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Abstract: In market-based task allocation mechanism, a robot bids for the announced task if it has the ability to 
perform the task and is not busy with another task. Sometimes a high-priority task may not be performed 
because all the robots are occupied with low-priority tasks. If the robots have an expectation about future 
task sequence based-on their past experiences, they may not bid for the low-priority tasks and wait for the 
high-priority tasks. In this study, a Q-learning-based approach is proposed to estimate the time-interval 
between high-priority tasks in a multi-robot multi-type task allocation problem. Depending on this estimate, 
robots decide to bid for a low-priority task or wait for a high-priority task. Application of traditional Q-
learning for multi-robot systems is problematic due to non-stationary nature of working environment. In this 
paper, a new approach, Strategy-Planned Distributed Q-Learning algorithm which combines the advantages 
of centralized and distributed Q-learning approaches in literature is proposed. The effectiveness of the 
proposed algorithm is demonstrated by simulations on task allocation problem in a heterogeneous multi-
robot system.  

1 INTRODUCTION 

In most real-life robotic applications, multi-robot 
systems (MRS) are preferred instead of single robots 
to get desired system performance. The missions 
that cannot be accomplished by a single robot can 
easily be executed by a group of robots. Advantages 
such as faster task execution and robust system 
architecture are some of the reasons why MRS is 
frequently used in complex environments.  

The major drawback of MRS is coordination 
requirements. Efficient system performance is 
directly related to accurate and precise coordination. 
Working environment of an MRS is  generally 
dynamic and partially observable in nature. When 
designing an MRS, estimation of all possible 
situations that robots can face with is not possible. 
To overcome the problems encountered during 
system execution, robots have to adopt themselves 
and adjust their behaviours to changing 
environmental conditions. Consequently, the robots 
which have learning ability may play an important 
role to provide required group coordination and 
results in a more  reliable system performance. The 
MRS with learning robots are more robust systems 

against the uncertainities and problems (Mataric, 
1997). 

In this study, a learning-based multi-robot task 
allocation approach is proposed to increase the 
system performance. If the robots carry their past 
task allocation experiences to a helpful knowledge 
that can be used for future task allocation process, it 
may be possible to enhance the system performance. 
For this purpose Q-learning algorithm is used. Q-
learning algorithm is mainly used in environments 
that satisfy  Markov Decision Process (MDP) 
properties (Yang ve Gu, 2004). Whereas, most MRS 
environments are not MDP. So, in this study, a new 
approach, Strategy-Planned Distributed Q-learning 
algorithm, is proposed to overcome the problems 
that appear in the application of Q-learning to multi 
robot systems. 

The paper is organized as follows: In Section 2, a 
brief description of market-based multi-robot task 
allocation problem is given. In Section 3, the theory 
of Q-learning algorithm for both single-agent and 
multi-agent cases is presented. The proposed 
algorithms, learning-based multi-robot task 
allocation and Strategy-Planned Distributed Q-
learning algorithms, are given in detail in Section 4 
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and 5, respectively. Section 6 explains the 
experimental environment. In The experimental 
results are given in Section 7. Lastly, conclusion is 
given in Section 8.  

2 MULTI-ROBOT TASK 
ALLOCATION 

Multi-robot task allocation (MRTA) is defined as the 
problem of deciding which robot should perform 
which task in an appropriate order (Gerkey and 
Mataric, 2004). In multi-robot systems, robots and 
robot’s task executing abilities are specified as 
system resources. In most cases, because of the 
scarcity of resources, it is not possible to complete 
all tasks (Jones et. al., 2007). This situation 
emphasizes the importance of efficient task 
allocation to get desired system performance. Task 
allocation process should be realized to provide an 
effective use of system resources by maximization 
of overall system gain or by minimization of system 
cost.  

Market-based approaches present efficient 
solutions for coordination problems in multi-robot 
systems (Dias et al., 2006). In these approaches, 
each robot has its own decision-making mechanism 
but system coordination is realized by participation 
of all robots. Auction protocols are widely-used 
market-based task allocation methods (Gerkey and 
Mataric, 2002). Their major advantage is that they 
provide robust system architecture against system 
fault. In auction-based MRTA, task announcing unit 
acts as auctioneer and robots behaves as bidders. 
Tasks are also used as the items offered in auction 
process. The auction process is executed in the 
manner that the auctioneer announces the tasks, 
robots determine and send the bid values for tasks 
and the auctioneer decides the winner robot. In 
mobile robot applications, the bid values are 
calculated in terms of travelled distance, required 
time (Mosteo and Montano, 2007) or needed energy 
(Kaleci et al., 2010). The assignment of tasks to the 
robots is defined as the Optimal Assignment 
Problem (OAP) widely-used in operations research 
(Gerkey and Mataric, 2004). Hungarian Algorithm 
provides successful solutions for the OAP problem 
(Hatime, 2013). The auction process is completed 
when the winner robots are informed. 

