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Abstract: When a data holder wants to share databases that contain personal attributes, individual privacy needs to be
considered. Existing anonymization techniques, such asl -diversity, remove identifiers and generalize quasi-
identifiers (QIDs) from the database to ensure that adversaries cannot specify each individual’s sensitive at-
tributes. Usually, the database is anonymized based on one-size-fits-all measures. Therefore, it is possible
that several QIDs that a data user focuses on are all generalized, and the anonymized database has no value
for the user. Moreover, if a database does not satisfy the eligibility requirement, we cannot anonymize it by
existing methods. In this paper, we propose a new technique forl -diversity, which keeps QIDs unchanged and
randomizes sensitive attributes of each individual so that data users can analyze it based on QIDs they focus
on and does not require the eligibility requirement. Through mathematical analysis and simulations, we will
prove that our proposed method forl -diversity can result in a better tradeoff between privacy and utility of the
anonymized database.

1 INTRODUCTION

In recent years, numerous organizations have begun
to provide services related to Cloud computing that
collect a great deal of personal information. This per-
sonal information can be shared with other organiza-
tions so that they can subsequently create new ser-
vices. However, the data holder should not publish
any information that identifies an individual’s sensi-
tive attributes.

A lot of research studies regarding anonymized
databases of personal information have been proposed
(e.g., (Samarati, 2001; LeFevre et al., 2008; Wu et al.,
2013)). Most of existing methods consider that the
data holder has a database of the formexplicit iden-
tifiers, quasi-identifiers (QIDs), sensitive attributes,
where explicitly identifiers are attributes that explicit
identify individuals (e.g., name and phone number),
QIDs are attributes that could be potentially combined
with public directories to identify individuals (e.g.,
zip code, age), and sensitive attributes are personal
attributes of private nature (e.g., disease) (Fung et al.,
2010).

The l -diversity technique (Machanavajjhala et al.,
2007), which enhancesk-anonymity (LeFevre et al.,
2006), is one of the major anonymization techniques.
This technique removes explicit identifiers and gen-
eralizes QIDs to ensure that the adversaries cannot

specify each individual’s sensitive values with con-
fidence greater than 1/l . For example, Table 1 shows
the original patient database that a hospital wants to
publish. Consider that Name is the explicit identifier,
Sex, Age, Address, and Job are the QIDs, and Dis-
ease is the sensitive attribute. Suppose that an adver-
sary knows that Becky is included in the database and
knows Becky’s QIDs. From the database, the adver-
sary can identify Becky’s sensitive value as Sty with
100% confidence, even if we remove all the Names
from Table 1.

Table 2 shows one result of thel -diversity tech-
nique wherel is set to 2. Even if the adversary
knows that Becky is included in Table 2 and knows
Becky’s QIDs, he cannot know whether Fever or Sty
is Becky’s disease. That is, he cannot identify Becky’s
sensitive value with greater than 50% (=1/2) confi-
dence. Table 3 is another result of thel -diversity tech-
nique. If Tables 2 and 3 are both published, the adver-
sary can identify Becky’s disease as Sty with 100%
confidence, so the data holder usually anonymizes Ta-
ble 1 once and publishes the anonymized table (i.e.,
either Table 2 or Table 3 only) to the all data users.

Therefore, the data holder should anonymize the
database based on one-size-fits-all measures. Sup-
pose that two data users, A and B, receive Table 2, and
suppose that data user A wants to know the difference
between male and female, while data user B wants to
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Table 1: Patient table.

Name Sex Age Address Job Disease
Alex M 41 13000 Artist Fever

Becky F 41 17025 Artist Sty
Carl M 50 13021 Writer Cancer

Diana F 51 14053 Nurse HIV
Edward M 68 15000 Writer Chill
Flora F 69 16022 Nurse HIV
Greg M 72 13001 Artist Cut

Hanna F 77 17001 Artist Cancer

Table 2: 2-diversity by existing method.

Sex Age Address Job Disease
* 41 13*-17* Artist Fever
* 41 13*-17* Artist Sty
* 50-51 13*-14* * Cancer
* 50-51 13*-14* * HIV
* 68-69 15*-16* * Chill
* 68-69 15*-16* * HIV
* 72-77 13*-17* Artist Cut
* 72-77 13*-17* Artist Cancer

Table 3: 2-diversity by existing method (2).

Sex Age Address Job Disease
M 41-72 13* Artist Fever
F 41-77 17* Artist Sty
M 50-68 13*-15* Writer Cancer
F 51-69 14*-16* Nurse HIV
M 50-68 13*-15* Writer Chill
F 51-69 14*-16* Nurse HIV
M 41-72 13* Artist Cut
F 41-77 17* Artist Cancer

Table 4: 2-diversity by proposed method.

