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Abstract: To prevent falls in the elderly, gait measurements such as several-meters walking test and gait trainings are 
carried out in community health activities. To evaluate the risk of falling of the participant, it is necessary to 
measure foot contact times and positions so that the stride length of each leg and the walking speed can be 
used as evaluation parameters. However, the conventional measurement systems are difficult to install for 
use in community health activities because of their scale, cost and constraints of the measurement range. In 
this study, we propose a novel gait measurement system which uses an autonomous mobile robot with laser 
range sensor (LRS) for a long-distance walking test in a real living space regardless of detection range of 
sensor. The robot sequentially estimates its own pose and acquires the position of both legs of the 
participant. The robot leads the participant from the start to the goal of the walking test while maintaining a 
certain distance from the participant. Then, the foot contact times and the positions are calculated by 
analyzing estimated position and speed of each leg. From the experimental results, it was confirmed that the 
proposed robot could acquire the foot contact times and positions. 

1 INTRODUCTION 

With our society rapidly aging, there is a worry that 
the burden on families who have members in need of 
nursing care will increase. Falling is one of the main 
factors that cause elderly people to require nursing 
care (WHO, 2008), and one-third of community-
dwelling individuals aged over 75 years will 
experience at least one fall a year (Tinetti, et al., 
1988).  

To prevent falls in the elderly, gait measurements 
and trainings are carried out in community health 
activities. As shown in Figure 1 (a), one of the 
representative gait measurement to evaluate motor 
function is a several-meters walking test. In addition, 
it has been reported that elderly people at high risk 
of falling decrease a dual-task performance 
including not only motor function but also cognitive 
function (Melzer and Oddsson, 2004), (Yamada, et 
al., 2011). As shown in Figure 1 (b), to enhance not 
only motor function but also cognitive function, gait 
trainings where the participant steps on the target 
square following instructions displayed on a screen 
have been proposed (Schoene, et al., 2013), 

(Yamada, et al., 2012). To evaluate the risk of 
falling of the participant, it is necessary to measure 
foot contact times and positions so that the stride 
length of each leg and the walking speed can be used 
as evaluation parameters. 

Generally, force plates (Melze, et al., 2007) or 
three-dimensional motion analysis devices (Davis, et 
al., 1991) have been used in gait analysis. However, 
it  is   difficult  to  install   these  devices  for   use  in 

(a) 10 m walking test to 
evaluate motor function 
(Kakamigahara, 2007) 

(b) Home-based step training 
to enhance dual-task 
performance (Schoene, et al., 
2013) 

Figure 1: Example of gait measurements and trainings in 
community health activities. 
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community health activities because of their scale 
and cost. Consequently, measurements during 
community health activities are often carried out by 
observation using a stopwatch, making it difficult to 
measure foot contact times and positions. Therefore, 
a low-cost, easy-to-use gait measurement system is 
required. Previously, we proposed gait measurement 
systems using a laser range sensor (LRS) 
(Matsumura, et al., 2013), (Yorozu and Takahashi, 
2014). However, a system with a stationary LRS 
cannot be used for long-distance walking tests 
because its measurement range is limited by the 
detection range of the LRS. 

To deal with these problems, we propose a novel 
gait measurement system which uses an autonomous 
mobile robot for a long-distance walking test in a 
real living space. Figure 2 shows an image of the 
proposed gait measurement robot. The robot 
sequentially estimates its own pose (localization) 
and acquires the position of both legs of the 
participant based on the distance data from the 
sensors. The robot leads the participant from the 
start to the goal of the walking test while 
maintaining a certain distance from the participant. 
Then, foot contact times and positions are calculated 
by analyzing the estimated position and speed of 
each leg. By maintaining a certain distance from the 
participant, the robot can make measurements for 
the long-distance walking test regardless of the 
detection range of the sensor. In addition, as shown 
in Figure 2, by leading the participant, the robot can 
provide instructions to the participant on how to 
make the movement, and we expect that the robot 
will also be able to evaluate not only motor function 
but also cognitive function of the participant from 
the response such as reaction time to the instructions. 

In this paper, to verify the accuracy of the foot 
contact times and positions measured by the 
proposed robot, straight walking tests with young 
people were carried out. The foot contact times and 
positions acquired by the proposed system were 
compared with the result measured using a three-
dimensional motion analysis system (VICON). 