3 REINFORCEMENT LEARNING 

Reinforcement learning methods are the machine 
learning approaches that do not require any input-
output data sets or a supervisor (Russel and Norvig, 
2003). In reinforcement learning, the agents are 
directly related to the environment by their 
perception and action units. The state transition of 
the environment results from the action of the agent. 
Agent is informed by a feedback signal called 
reward which indicates the effect of the action on the 
environment. Learning process is performed only 
through trial-and-error by using this reward value. 
No requirement of any supervisor, structural 
simplicity of the algorithms and the possibility of 
using it in partially observable and dynamic 
environments are the reasons why reinforcement 
learning is preferred especially in multi-agent 
system applications (Yang and Gu, 2004). 

3.1 Single-agent Case 

Markov Decision Proecess (MDP) is a tuple of  
൏ ܵ, ,ܣ ܲ, ߩ , where ܵ is finite and discrete set of 
environment states, ܣ is finite and discrete set of 
agent actions, ܲ: ܵ ൈ ܣ ൈ ܵ → :ሺܵሻߎ ሾ0,1ሿ is state 
transition function for each state-action pair and 
:ߩ ܵ ൈ ܣ ൈ ܵ → Թ is reward function of the agent 
(Buşoniu et al., 2008). In standard reinforcement 
learning approaches, the environment is defined as 
an MDP. 

For any discrete step ݇, the environment state 
changes from ݏሺ݇ሻ ∈ ܵ to ݏሺ݇  1ሻ ∈ ܵ by the 
action ܽሺ݇ሻ ∈  of the agent. The reward value of ܣ
ሺ݇ሻݎ ൌ ,ሺ݇ሻݏሺߩ ܽሺ݇ሻ, ሺ݇ݏ  1ሻሻ, which the agent 
receives as the result of aሺkሻ, represents the 
instantaneous effect of action on the environment 
(Buşoniu et al., 2008). The agent determines which 
action should do through its action policy ݄. The 
agent in an MDP aims to maximize the expected 
value of the overall reward for each step. Action-
value function is defined as the expected total gain 
of each action-state pair and it is given in equation 
(1). 

Q୦ሺs, ܽሻ ൌ E ൝γ୧
ஶ

୧ୀ

rሺk  iሻอsሺkሻ ൌ s, ܽሺkሻ ൌ ܽ, hൡ	 (1)

This equation is discounted sum of all future 
rewards where ߛ is the discount factor. Q-function is 
expressed as the optimal action-value function. 

Q∗ሺs, aሻ ൌ ݔܽ݉


Q୦ሺs, ܽሻ (2)

A learning agent should determine the optimal Q-
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value, ܳ∗ firstly and then should find required action 
by using action policy providing ܳ∗(Buşoniu et al., 
2008). 

Q-learning, is proposed by Watkins (Watkins, 
1989), is a widely-used value function-based model- 
free reinforcement learning algorithm (Sutton and 
Barto, 1998). According to Q-learning algorithm, the 
optimal Q-value for each state-action pair is 
calculated by the following recursive equation: 

ܳሺݏሺ݇ሻ, ܽሺ݇ሻሻ ൌ ܳሺݏሺ݇ሻ, ܽሺ݇ሻሻ 	

ߙ ቂݎሺ݇ሻ  ݔܽ݉ߛ
ᇲ∈

	ܳሺݏሺ݇  1ሻ, ܽᇱሻ െ ܳሺݏሺ݇ሻ, ܽሺ݇ሻሻቃ (3)

This equation does not require environment model 
and state-transition function. ߙ is the learning rate 
and ߛ is the discount factor. If each state-action pair 
is repeated infinitely many and ߙ is decreased in 
each step ݇, learned Q-values converges the optimal 
Q-values with the probability ‘1’ (Watkins and 
Dayan, 1992).  