Sex Age Address Job Disease
M 41 13000 Artist {Fever, Flu}
F 41 17025 Artist {Fever, Sty}
M 50 13021 Writer {Cold, Cancer}
F 51 14053 Nurse {HIV, Pus}
M 68 15000 Writer {Chill, Cut}
F 69 16022 Nurse {Cold, HIV}
M 72 13001 Artist {Cut, Fever}
F 77 17001 Artist {Cancer, Flu}

know the differences among age. Although data user
B may know the differences among age from Table
2, data user A cannot know any differences between
sexes because the values of sex are all generalized.
On the other hand, suppose that data users A and B
receive Table 3 rather than Table 2. In this case, data
user A can analyze Table 3, but data user B cannot an-
alyze it effectively because ages are too generalized.

In this paper, we deal with this specific problem.
Our proposed method keeps QIDs unchanged and
addsl − 1 dummy values into sensitive attributes in
order to satisfyl -diversity. The resulting anonymized
database is shown in Table 4. Because all QIDs
are not changed, all data users can analyze the
anonymized database in their preferred ways. We pro-
pose a protocol that estimates the original data dis-
tribution of sensitive values according to each data
user’s preferred QIDs from the anonymized database,
as well as an anonymization protocol for the data
holder. If the number of records in the table is large,
data users can analyze it with a high degree of accu-
racy by the proposed method.

It is worth noting that we need not protect QIDs
when we usek-anonymity or l -diversity as pri-
vacy models. Although QIDs of databases may be
anonymized as a result of anonymization, most of ma-
jor privacy models such ask-anonymity, l -diversity
and t-closeness offer no guarantee of anonymizing
QIDs because their aims are not to protect QIDs but
to protect sensitive attributes.

Moreover, one major limitation of existing tech-
niques for l -diversity is the eligibility requirement,

which requires that “at most|T|/l records ofT carry
the same sensitive value” where|T| represents the
number of records of an original databaseT (Xiao
et al., 2010). Our proposed method does not require
the eligibility requirement, therefore our method can
be applied to any databases whenl is less than the
number of distinct sensitive values.

The rest of this paper is organized as follows. Sec-
tion 2 presents the models of applications and attacks.
Section 3 defines privacy and utility as used in this
paper. Section 4 discusses the related methods. Sec-
tion 5 presents the design of our algorithm. The re-
sults of a mathematical analysis and our simulations
are presented in Section 6, and Section 7 concludes
the paper.

2 ASSUMPTIONS

2.1 Application Model

A data holder has a database that contains personal in-
formation. Such information consists of explicit iden-
tifiers, QIDs, and sensitive attributes as described in
Section 1. The database can contain non-sensitive at-
tributes that are not explicit identifiers, QIDs, or sen-
sitive attributes. We can publish these non-sensitive
attributes without them being anonymized if they are
important for data analysis.

We assume that the data holder wants to publish
the database for collaborating with data users. Be-
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Table 5: l -diversity does not protect any values of QIDs
when the original database satisfiesl -diversity (here,l=2).

Sex Age Address Job Disease
M 31 13000 Artist Fever
M 31 13000 Artist Sty
M 52 13021 Writer Cancer
M 52 13021 Writer HIV

cause of privacy concerns, the data holder wants to
anonymize the database in order to ensure that any
adversaries cannot identify each individual’s sensitive
attribute.

In this paper, we assume that the data user wants to
know what kinds of people tend to have certain sensi-
tive values. As a result, we might find that older men
are more likely to get lung cancer than young women
if the anonymized table contains age and sex as QIDs
(or non-sensitive attributes) and disease as a sensitive
attribute.

We assume that we must protect sensitive at-
tributes, but we do not need to protect QIDs. This
assumption is widely accepted in research studies re-
lated tok-anonymity,l -diversity, and so on. If there
are l records that have the same values of QIDs,
these records are not anonymized in any methods
for l -diversity. For example, if a data holder want
to anonymize Table 5, the values of QIDs are not
anonymized at all whenl=2.

If we want to protect some of the QIDs, then we
can treat them assensitive attributes.

2.2 Attack Model

We assume that the data holder is an honest entity, but
the data users may be malicious entities. Moreover,
we assume that the data users may collude with each
other to identify each individual’s sensitive attributes.

3 NOTATIONS AND
MEASUREMENTS

3.1 Notations

Let T and T∗ denote the original and anonymized
database respectively. LetN denote the number of
records ofT or T∗ and letr i and r∗i denote thei-th
record ofT andT∗, respectively.