2 CONCEPTS 

The proposed gait measurement robot sequentially 
process localization and acquires leg positions from 
sensor data and command speed determination to 
maintain a certain distance from the participant 
based on the estimated its own pose and leg 
positions. To define the field for the walking test and 
to estimate its own pose during the walking test,  the 

 

Figure 2: Image of the proposed gait measurement robot. 

robot builds a map of the field based on 
simultaneous localization and mapping (SLAM) 
(Thrun, et al., 2005) before the walking test. In 
environment recognition during movement, it is 
desirable to be able to acquire high accuracy 
distance data over a wide range. With this in mind, 
LRSs are generally used in autonomous mobile 
robots. In addition, a method for calculating the leg 
positions based on the characteristic leg patterns 
from the LRS scan data has been proposed (Bellotto 
and Hu, 2009). A method to acquire the posture of 
the pedestrian based on the RGB data from a camera 
or RGB-Depth data from a KINECT has been 
proposed (Shotton, et al., 2011), (Ratsamee, et al., 
2012). In this paper, because we intend to track both 
legs and measure the foot contact times and 
positions, LRSs that can obtain distance data over a 
wide range by a single unit are used to recognize the 
environment for localization and to acquire the leg 
positions. In future, when we need to measure other 
walking parameters, we will implement sensor 
fusion with other sensors to match the measurement 
items. 

The robot is required a smooth movement 
according to the participant’s motion. Additionaly, 
the robot is also required to move while facing the 
participant screen in order to give instructions to the 
participant. To realize such movement, an 
omnidirectional drive system that can control 
translational and rotational motion simultaneously is 
equiped and is designed to be able to put out an 
average of human walking speed. 

Moreover, it has been reported that elderly 
people at high risk of falling tend to look close to 
their body (e.g., look at their feet) and find it 
difficult to recognize the surrounding environment 
during walking (Yamada, et al., 2012). To allow 
them to recognize the surrounding environment by 
keeping their gaze in front, the robot is designed to 
lead the participant while maintaining a 1.5 m 
distance from them. 
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3 GAIT MEASUREMENT ROBOT 

3.1 System Configuration 

Figure 3 shows the appearance of the proposed gait 
measurement robot. The robot is 0.26 m height, 0.40 
m diameter and its weight is 11 kg. Two LRSs are 
equipped in front and back of the robot for 
recognition of the surrounding environment and gait 
measurement. Table 1 shows the specification of the 
LRS. In addition, the robot has an omnidirectional 
drive system composed by four wheels and the 
maximum speed of the robot is 2.5 m/s that is faster 
than the average of human walking speed (1.4 m/s). 
The wheel rotation data is able to be obtained by 
encoder.  

Figure 4 shows the overview of the process of 
the gait measurement robot system. As shown in 
Figure 5, we define two coordinate systems. One is 

field coordinate system  , ,Σ x y   and the other is 

robot coordinate system  , ,Σ x y     , where the 

symbol dash indicates the robot coordinate.  
As shown in Figure 4 (a), if the robot does not 

have a map of the walking test field, the robot builds 
a map by SLAM and determines the start and goal 
positions. In this study, the robot builds a two-
dimensional occupancy grid map using the front 
LRS scan data. 

In the gait measurement process shown in Figure 
4 (b), the robot estimates its own pose in the field 
coordinate using the front LRS scan data and the 
map built in advance. In addition, the robot detects 
legs in the robot coordinate using the back LRS scan 
data and estimates the position and velocity of both 
legs in the field coordinate using the Kalman filter 
with the estimated own pose. Then, velocity 
command of the robot is successively determined 
with the artificial potential method based on the 
estimated robot pose and positions of the legs and 
the goal until the participant reaches the goal 
position. When the participant reaches the goal, the 
robot will stop and calculate the foot contact times 
and positions based on the acquired position and 
velocity of the legs. 

3.2 Localization with Occupancy Grid 
Map 

In the localization shown in Figure 4, the robot 
estimates its own pose based on the wheel rotation 
data of the encoders, LRS scan data and two-
dimensional occupancy grid map. The occupancy 

grid map is capable of probabilistic representation 
and each cell has an existence probability of the 

object.  Map
kbel p is the occupancy of the cell at the 

position  Tx yp .  Map
kbel p  is given depending  

 

Figure 3: Appearance of the gait measurement robot. 

Table 1: Specification of LRS (URG-04-LX-UG01, 
HOKUYO AUTOMATIC CO., LTD.). 

Detection range 0.02 to 5.6 m, 240 deg 

Accuracy 
0.06 to 1.0 m: ± 0.03 m 
1.0 to 4.0 m: ± 3% of measurement 

Angular resolution 0.36 deg (360 deg/1024) 
Scan time t  0.10 s/scan 

 

(a) Mapping (b) Gait measurement 

Figure 4: Overview of the process of the gait measurement 
robot system. 
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Figure 5: Coordinate systems of the robot and the field. 

on the cell state as follows: 
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We set the cell size 0.03 m to estimate robot pose 
with a high accuracy. 