3.2 Multi-agent Case 

Stochastic Game (SG) is the extended form of MDP 
to multi-agent case. An SG is defined as the tuple of 
൏ ܵ, ,ܣ ܲ, ߩ , where ܵ is the set of finite and 
discrete environment states, ܣ ൌ ଵܣ ൈ ଶܣ ൈ … .ൈ  ܣ
is the generalized action set for all agents, ݉ is the 
number of agents, P: ܵ ൈ ܣ ൈ ܵ → :ሺܵሻߎ ሾ0,1ሿ is the 
state transition function for each state-action pair 
and ߩ: ܵ ൈ ܣ ൈ ܵ → Թ, ݆ ൌ 1…݉ is reward 
function for each agent (Buşoniu et al., 2008). For 
an SG, the state transitions are realized by joint 
actions of all agents.  

One solution approach in an SG is to get the 
Nash equilibrium (Buşoniu et al., 2008). The Nash 
equilibrium is defined as the joint action policy such 
that each agent’s action policy provides maximum 
total reward value against others’ action policy 
(Yang and Gu, 2004). In the Nash equilibrium, it is 
not possible to increase the total reward by changing 
one agent’s action policy while all other agents’ 
action policies remain same. 

Hu and Wellman are developed Nash-Q-learning 
algorithm which is based on reaching the Nash 
equilibrium (Hu and Wellman, 1998). It is shown 
that the optimal solutions are acquired under some 
certain conditions (Hu and Wellman, 2003). For 
each agent ݆, the Q-values are updated by equation 
(4). 

ேܸ ൌ ,ݏሺ݄ݏܽܰ ܳଵ, … , ܳ, … , ܳሻ 
ܳሺݏ, ܽଵ, … , ܽሻ ൌ ܳሺݏ, ܽଵ, … , ܽሻ  

ߩൣߙ  ߛ ேܸ െ ܳሺݏ, ܽଵ, … , ܽሻ	൧ 
(4)

If ߩଵ ൌ ⋯ ൌ   condition is valid, all agents aimߩ

to maximize the common goal and SG is called fully 
cooperative. In this case, the Nash equilibrium is 
expressed as follows. 

ݏܽܰ ݄൫ݏ, ܳଵ, . . , ܳ, . . , ܳ൯ ൌ ݔܽ݉
భ∈భ…∈	

	ܳሺݏ, ܽଵ, . . , ܽሻ (5)

It is shown that a fully cooperative SG is assumed as 
an MDP (Boutlier, 1996). However, there exist more 
than one Nash equilibrium in an SG. It is very 
difficult problem to find joint actions which result in 
the common Nash equilibrium because all agents 
have independent decision making ability. 

4 LEARNING-BASED MRTA 

In a prior knowledge about the time sequence of 
tasks, it would be possible to optimize system 
performance by planning the order of tasks 
performed by each robot. But, such knowledge is not 
accessible for most multi-robot systems applications.  
Tasks appearing in an unpredictable time steps in 
random sequence affect the system performance in a 
negative manner. Especially, if there is a hierarchical 
order among the tasks in terms of priority or 
emergency, the tasks which must be completed 
primarily and unconditionally could not be done if 
the robots are busy with the low-priority tasks. As an 
example, consider a two-robot system ܴଵ and ܴଶ, 
which perform low-priority tasks	 ଵܶ and ଶܶ, 
respectively. If a high-priority task ଷܶ is announced 
before one of the robots finishes its task, ଷܶ will not 
be performed. This decreases the utility of the team, 
since ଷܶ is a high-priority task whereas ଵܶ and ଶܶ are 
low-priority tasks.  

Generally in auction-based MRTA approaches, 
the robots bid for the announced tasks if they have 
the ability to do such a task and they are not busy at 
that time. These approaches have no mechanism for 
reasoning about future task sequence. It is clear that 
a precise estimation for future tasks is impossible. 
However, robots may have some expectations on the 
future task sequence when they use past experiences. 
For the above example, if one of the robots had a 
prediction about high-priority task sequence, this 
robot would not bid for the low-priority task and 
would wait for ଷܶ task.  

Having such information about future task 
sequence is possible if robots have learning ability 
which transforms past experiences to a useful 
advice. 

In this study, a learning-based task allocation 
approach is proposed to overcome the problem 
explained above. By the proposed method, robots 
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learn about the sequence relation between low-
priority and high-priority tasks. The knowledge 
obtained in learning process is used to make 
decision about whether they attend the auction for an 
announced low-priority task or wait for a high-
priority task. 

5 STRATEGY-PLANNED 
DISTRIBUTED Q-LEARNING 

Aim of the proposed approach in Section 4 is to 
enhance the system performance by means of past 
task allocation experiences. For this purpose, Q-
learning algorithm is used.  