S represents the domain of possible sensitive at-
tributes that can appear in the database andsi means
thei-th value ofS(i = 0, . . . , |S|−1). LetQ be the set
of QIDs that a data user wants to analyze and letQ(i)
be thei-th QID ofQ (i = 0, . . . , |Q|−1).

Let Q(i) denote the domain of possible values that
can appear inQ(i) and letq(i) j denote thej-th value
of Q(i).

For example,S is {Fever, Sty,. . .} in Table 1.Q
is {Sex}, Q(0) is Sex,Q(0) is {M, F} andq(0)0 is
M and q(0)1 is F if a data user wants to know the
difference between the sexes (male and female). In
this case, the data user might find that people who are
men have the highest risk of getting cancer.

For another example, if the data user wants to an-
alyze sensitive attributes based on the combination of
sexes and categories of age ([0-9], [10-19],. . ., [90-
99]), Q is {Sex, Age}, Q(0) is {M, F} andQ(1) is
{[0-9], . . ., [90-99]}. In this case, the data user might
find that men ages between 30-39 have the highest
risk of getting cancer.

The value of a sensitive attribute of a recordr
is represented byE(r). For example,E(r0) returns
Fever in Table 1. In a similar way,E(r∗0) returns
{Fever, Flu} in Table 4.

Let C denote all the combinations of the elements
of Q(0), . . . ,Q(|Q|−1):

C= Q(0)×Q(1)× . . .×Q(|Q|−1). (1)

Let ci denote thei-th element ofC (i = 0, . . . , |C| −
1). For example, if the data user wants to analyze
sensitive attributes based on sexes and categories of
age ([0-9],. . ., [90-99]), c0 is (M, [0-9]), c1 is (M,
[10-19]),. . ., c|C|−1 is (F, [90-99]).

3.2 Measurement of Privacy

Many existing papers usel -diversity as a privacy mea-
surement (Machanavajjhala et al., 2007; Xiao et al.,
2010; Cheong, 2012). Although there are several vari-
ations ofl -diversity, we use a simple interpretation.

Definition 1 (QID group): We denote a set of
records that has same values of all QIDs as a QID
group.

For example, the first and second records in Table
2 are a QID group because their values of QIDs are
the same (*, 41, 13*-17*, Artist).

Definition 2 (l-diversity): The anonymized ta-
ble T∗ satisfiesl -diversity if the relative frequency of
each of the sensitive values does not exceed 1/l for
each QID group ofT∗.

This definition ofl -diversity is also widely used,
such as in the cases of (Kenig and Tassa, 2011; Xiao
and Tao, 2006; Nergiz et al., 2013).

For example, all QID groups of Tables 2 and 3
have 2 records and 2 distinct sensitive values. There-
fore, these tables satisfy 2-diversity. Then, see Ta-
ble 4. Each QID group has only one record, but each
record has 2 distinct sensitive values. We consider
Table 4 also satisfies 2-diversity in this paper.
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3.3 Measurement of Utility

A data user estimates the distribution of sensitive at-
tributes for eachci (i = 0, . . . , |C|−1) as described in
Section 2. LetVi, j denote the number of records that
are categorized toci according to their QIDs and have
a sensitive attributesj in the original table. Also, let
V̂i, j denote the estimated number of values ofVi, j for
the data user.

Let Ni denote the number of records that are cat-
egorized toci according to their QIDs. We can use
the Mean Squared Errors (MSE) between̂Vi, j/Ni and
Vi, j/Ni to quantify the utility for categoryci :

σ2(i) =
1
|S|

|S|−1

∑
j=0

(
Vi, j

Ni
−

V̂i, j

Ni
)2 (2)

This utility measurement is widely used in many
studies (Xie et al., 2011; Huang and Du, 2008; Groat
et al., 2012).

4 RELATED WORK

Many algorithms fork-anonymity have been pro-
posed. The basic definition ofk-anonymity is as fol-
lows:

If one record in the table has some value QID,
at least k−1 other records also have the value QID
(Fung et al., 2010).

Due to the fact that finding an optimalk-
anonymity is NP-hard (Meyerson and Williams,
2004), many existing algorithms fork-anonymity
search for better anonymization through heuristic ap-
proaches.

Datafly (Sweeney, 2002) is a bottom-up greedy
approach and it generalizes QIDs until all combi-
nations of QIDs appear at leastk times. Mondrian
(LeFevre et al., 2006), which is an efficient top-down
greedy approach, is widely used in many other studies
as a base method.