3.2.1 Localization 

As shown in Figure 4, the robot estimates its own 
pose using the sampling poses and those of 
likelihood calculated with the LRS scan data and the 
map in existence.  

First, the sampling poses of the robot 
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 (2)

We set the parameters as , , 0, 1, 2, 3       , 

, 0.03th thx y  (= cell size) and 60th  .  

Then, the likelihood  , ,     of the sampling 

pose  , ,Robot
k   p  is calculated as follows: 

 
  
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N
lMap
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N
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 p
, 

(3) 

where N is the number of LRS scan data which 

detects an object and  , ,nl
k   p  is the position of 

the object detected by the n-th LRS scan data nl  in 

the field coordinate.  
Finally, the estimated robot pose 

TRobot Robot Robot Robot
k k k kx y    p at the time k is 

determined as the sampling pose of maximum 
likelihood. 

3.2.2 Map Update 

In building a field map process shown in Figure 4 
(a), the map is updated based on the probabilistic 
model of the LRS scan data and the estimated robot 
pose. 

The object existence probabilistic model of the  
i-th LRS scan data from the center of the LRS to the 
object detection distance il  is as follows (Yamaura, 

et al., 2005): 

 2
1 / 0

( ) 1

0

i

i i
l

k i

r l r l

bel r r l

else

   


  



, (4)

where r  is the distance from the center of the LRS. 
Then, the occupancy of the cell at the position p  is 

updated with the following equation: 

     1 ˆMap Map LRS
k k kbel bel bel p p p , (5)

where ̂  is the likelihood of the estimated robot 

pose and  LRS
kbel p  is the object existence 

probability of the LRS translated to the field 
coordinate considering the estimated robot pose. 

3.3 Gait Measurement with LRS 

As shown in Figure 4 (b), the robot detects legs in 
the robot coordinate using the back LRS scan data 
and estimates the position and velocity of both legs 
in the field coordinate using the Kalman filter with 
the estimated own pose. After the participant reaches 
the goal, the robot will stop and calculate the foot 
contact times and positions based on the acquired 
position and velocity of the legs. 

3.3.1 Leg Detection 

Leg positions at shin height are able to be calculated 
by the characteristic LRS scan data pattern (Bellotto 
and Hu, 2009). As shown in Figure 6, we classified 

x

y

O


x

y

O

 

Field coordinate Robot coordinate
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the legs into three leg patterns: LA (two Legs Apart), 
FS (Forward Straddle) and SL (Single Leg).  

First, to detect the three leg patterns, the vertical 
edges shown in Figure 6 as a symbol “ o ” were 
extracted from LRS scan data using following 
equation: 

1 0.1i il l   , (6)

where il  is the i-th scan data from the right of an 

LRS. Moreover, the detected edges are classified 
into two type: left edge when 1i il l   and right edge 

when 1i il l  . 

In classifying the legs into the three leg patterns, 
we define  a,  b  and  c  which  are,  respectively  the 

  
(a) LA (b) FS (c) SL 

Figure 6: Leg patterns extracted from LRS scan data. 

thresholds of, the leg width, the maximum step 
length and the width of the two legs together. Then, 
the leg pattern was detected by using three leg 
parameters and the combination of the arrangement 
of the edges. We set these thresholds as 
0.01 0.20a  , 0.10 1.0b   and 0.20 0.40c  . 
Finally, left and right leg positions in the robot 
coordinate shown in Figure 6 as a symbol “  ” are 
calculated based on the leg patterns.  

3.3.2 Leg Tracking with Kalman Filter 

There are noise of the observed leg positions and the 
localization error. Therefore, the robot estimates the 
leg position and velocity in the field coordinate 
using Kalman filter with the observed leg position in 
the robot coordinate and estimated the robot pose in 
the field coordinate (Kakinuma, et al., 2011). 