The major difference between single-agent and 
multi-agent systems in terms of Q-learning is that 
for a single-agent the environment can be defined as 
MDP. However, in multi-agent case, the 
environment is no longer stationary because of the 
unpredictable changes which result from 
independent decision making and acting 
mechanisms of the agents. This is a contradiction to 
the essential assumption of MDP environment in Q-
learning theory. Whereas the traditional Q-learning 
algorithm is successfully applied in single-agent 
systems, convergence to an optimal solution is not 
guaranteed in multi-agent case (Matignon et al., 
2007). 

In literature, there exist two fundamental 
approaches about the application of Q-learning in 
multi-agent systems. In this section, these two 
approaches are explained and a third approach, 
strategy-planned distributed Q-learning, which 
combines the advantages of these approaches, is 
proposed. 

5.1 Centralized Q-Learning 

In centralized Q-learning, the robots cooperatively 
learn common Q-values by considering joint actions. 
Q-values are updated by the following equation. 

ܸ ൌ ݔܽ݉
భ
ᇲ∈భ….

ᇲ ∈
ܳሺݏ, ܽଵ

ᇱ , … , ܽᇱ ሻ 

ܳሺݏ, ܽଵ, … , ܽሻ ൌ ܳሺݏ, ܽଵ, … , ܽሻ  
ߩሾߙ  ܸߛ െ ܳሺݏ, ܽଵ, … , ܽሻሿ 

(6)

In this approach, learning process is realized 
either by each agent by observing all environmental 
changes or by a central unit communicating with all 
agents. It is noted that the environment is considered 
as MDP and optimal solutions can be converged 
because learning is executed using joint actions of 
all agents (Matignon et al., 2007). However, the 

dimension of the learning space which is defined as 
state space dimension times action space dimension 
becomes larger. For a fully cooperative SG with ݉ 
agents, dimension of the learning space is given as 
follows: 

…|ଵܣ||ܵ| |ܣ| ൌ  (7)|ܣ||ܵ|

Thus, the dimension of the learning space which 
increases exponentially depending on the number of 
agents results in huge computational load (Hu and 
Wellman, 2003). 

Another disadvantage of the centralized Q-
learning approach is the requirement of a central 
learning unit or explicit communication among 
robots (Wang and de Silva, 2006). 

5.2 Distributed Q-Learning 

Distributed Q-learning is the direct application of 
single-agent Q-learning to multi-agent case. In this 
approach, each individual agent learns its own Q-
values as a result of its state and actions which is 
independent of other agents’ actions. For each agent 
Q-values are updated by the following equation. 

ܸ ൌ ݔܽ݉
ೕ
ᇲ∈ೕ

ܳ൫ݏ, ܽ
ᇱ൯ 

ܳ൫ݏ, ܽ൯ ൌ ܳ൫ݏ, ܽ൯  ߩൣߙ  ܸߛ െ ܳ൫ݏ, ܽ൯൧ 
(8)

The dimension of the learning space for each 
agent ݆ is given as follows: 

ห ܵหหܣห (9)

The advantages of the distributed Q-learning are 
small learning space and no requirement of inter-
robot communication. The major disadvantage of 
distributed Q-learning approach is conflicting robot 
behaviours because of independent learning 
(Matignon et al., 2007).  

5.3 Strategy-planned Distributed Q-
Learning 

In this study, to combine the advantages of 
centralized and distributed Q-learning approaches, a 
new Q-learning approach, Strategy-Planned 
Distributed Q-Learning method, is proposed. This 
method is also distributed in nature but it aims to 
remove behaviour conflicts of traditional distributed 
learning approaches. For this purpose, each 
cooperative robot is assigned a different learning 
strategy. For simplicity, the proposed algorithm is 
explained using a two- robot system as follows. 

Definition 1. Let ܴ and ܴ be two robot s of a 
multi-robot system and ߁ and ߁ be the task sets of 
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these robots, respectively. If there exists a 
cooperative-task set such that 

߁ ൌ ߁ 	∩ ݀݊ܽ	߁	 ߁ ് ∅ (10)

ܴ and ܴ are said cooperative robots. 