Although k-anonymity can protect individual
identities, there are times when it cannot protect indi-
viduals’ sensitive attributes. For example, the fourth
and sixth rows in Table 3 are an equivalence class be-
cause their QIDs are all the same (F, 51-69, 14*-16*,
Nurse). Suppose that an adversary knows Diana’s
QIDs and she is included in Table 3. The adversary
cannot identify which row of the fourth and sixth rows
is Diana’s, but the adversary can identify Diana’s sen-
sitive attribute is HIV because the sensitive attributes
of both the rows are HIV.

l -diversity (Machanavajjhala et al., 2007) ensures
that the probability of identifying an individual’s sen-
sitive attribute is less than or equal to 1/l . There

are many research studies related tol -diversity (e.g.,
(Kabir et al., 2010; Cheong, 2012)).

Although many algorithms fork-anonymity orl -
diversity other than the research studies previously
mentioned have been proposed, most of all algorithms
keep sensitive attributes unchanged and generalize
QIDs. Changing QIDs leads to the problems men-
tioned in Section 1.

If all data users analyze the anonymized table in
the same way or if we believe that all data users do not
collude with each other for identifying an individual’s
sensitive attributes, then we can use workload-aware
anonymization techniques (LeFevre et al., 2008).
However, in the situation described in Section 2, we
need other anonymization techniques that do not rely
on those assumptions.

Xiao et al. (Xiao and Tao, 2006) and Sun et al.
(Sun et al., 2009) proposed an algorithm based the
Anatomy technique. Their algorithms publish two ta-
bles; one is a non-sensitive table that contains QIDs
without change and the other is a sensitive table.
By joining of the two tables, data users can analyze
them. Because the resulting table have many dummy
records (e.g., several times of the number of original
records), such anonymized data may become useless
for data analysis.

TP (Xiao et al., 2010) is the algorithm with
a non-trivial bound on information loss. The au-
thors compared TP with other techniques forl -
diversity (single-dimensional generalization method
TDS (Fung and Yu, 2005) and multi-dimensional gen-
eralization method Hilbert (Ghinita, 2007)) and they
proved that TP outperforms these single- or multi-
dimensional methods.

We compare Anatomy and TP with our proposed
method in Section 6.

To the best of our knowledge, all existing tech-
niques forl -diversity requires the eligibility require-
ment as described in Section 1. Therefore, if
more than|T|/l records of original databaseT have
the same sensitive value, we cannot anonymize the
database.

The privacy measure oft-closeness (Li et al.,
2007) is stronger thanl -diversity. It requires that the
distribution of sensitive values in each set of records
that have the same QID values should be close to the
distribution of the whole database.

Differential privacy (Dwork, 2006; Domingo-
Ferrer, 2013) makes user data anonymous by adding
noise to a dataset so that an attacker cannot deter-
mine whether or not a particular point of user data
is included. Although differential privacy represents
one of the strongest privacy models (Nikolov et al.,
2013), the data holder cannot publish the anonymized
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database. The data holder should manage the original
database and respond to each data user’s query every
time. Therefore, the data holder’s cost is high, data
users cannot analyze the anonymized database freely,
and it is vulnerable to malicious intrusion (Clifton and
Anandan, 2013). In this paper, we assume that we
need anonymization techniques other than differential
privacy because of these limitations.

5 PROPOSAL

Our proposed method consists of two steps; random-
ization for the data holder and reconstruction for the
data user.

For the data holder, we generate and addl −1 val-
ues randomly for a sensitive attribute of each record
in the original database.

For the data user, the user first determines which
QIDs should be analyzed in terms of the relationships
between the QIDs and the sensitive attributes. Then,
the number of records is estimated in each combina-
tion of the QIDs and the sensitive attribute. For exam-
ple, suppose that the domain of the sensitive attribute
contains HIV, Fever, and Cancer. Also, suppose that
the data user wants to analyze the difference between
male and female. In this case, we should estimate
each number of records in which a sensitive attribute
is HIV, Fever, and Cancer, and where Sex is Male and
Female, respectively.

5.1 Anonymization Protocol

We generate and add distinctl − 1 values randomly
for a sensitive attribute of each record in the original
database for the data holder. Algorithm 1 shows the
anonymization protocol.

The functionrand(S) returns an element ofSran-
domly. The data holder executes Algorithm 1 for each
record.

THEOREM 5.1. Algorithm 1 can always generate
l-diversity Table T∗ from an original Table T if|S| is
larger than or equal to l.

Proof. After conducting Algorithm 1 for TableT,
the algorithm generates an anonymized TableT∗ in
which each record hasl distinct sensitive values. Sup-
pose that a QID group hasδ (δ = 1, . . . ,N) records of
T∗. The possible maximum number of occurrences of
each sensitive value within theδ records isδ because
each sensitive value does not appear more than once
in a record. On the other hand, the total number of
sensitive values in the QID group isδ× l if we use

Algorithm 1: Anonymization protocol for recordr.