If the sampling time t  (0.10 s in our robot) is 

sufficiently shorter than the gait cycle time, the 
discrete time model of leg motion is as follows: 

 1 1 ,f f f
k k k f L R    x Ax B x , (7)

where

2

2

1 0 0 2 0

0 1 0 0 2
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0 0 1 0 0

0 0 0 1 0

t t

t t

t

t

   
      
   
  

    

A B , 

and 
Tf f f f f

k k k k kx y x y   x   .  , :f f f
k k kx y  p  is 

the estimated position and  , :f f f
k k kx y  v   is the 

estimated velocity of the leg in the field coordinate (
,f L R indicates the Left and Right leg 

respectively). k k
Tx yf

k n n    x    is the  acceleration 

 

Figure 7: Gait speed diagram during walking. 

disturbance vector, which is assumed to be zero 
mean and has a white noise sequence with variance 
Q . In experiments, we set the variance as 

2 2diag (1.4) , (1.4)   Q . The leg position 

Tf f f
k k kx y     y  in the robot coordinate is given 

from the leg detection. The measurement model is 
defined using the estimated robot position 

TRobot Robot Robot
k k kx y   y at the time k in the field 

coordinate as follows: 

f f Robot f
k k k k
     y Cx C y y , (8)
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estimated yaw angle of the robot at the time k. 
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k n n      y  is the measurement noise, 

which is assumed to be zero mean and has a white 
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noise sequence with variance R . In our 
experiments, we set the variance as 

2 2diag (0.03) , (0.03)   R  considering the 

measurement accuracy of the LRS. 

3.3.3 Walking Parameter Extraction 

After the participant reaches the goal shown in 
Figure 4 (b), the robot will stop and calculate the 
foot contact times and positions based on the 
acquired position and velocity of the legs.  

In this study, we define the foot contact time as 
the foot bottom is attached to the floor and the leg is 
perpendicular to the floor. As shown in Figure 7, the 
speed of the leg at shin height scaned by LRS is 
minimum value at the time. Therefore, the foot 
contact time is extracted as the time when the leg 
speed is at a minimum value. In addition, the foot 
contact position is acquired as the estimated position 
at that time. 

 

Figure 8: Design of the attractive potential to lead the 
participant while maintaining a certain distance. GD  

3.4 Navigation based on Artificial 
Potential Method 

In order to realize that the robot leads the participant 
to the goal position, the velocity command is 
determined based on the artificial potential method 
(Khatib, 1986). 

In the potential method, the potential field is 
designed with an attractive potential field based on 
the goal position and repulsive potential field based 
on the obstacle position. Then, the robot determines 
the motion based on the vertical force derived from 
the potential field. 

As shown in Figure 8, to lead the participant 
while maintaining the certain distance GD  from the 

participant, the target position of the robot is defined 
as the position which is GD  distance to the goal 

direction from the participant. Then, the attractive 
potential is designed based on the target position. To 
allow the participant to recognize the surrounding 
environment by keeping their gaze in front, we set 

1.5GD  . Determination of the velocity command 

considering the velocity of the participant is future 
work. 

4 EXPERIMENT 

To verify the accuracy of the foot contact times and 
positions measured by the proposed gait 
measurement robot, we carried out straight walking 
test with five young people. The foot contact times 
and positions measured by the proposed robot 
compared with those measured by the three-
dimensional motion analysis system (VICON) with 
six cameras. Figure 9 shows the field of the straight 
walking test. As shown in Figure 10, the robot built 
the environmental map in advance. The cell size was 
set to 0.03 m. In addition, the field coordinate 
system of the proposed system was fixed to that of 
VICON by using poles shown in Figure 9. 

As shown in Figure 11, VICON markers were 
attached to the 18 places in the lower limbs of the 
participant and Plug-In-Gait model was used for 
motion analysis. In addition, for verification of the 
trajectory of the legs, additional markers were 
attached to each leg at the same height of the LRS. 
Furthermore, for verification of the robot 
localization, markers were attached to the front and 
back of the robot shown in Figure 11. The true pose 
of the robot was calculated using the two markers. 

In this study, we define the foot contact time as 
the foot bottom is attached to the floor and the leg is 
perpendicular to the floor. From the VICON analysis, 

 

Figure 9: Experimental field. 
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Figure 10: Map built by the robot in the experimental field. 

 

Figure 11: Positions of the attached VICON markers. 

Table 2: Acquired leg position error (x-coordinate). 

Mean [m] SD [m] 

Position 
x 

0.5 1.0 1.5 0.5 1.0 1.5 

y 

0.0 0.017 0.016 0.013 0.010 0.013 0.011 

0.3 0.015 0.014 0.010 0.010 0.010 0.008 

0.6 0.009 0.022 0.019 0.008 0.011 0.011 

Table 3: Acquired Leg position error (y-coordinate). 

