatively
low-footprint technique, which makes it suitable for
use in real-time missions. As Fig. 3(a) shows, this
technique is, by far, the most efficient at utilizing re-
sources, achieving the best results in terms of tem-
poral efficiency among the techniques that we have
tested.

If further reduction in bandwidth is required, other
techniques offer better ratios, at the expense of com-
putational time. LZMA’s fast mode offers one of the
best ratios that we have observed, while still being ac-
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(a) Intel’s Research Lab, measuring 753,078 bytes uncom-
pressed.

(b) ACES Building, measuring 1,280,342 bytes uncom-
pressed.

(c) MIT CSAIL Building, measuring 1,929,232 bytes uncom-
pressed.

(d) MIT Killian Court, measuring 9,732,154 bytes
(low resolution rendering) and 49,561,658 bytes
(high resolution rendering) uncompressed.

Figure 2: A rendering of each dataset used in our experiments. These were obtained by performing SLAM over logged sensor
data.

ceptably fast. For the smallest dataset, this technique
took, on average, about 15ms for compression, and
achieved a ratio of 29.8. Depending on the applica-
tion, 15ms of processor time per compression may be
acceptable, given that this technique achieves a ratio
that is almost three times as large as LZ4’s, which
achieved a ratio of 11.7, as is visible on Table 1(a).

In Fig. 4, we explore the case of the exchange of
smaller maps, by averaging the temporal efficiency
and ratio for each technique when operating over the

smaller datasets. Smaller maps are commonly trans-
mitted between robots at the beginning of the mis-
sion, when there is still little information about the
environment. In these conditions, we note, as men-
tioned before, a generalized decrease in total com-
pression ratio, and a narrowing of the gap between
slow and fast techniques in terms of compression ra-
tio: all techniques produce results within the same
order of magnitude. However, the relationships be-
tween approaches in terms of temporal efficiency re-
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Figure 3: A graphical illustration of each technique’s performance on all datasets. Each of the dotted lines connects data
points for the same technique, so that trends become evident. Note the logarithmic scale.
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Figure 4: A graphical illustration of each technique’s performance on smaller datasets.
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Table 1: Results obtained by processing the three smallest datasets 100 times with each technique. sc and sd correspond
to the standard deviations of the compression and decompression times, respectively. T̄c and T̄d correspond to the average
compression and decompression times, respectively.

(a) Raw results obtained for the Intel Research Lab dataset.

Ratio T̄c (ms) sc T̄d (ms) sd

DEFLATE (zlib) 27.727 15.130 1.179 1.423 0.140
DEFLATE (zlib) Fast 18.474 4.503 0.736 1.388 0.241
DEFLATE (zlib) Slow 31.633 106.519 4.167 1.306 0.195
LZ4 11.741 0.452 0.064 0.410 0.064
LZ4 HC 22.850 89.312 3.721 0.241 0.028
LZMA 31.920 126.282 7.315 2.364 0.287
LZMA Fast 29.825 17.080 1.156 2.487 0.181
LZMA Slow 34.029 229.789 13.086 2.290 0.242
QuickLZ 10.519 1.222 0.153 0.742 0.069
Snappy 10.807 0.753 0.128 0.529 0.100

(b) Raw results obtained for the ACES Building dataset.

Ratio T̄c (ms) sc T̄d (ms) sd

LZ4 12.5734 0.737898 0.118167 0.656754 0.0954742
LZ4 HC 25.8623 129.498 9.9717 0.381131 0.0711197
DEFLATE (zlib) 30.4135 24.7584 1.49278 2.27353 0.329637
DEFLATE (zlib) Fast 19.573 8.26037 1.6616 2.41425 0.444267
DEFLATE (zlib) Slow 35.4023 165.532 5.24992 1.91064 0.341901
LZMA 34.815 187.78 10.3723 3.60015 0.352538
LZMA Fast 32.8633 27.4526 1.42182 4.04572 0.499422
LZMA Slow 37.7465 327.663 11.5554 3.62876 0.431443
QuickLZ 10.9759 2.11142 0.243054 1.29769 0.127622
Snappy 11.3352 1.20599 0.12735 0.841902 0.108266

(c) Raw results obtained for the MIT CSAIL Building dataset.

Ratio T̄c (ms) sc T̄d (ms) sd

DEFLATE (zlib) 43.274 27.927 1.203 3.370 0.172
DEFLATE (zlib) Fast 26.818 9.100 0.382 2.717 0.178
DEFLATE (zlib) Slow 49.205 146.207 1.760 3.027 0.069
LZ4 18.236 0.779 0.052 0.725 0.090
LZ4 HC 35.953 179.027 2.698 0.432 0.087
LZMA 48.763 200.306 11.911 4.142 0.302
LZMA Fast 45.522 33.280 0.448 4.304 0.105
LZMA Slow 53.088 342.213 8.815 4.019 0.261
QuickLZ 15.359 2.533 0.117 1.407 0.088
Snappy 13.387 1.250 0.059 1.008 0.048
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Table 2: Results obtained by processing the two largest datasets 100 times with each technique. sc and sd correspond
to the standard deviations of the compression and decompression times, respectively. T̄c and T̄d correspond to the average
compression and decompression times, respectively.