Input: Domain of a sensitive attributeS, Privacy
level l

Output: Set of anonymized sensitive values for
recordr

1: Creates empty setR
2: R⇐ R∪{E(r)}

/*Generates and adds dummy sensitive at-
tributes*/

3: while |R|< l do
4: R⇐ R∪{rand(S)}
5: end while
6: return R

Algorithm 1 because each record hasl sensitive val-
ues, thus, the possible maximum relative frequency
of each of the sensitive values in the QID group is
1/l .

5.2 Estimation Protocol

The data user who received the anonymized table es-
timates the distribution of sensitive attributes for each
ci (i = 0, . . . , |C|−1). We useVi, j to represent theac-
tual number of records, which are categorized toci

and have a sensitive attributesj . Let V̂i, j denote the
estimated Vi, j .

First, the data user counts how many records that
are categorizedci occur in the anonymized database,
that is,

Ni =
N−1

∑
h=0

G(r∗h,ci), whereG(r∗,c) =

{
1 (r∗′s QIDs are categorized toc)
0 (otherwise)

(3)

In a similar way, the data user counts how many
records that are categorized toci and have a set of
sensitive attributes that containsj in the anonymized
database:

Wi, j =
N−1

∑
h=0

H(r∗h,ci ,sj),where H(r∗,c,s) =

{
1 (r∗′s QIDs are categorized toc ands∈ E(r∗))

0 (otherwise)
(4)

If a record r has sj as its original sensitive at-
tribute, thensj is included inE(r∗) with probability
1 andsj2s.t., j 6= j2 is included inE(r∗) with proba-
bility

PE =
l −1
|S|−1

. (5)
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Let theŴi, j be the maximum likelihood estimate
of Wi, j . Then, we have

Ŵi, j = Ni − ∑
j2 6= j

(1−PE)V̂i, j2. (6)

The data user constructs a linear system of equa-
tions in |S| variables ofV̂i, j ( j = 0, . . . , |S| − 1) from
Equation 6 for eachci . Here, we set the value ofWi, j

calculated fromT∗ by Equation 4 toŴi, j in Equa-
tion 6. By solving the linear system of equations,
the data user getŝVi, j for eachi = 0, . . . , |C| − 1 and
j = 0, . . . , |S| − 1. Each value of̂Vi, j is an unbiased
maximum likelihood estimate ofVi, j .

We show this estimation protocol in Algorithm 2.
A data user executes this algorithm for eachci (i =
0, . . . , |C|−1) based on his ownC.

Algorithm 2: Server protocol forci .

Input: Anonymized databaseT∗, Domain of a sensi-
tive attributeS

Output: Distribution of sensitive attributes inci
1: Creates ArrayW, V̂

/*CalculatesNi*/
2: Ni ⇐ result calculated by Eq. 3

/*Calculates eachWi, j*/
3: for j = 0, . . . , |S|−1 do
4: Wi, j ⇐ result calculated by Eq. 4
5: end for

/*CalculatesPE*/
6: PE ⇐ result calculated by Eq. 5

/*Creates and solves the linear system of equa-
tions*/

7: Creates Eq. 6 for allj = 0, . . . , |S|−1
8: for j = 0, . . . , |S|−1 do
9: V̂i, j ⇐ each result calculated by the linear sys-

tem of equations
10: end for
11: return V̂i, j ( j = 0, . . . , |S|−1)

5.3 Expectation of MSE

The data user should understand the expectation of the
MSE between the estimated distribution and the origi-
nal distribution of sensitive attributes in each category
ci (i = 0, . . . , |C| − 1) for valuable data analysis. We
propose the calculation method even if the data user
does not have the original database.

From Equation 2, the expected value of MSE for
a categoryci , i.e.,E[σ2], is calculated by

E[σ2] =
1
|S|

|S|−1

∑
j=0

E

[
(
Vi, j

Ni
−

V̂i, j

Ni
)2

]
(7)

BecausêVi, j is the unbiased estimator ofVi, j , we
haveE[V̂i, j ] = Vi, j . Therefore,E[(Vi, j − V̂i, j)

2] repre-
sents the variance of̂Vi, j . LetVar(V̂i, j) be the variance
V̂i, j . The expected value ofσ2 is calculated by

E[σ2] =
1

N2
i

1
|S|

|S|−1

∑
j=0

Var(V̂i, j). (8)

The simultaneous equations created by Equation
6 for all j are the same as the following equation by
deformation.

M ·~Vτ = ~Wτ,

where M =




0 1−PE · · · 1−PE
1−PE 0 · · · 1−PE

...
...

...
...

1−PE 1−PE · · · 0


 ,

~V = (V̂i,0,V̂i,1, . . . ,V̂i,|S|−1),

~W = (Ni −Wi,0,Ni −Wi,1, . . . ,Ni −Wi,|S|−1).