Mean [m] SD [m] 

Position 
x 

0.5 1.0 1.5 0.5 1.0 1.5 

y 

0.0 0.022 0.031 0.035 0.026 0.029 0.030 

0.3 0.020 0.023 0.027 0.027 0.026 0.026 

0.6 0.028 0.023 0.024 0.023 0.023 0.024 

it was confirmed that the time when the marker of 
the heel was not moving was almost equal to the 
time when the leg was perpendicular to the floor. 
Therefore, the true value of the foot contact time 
was calculated as the time when the speed of the 
heel marker was at a minimum. Then, the foot 
contact position was acquired as the position of the 
heel marker at that time. As shown in Figure 11, 

since the measurement points of the robot were 
different those of VICON, the positions of the legs 
acquired by the robot were modified considering the 
leg width of the participant to compare with the 
VICON analysis. 

4.1 Verification in Stationary State 

We verified the accuracy of the localization and the 
leg positions acquired by the robot in stationary state. 

4.1.1 Localization 

The robot stayed at nine points shown in Figure 9 as 
a symbol “ ”. The accuracy of localization for 5.0 s 
in each point was verified. The maximum 
localization errors of x-coordinate, y-coordinate and 
yaw angle were respectively 0.070 m, 0.020 m and 
0.030 rad. It was confirmed that the proposed robot 
was able to estimate its own pose with high accuracy 
equivalent to that of the measurement accuracy of 
the LRS. 

4.1.2 Leg Position 

The robot stayed at the origin of the field and the 
participant was standing at nine points shown in 
Figure 9 as a symbol “  ”. The accuracy of the 
acquired leg position of each point for 5.0 s was 
verified. Table 2 and 3 show the mean and the 
standard deviation (SD) of the measurement error of 
the right leg position acquired by the robot 
compared with the heal position acquired by VICON 
in each point. From the results in stationary state, it 
was confirmed that the proposed robot could 
measure the foot position with high accuracy 
equivalent to that of the measurement accuracy of 
the LRS. 

4.2 Verification in Straight Walking 
Test 

We verified the accuracy of the localization and 
acquired foot contact times and positions in straight 
walking test. 

4.2.1 Localization 

Figure 12 show an example of the results of 
localization in straight walking test. The mean of the 
localization error of x-coordinate, y-coordinate and 
yaw angle were respectively 0.043 m, 0.036 m and 
0.020 rad. It was confirmed that the proposed robot 
was able to estimate its own pose in moving state 
with the same accuracy in stationary state.  
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(a) Localization 

 
(b) Localization error 

Figure 12: An example of the results of localization in 
straight walking test. 

4.2.2 Foot Contact Time 

Figure 13 shows the an example of the results of the 
speed of the right leg acquired by the proposed robot 
and the speed of the calf positions aquired by 
VICON. The mean and SD of the error of the foot 
contact time in five walking test were 0.147 s and 
0.110 s. From the results, it was comfirmed that the 
proposed robot could acquire the foot contact time 
based on the estimated speed of the leg. 

4.2.3 Foot Contact Position 

Figure 14 shows an example the results of right leg 
position and foot contact positions acqurired by the 
proposed robot and the heel and calf positions 
acquired by VICON. The total measurement error 
mean and SD of the foot contact positions of x-
coordinate were 0.035 m, 0.031 m and the those of 
y-coordinate were 0.036 m, 0.023 m. From the 
experimental results, it was comfirmed that the 
proposed robot can acquire the foot contact positions 
while leading the participant to the goal position of 
the walking test field. 

5 CONCLUSIONS 

In this study, we proposed a novel gait measurement 
system which uses an autonomous mobile robot with 
laser range sensor (LRS) for a long-distance walking 
test in a real living space regardless of detection 
range of sensor. To realize smooth movement 
depending on the movement of the participant, the 
robot has an omnidirectional drive system and is  

 
Figure 13: An example of the results of acquired leg speed 
and foot contact time. 

 

Figure 14: An example of the results of acquired right leg 
position and foot contact position. 
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designed to be able to put out an average of human 
walking speed. The robot sequentially estimates its 
own pose and acquires both legs of the participant 
based on the distance data from the sensors. The 
robot leads the participant from the start to the goal 
of the walking test while maintaining a certain 
distance from the participant. Then, the foot contact 
times and positions are calculated by analyzing 
estimated position and speed of each leg.  

To verify the accuracy of the foot contact times 
and positions acquired by the proposed robot, 
straight walking test with five young people were 
carried out. From the experimental results compared 
with a three-dimensional motion analysis system 
(VICON), it was confirmed that the proposed robot 
could acquire the foot contact times and positions. 

Experiments with elderly people in living space 
and verifications for the characteristic motion such 
as cross step where the participant cross the 
swinging leg against the supporting leg are future 
work. In addition, velification of the robustness of 
the localization of the robot in a real living space 
and leg tracking is future work. 
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