(a) Raw results obtained for the smallest MIT Killian Court dataset.

Ratio T̄c (ms) sc T̄d (ms) sd

LZ4 61.8855 15.0167 2.04569 15.9073 2.94617
LZ4 HC 102.05 3928.3 86.8325 12.4447 1.46376
DEFLATE (zlib) 149.383 614.592 24.0875 110.101 4.45021
DEFLATE (zlib) Fast 77.6953 242.236 21.732 65.1652 7.47955
DEFLATE (zlib) Slow 156.064 1375.26 50.3694 109.791 5.90444
LZMA 183.704 3685.39 150.48 75.4362 6.84588
LZMA Fast 165.082 776.456 20.6407 83.2567 6.06081
LZMA Slow 193.595 4995.91 386.814 63.4425 5.07394
QuickLZ 40.063 53.632 2.382 21.701 1.365
Snappy 18.400 17.986 0.799 23.335 1.080

(b) Raw results obtained for the largest MIT Killian Court dataset.

Ratio T̄c (ms) sc T̄d (ms) sd

DEFLATE (zlib) 94.044 111.906 1.738 18.610 0.492
DEFLATE (zlib) Fast 52.831 41.207 3.083 11.647 0.846
DEFLATE (zlib) Slow 103.676 316.500 5.208 17.499 0.717
LZ4 40.553 2.920 0.198 2.797 0.406
LZ4 HC 72.116 710.753 32.165 1.992 0.147
LZMA 110.622 663.896 15.645 13.595 0.527
LZMA Fast 102.493 141.536 1.216 14.580 0.316
LZMA Slow 121.472 1269.680 158.155 14.937 1.938
QuickLZ 29.856 14.027 2.274 5.774 0.612
Snappy 16.951 5.192 0.751 5.101 0.492

main much the same. Thus, for smaller data, faster
techniques appear to be a better option, since they
achieve results that are comparable to those of their
slower counterparts, at a much smaller cost in com-
putational resources.

Larger maps, such as our largest examples, are
very uncommonly transmitted during multi-robot
missions, and hence unworthy of a closer analysis.
Additionally, for these larger datasets, the multi-robot
SLAM technique employed may make use of delta
encoding techniques for transmission, transmitting
only, for example, the updated sections of the map.
In this case, we expect that the compression tech-
niques applied to the map sections have the same per-
formance as those applied to the smaller datasets in
this test, since they will effectively be compressing
smaller maps.

It is important to note that even the worse-

performing techniques have achieved significant com-
pression ratios, with a minimum ratio of about 10.
Consequently, by using compression, we can reduce
the total data communicated between robots during
a mapping mission by at least a factor of 10, which
shows the viability of compression as a solution for
the problem of exchanging occupancy grids in a
multi-robot system. In the context of the example we
presented at the beginning of section 2, this equates
to cutting our bandwidth requirements from 213KB/s
per robot, to a much more affordable 21.3KB/s per
robot, boosting our access point’s theoretical capacity
from 14 to 140 robots.
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5 CONCLUSION

In this paper, we have explored the issue of com-
munication optimization in the context of coopera-
tive robotics, specifically the application of general-
purpose lossless compression techniques to reduce
the volume of data transmitted in cooperative robotic
mapping missions. We have shown that compression
is a viable option for the reduction of required net-
work bandwidth in these scenarios, by defining and
employing a new metric for the comparison of com-
pression techniques, as well as the implementation of
a new benchmarking tool. Moreover, important re-
sults about the performance of different lossless com-
pression techniques in the context of multi-robot tasks
were obtained, which can support an informed deci-
sion on which technique should be used in this con-
text.

In the future, we plan to include and test one or
various of these techniques in a real-world SLAM ex-
periment, in order to gauge the impact of its use in the
bandwidth needed to complete the mission. It would
also be of interest to rerun these tests using datasets
closer in size, so that we can more closely predict how
the techniques’ performance evolve with the size of
the dataset. This may be a greater challenge than it
appears since datasets differ in more ways than their
size. A plausible way of working around this prob-
lem would be to expand the datasets using image pro-
cessing techniques, such as nearest-neighbor interpo-
lation, to isolate the dataset’s size as the only variable
characteristic between datasets.

It would also be interesting to investigate the influ-
ence of the application these techniques in the opera-
tion of Ad-Hoc networks, such as MANETs (Mobile
Ad Hoc Networks), since they can be used in Search
and Rescue operations (Rocha et al., 2013), a type
of operation that requires great communication effi-
ciency.

Additionally, the occupancy grids tested in this
work, as stated before, correspond to the simplest
form of occupancy grid: a simple matrix composed
of only three different values. Given this, it would be
very interesting to repeat these tests using the more
complex form of the occupancy grids, as it would give
us better insight into what we can expect from the ap-
plication of these techniques in real-world scenarios.

Finally, given that occupancy grids are not, by any
means, the only form of data exchanged during coop-
erative robotic missions, it would be interesting to ex-
plore the application of compression to other types of
bandwidth-heavy data that robots need to exchange,
such as the more complex occupancy grids described
in (Ferreira et al., 2012), possibly culminating in the

creation of a compression technique mainly intended
for the optimization of robotic communication.
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