(9)

Therefore, we have

~Vτ = M−1 · ~Wτ. (10)

In general, ifX andY are random variables anda
andb are constant, then we have

Var(aX+bY) = a2Var(X)+b2Var(Y)+2abCov(X,Y), (11)

where Cov(X,Y) represents the covariance be-
tweenX andY. Let M−1

j1, j2
denote thej1-th row and

j2-th column element of the inverse matrix ofM.
Because we havêVi, j1 = ∑ j2 M−1

j1, j2
(Ni −Wi, j2) from

Equation 10, we get from Equation 11,

Var(V̂i, j1) = ∑
j2

(M−1
j1, j2

)2Var(Ni−Wi, j2)

+ ∑
j2, j3

( j2 6= j3)

M−1
j1, j2

M−1
j1, j3

Cov(Ni−Wi, j2,Ni−Wi, j3).
(12)

Let Pj denote the probability that an arbitraryE(r∗)
containssj , letPj2, j3 denote the probability that it con-
tainssj2 andsj3, let Pj2, j3

denote the probability that
it containssj2 but does not containsj3, and letPj2, j3
denote the probability that it containssj3 but does not
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containsj2. We get

Var(Ni −Wi, j2) = E[W2
i, j2]−E[Wi, j2]

2

=
Ni

∑
h=0

Ph
j2(1−Pj2)

Ni−h
NiCh ·h

2− (NPj2)
2

= NiPj2(1−Pj2),

Cov(Ni−Wi, j2,Ni−Wi, j3) =

E[Wi, j2Wi, j3]−E[Wi, j2]E[Wi, j3]

=
Ni

∑
h=0

Ni−h

∑
t=0

Ni−h−t

∑
u=0

[
Ph

j2, j3Pt
j2, j3

Pu
j2, j3

· (1−Pj2, j3 −Pj2, j3
−Pj2, j3

)Ni−h−t−u

·NiCh ·Ni−hCt ·Ni−h−tCu · (h+ t)(h+u)
]
−NiPj2NiPj3

= Ni(Pj2, j3 +(Pj2, j3 +Pj2, j3
)(Pj2, j3 +Pj2, j3

)(Ni −1))

−NiPj2NiPj3
(13)

If we assume that eachPj is the same and it is
independent of each other, we get

Pj2 = Pj3 =
l
|S|

Pj2, j3 =
l
|S|

·
l −1
|S|−1

Pj2, j3
= Pj2, j3

=
l
|S|

· (1−
l −1
|S|−1

)

(14)

We get from Equations 8, 12, 13 and 14

E[σ2] =
1
Ni

[
l
|S|

(1−
l
|S|

)∑
j2

(M−1
j1, j2

)2

−
l(|S|− l)

(|S|−1)|S|2
· ∑

j2, j3, j2 6= j3

M−1
j1, j2

M−1
j1, j3

]
.

(15)

The inverse matrix ofM is represented by

M−1=
1

|S|−l




2−|S| 1 . . .
1 2−|S| . . .
...

...
. . .


 . (16)

Therefore, we get

∑
j2

(M−1
j1, j2

)2 =

(
1

|S|−l

)2{
(2−|S|)2+ |S|−1

}
,

(17)
and

∑
j2, j3, j2 6= j3

M−1
j1, j2M

−1
j1, j3

=

(
1

|S|−l

)2

· {2(2−|S|)(|S|−1)+(|S|−1)(|S|−2)}

.

(18)

As a result, from equations 15, 17, and 18, we get
the expected MSE between the original and estimated
distributions of sensitive attributes inci ;

E[σ2]=
l(|S|−1)2

Ni(|S|− l)|S|2
. (19)

5.4 Analysis

5.4.1 Prerequisite for Anonymization

Our proposed method does not require the eligibility
requirement because our method does not generalize
any QIDs nor insert dummy records. Let|S| denote
the number of kinds of sensitive values. Ifl ≤ |S|, we
can anonymize any databases forl -diversity because
we can addl −1 sensitive values to each user’s sensi-
tive attribute. Note that settingl > |S| is meaningless
in terms of the definition ofl -diversity.

5.4.2 Cost Analysis

The time complexity of the anonymization protocol at
the data holder isO(l). This protocol is computation-
ally simple as we know from Algorithm 1.

Solving the linear system of equations with|S| di-
mensions is the most expensive step in the estima-
tion protocol. We can solve a linear system of equa-
tions by solving a|S|× |S| matrix equation. The time
complexity of solving a|S| × |S| matrix equation is
O(g|S|2), whereg is a parameter of the number of re-
cursive iterations if we use the Gauss-Seidel method.
Since we solved the linear system of equations for
each categoryc, the resulting time complexity is rep-
resented byO(g|S|2|C|).

6 EVALUATION

6.1 Mathematical Analysis and
Simulations of Synthetic Data

Figure 1 shows the results of mathematical analysis.
We assume that we haveN records categorized toc
that are one of the combinations of elements of QIDs
that a data user wants to analyze. In this subsection,
we calculate MSE by Equation 2 between the distri-
bution of original sensitive attributes and those of es-
timated sensitive attributes in the categoryc.

In the first evaluation, we set the number of
recordsN to 1,000 andl to 5. Figure 1(a) represents
the results of the MSE. We know from Fig. 1(a) that
the MSE tends to be decreasing with an increase of
|S|.
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Figure 1: Results of mathematical analysis.

Then, we calculate the MSE by changing the pri-
vacy levell . The results are shown in Fig. 1(b). We
changedl from 2 to 18 based on the settings of many
existing studies (Yao et al., 2012; Nergiz et al., 2013;
Hu et al., 2010). In this evaluation, we set the num-
ber of recordsN to 1,000 and the number of possible
sensitive attributes|S| to 20 and 100. From the fig-
ure, we know that the MSE of our proposed method
increases by increasingl . If we set l to near |S|,
the MSE increases exponentially, although the MSE
keeps a small value ifl is much less than|S|. Never-
theless, we show that our proposed method can result
in a small MSE even if we setl to very near|S| (i.e.,
|S| − 1) by simulations of a real data set in the next
subsection.

Next, we conducted an experiment to analyze the
effects of changing the number of recordsN. Figure
1(c) shows the results of this. In this evaluation, we
setl to 5 and|S| to 20. We know that the MSE reduced
relative toN.

Finally, we conducted simulations by setting pa-
rameters (|S|, l , andN) to the same values in the math-
ematical analysis described above. The underlying
distributions of sensitive attributes were set to Uni-
form distribution, Gaussian distribution, and Poisson
distribution. In all simulations, the results are almost
the same as that of the mathematical analysis.

6.2 Real Data Set Evaluation Results

We evaluated the MSE by using real data sets, which
are OCC, SAL and Adult. OCC and SAL are obtained
from (Minnesota Population Center, ). Many existing
studies such as (Xiao et al., 2010) and (Xiao and Tao,
2006) use this data sets. OCC has an attributeOccu-
pationas a sensitive attribute and has attributesAge,
Gender, Marital Status, Race, Birth Place, Education,
Work Classas QIDs. SAL has an attributeIncome
as a sensitive attribute and has the same QIDs as in
OCC. The number of distinct values of each attribute
is shown in Table 6.

We create 7 sets of database, OCC-1, OCC-2,. . .,
OCC-7 from OCC. Each database OCC-d has the first
d QIDs in Table 6 and a sensitive attributeOccupa-
tion. For example, OCC-3 hasAge, Gender, Mari-
tal Statusas QIDs andOccupationas a sensitive at-
tribute. Similarly, we also create 7 sets of database
SAL-d (d = 1, . . . ,7) from SAL.

The Adult data set consists of 15 attributes (e.g.,
Age, Sex, Race, Relationshipshown in Table 7) and
has 45,222 records after the records with unknown
values are eliminated. Adult data set (UCI Machine
Learning Repository, ) used in many studies on pri-
vacy (Machanavajjhala et al., 2007; Sun et al., 2009).
Wet create 15 sets of database, Adult(1), Adult(2),. . .,
Adult(15) from Adult. Each database Adult(d) has the
d’th attribute in Table 7 as a sensitive attribute and has
other attributes as QIDs. For example, Adult-2 has
Work Classas a sensitive attribute and hasAge, Final
Weight, Education,. . . as QIDs.

Following (Xiao and Tao, 2006), we consider
a query involvesqd random QIDsA1, . . . ,Aqd, and
the sensitive attribute, whereqd represents thequery
dimensionalityparameter. For example, when the
database is SAL-4 andqd=3, {A1, A2, A3} is a ran-
dom 3 sized subset of{Age, Gender, Marital Status,
Race}. We assume that data users want to know the
number of persons whose attributeAi (i = 1, . . . ,qd) is
the specific value. Therefore, we create random val-
ues for eachAi as the specific values in each query.
Let bi denote the size of the random values for at-
tributeAi . Following (Xiao and Tao, 2006), the value
of bi is calculated by theexpected query selectivity s:

bi = ⌈|Ai | ·s
1/(qd+1)⌉ (20)

where|Ai | represents the number of distinct values of
Ai in the original database.

We compared our method with Anatomy and TP,
which were described in Section 4. All experiments
were conducted on an Intel Xeon CPU E5-2687W v2
@ 3.40GHz 3.40GHz personal computer with 12 GB
of RAM.
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Figure 2: MSE vs. query dimensionalityqd.
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We setl to 10,s to 0.07, andqd to 3 as a default
value. In each simulation, we generated 1,000 random
queries based onqd and Equation 20, and calculate
MSEs based on Equation 2.

In the first simulation with OCC and SAL, we con-
ducted an analysis to determine how the number of
QIDs andqd affect the MSE. We changed the number
of QIDsd from 3 to 7 and changedqd from 1 tod−1.
Figure 2 shows the results. Figures 2(a), 2(c) and 2(e)
are the results of OCC, and Figs. 2(b), 2(d) and 2(f)
are the results of SAL. When the number of QIDsd
is 3, the MSEs of our proposed method and TP are
almost the same. On the other hand, in the results of
other settings, the MSEs of our proposed method is
much fewer than other methods.

In the next simulation, we changedl from 5 to 15.
Figure 3 shows the results. The value ofl is large,
the MSEs are also large. However, we know from the
Figs. 3(a) and 3(b) that our proposed method has the
smallest MSE among the three methods.

Then, we changeds from 0.4 to 1.0 and calculated
the MSEs in each setting. The results are shown in
Fig 4. The MSEs decreases assgrows higher. This is
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Figure 4: MSE vs. selectivitys.
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Figure 5: Result overview of Adult dataset.

because the number of target records of the databases
becomes large whens is large.

In the simulations with Adult(1), Adult(2),. . .,
Adult(15), we changedl from 2 to 10 in each sim-
ulation. TP and Anatomy could not anonymize
the database in several simulations because of the
eligibility requirement. The ratio of successful
anonymization is shown in Fig. 5(a). Although
our proposed method (and all existing methods forl -
diversity) cannot anonymize if the number of distinct
sensitive attributes is less thanl , our proposed method
does not require the eligibility requirement.

Figure 5(b) shows the average MSEs of all simu-
lations of Adult(1),. . ., Adult(15). The figure helped
us to determine that our method could realize fewer
MSE.

In the following evaluation, we used an attribute
of “relationship” as the sensitive attribute.S is
{Wife, Hasband, Own-child, Unmarried, Not-in-
family, Other-relative}.

We used an attribute of Sex as the QID, that the
data user wants to analyze. That is,Q is {Sex} and
Q(0) is {Male, Female}. Figure 6(a) shows the orig-
inal distributions ofS in Male and Female, respec-
tively.

Figures 6(b), 6(c), and 6(d) present the estimated
results of Proposal, TP, and Anatomy, respectively.
We know from the figures that our proposed method
can estimate the true distribution ofS for Male and
Female with the highest precision.

Finally, we measured the execution time of
anonymization and estimation for the Adult dataset.
In the proposed method, it took approximately 4 sec-
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Table 6: Number of distinct values of OCC and SAL.

Age Gender Marital Status Race Birth Place Education Work Class Occupation Income
80 2 6 9 124 24 9 50 50

Table 7: Number of distinct values of Adult data set.

Age Work Class Final Weight Education Education-num Marital Status Occupation Relationship
74 7 26741 16 16 7 14 6

Race Gender Capital Gain Capital Loss Hours Per Week Country Salary Class
5 2 121 97 96 41 2
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Figure 6: Relationship vs. sex inl = 2.

onds. From this result, we know that our proposed
method is a very efficient technique in terms of exe-
cution time.

7 CONCLUSION

An anonymization technique ofl -diversity can
achieve a privacy-preserving model where a data
holder can share their data with other data users. Ex-
isting techniques generalize QIDs from the database
to ensure that adversaries cannot specify each individ-
ual’s sensitive attribute. However, it is possible that
several QIDs that a data user focuses on are all gener-
alized and the anonymized database has no value for
the data user.

In this paper, we propose a new technique forl -
diversity, which keeps QIDs unchanged and random-
izes sensitive attributes of each individual so that data
users can analyze it based on QIDs that they focus on.
We also proposed an estimation protocol of the orig-
inal distribution of sensitive attributes for data users
according to their preferred QIDs, and, we proposed
the calculation method for the expected MSE between
the original and estimated distribution of sensitive
attributes. Moreover, our method does not require
the eligibility requirement, therefore, our method can
be applied to any databases whenl is less than the
number of distinct sensitive values. By mathemati-
cal analysis and simulations, we prove that our pro-
posed method can result in a better tradeoff between
privacy and utility of anonymized databases than ex-
isting studies.

Future work will include the evaluation of other
relevant data sets. We also plan to extend our ap-
proach to other privacy measures such ast-closeness.
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