Definition 2. For any task ௭ܶ, the base learning 
strategy, 	ܪ௦௭ , is defined as: 

	௦ܪ
௭ ≔ ൜

		ݎܨ ௭ܶ ݁ݕݐ	݇ݏܽݐ
݄݄݃݅	ݐ݈ܿ݁݁ݏ െ (11) ݏ݇ݏܽݐ	ݕݐ݅ݎ݅ݎ

and complementary learning strategy is defined as: 

௭	ܪ ≔ ൜
		ݎܨ ௭ܶ ݁ݕݐ	݇ݏܽݐ

݃݊݅݊݅ܽ݉݁ݎ	ݐ݈ܿ݁݁ݏ ݓ݈ െ (12) ݏ݇ݏܽݐ	ݕݐ݅ݎ݅ݎ

Definition 3. If |Γ|  	 หΓห condition holds for 

௭ܶ ∈   task, the learning strategy of ܴ and ܴ߁
robots are assigned as follows. 

	ܪ
௭ ≔ 	௦ܪ

௭  (13)
௭	ܪ ≔ ௭	ܪ  (14)

The proposed approach has the advantage of 
small learning space because of its distributed 
structure. And also it prevents behaviour conflicts 
between agents through agents’ different learning 
strategy unlike in traditional distributed learning 
approaches. 

6 APPLICATION 

To show the effectiveness of the proposed approach, 
an experimental environment on which the 
applications are realized is prepared. This 
environment has dimensions of 15x14 m, has eight 
rooms, corridors between rooms and a charging unit 
(Figure 1). The travelling paths between rooms are 
shown with dashed lines.  

 
Figure 1: The map of experimental environment. 

The multi-robot system used in applications 
consists of six robots, ܴଵ, ܴଶ, ܴଷ, ܴସ, ܴହ, and ܴ. 
The robots have different skills. Thus, the system is 

fully heterogeneous. There exist five different type 
of tasks ଵܶ, ଶܶ, ଷܶ, ସܶ, and ହܶ. The robots and the 
tasks which the robots are capable of doing are given 
in Table 1.  

Table 1: Tasks that can be performed by robots.  

Robots 
Tasks 

ࢀ ࢀ ࢀ ࢀ ࢀ
ࡾ     
ࡾ     
ࡾ    
ࡾ    
ࡾ     
ࡾ    

Tasks are generated randomly and with equal 
probability. The number of tasks announced at any 
time could be between two and five. Each task has 
two different priority degrees, low-priority and high-
priority. Low-priority tasks and high-priority tasks 
are 65% and 35% of all tasks, respectively. 

The applications are realized by using 45 
experimental sets, each having nearly 50 tasks. First 
30 sets are used for learning process and last 30 sets 
are used for test purpose. It is assumed that all the 
tasks allocated robots will be completed. None of the 
allocated tasks is left unfinished. 

7 EXPERIMENTAL RESULTS 

The purpose of the proposed approach is to increase 
system performance by using learning-based 
MRTA. The essential goal of the proposed approach 
is to increase the number of completed high-priority 
tasks. To show the effectiveness of the proposed 
approaches, the applications are realized in the 
experimental environment whose details are given in 
the previous section and the results are compared in 
terms of the task completion ratio. The task 
completion ratio is defined as the ratio of tasks 
assigned to any robot to the total number of tasks 
announced. Applications are executed for three 
learning approaches, centralized Q-learning, 
distributed Q-learning and strategy-planned 
distributed Q-learning, and the results are compared 
with the results when there is no learning. For each 
task type, the results for low-priority and high-
priority tasks are given separately in Figure 2. 

The graphs in Figure 2 show that the completion 
ratios of high-priority tasks for all task types are 
increased when any of the learning algorithms is 
used. This general result indicates that the robots are 
successfully benefited from the past task-allocation 

B1 B2
B3

B4

B5

B6 B7 B8

H

x

y
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experiences by their learning ability. However, the 
completion ratios of the low-priority tasks are 
decreased or remain nearly the same. In general, the 
number of total tasks to be completed is limited 
because of the limited system resources. Because of 
this, the results are acceptable. 

The centralized Q-learning approach is the 
learning algorithm that provides the highest task 
completion ratio for all high-priority and low-
priority tasks because all joint actions of all robots 
are considered together in the learning process. 
Especially for the tasks that can be performed by 
more than one robot, while some of the robots wait 
for high-priority tasks, the others execute low-
priority tasks. 

 
(a) 

 
(b) 

 
(c) 

Figure 2: Task completion ratios of all task types a-e) Tଵto 
Tହ. 

 
(d) 

 
(e) 

Figure 2: Task completion ratios of all task types a-e) Tଵto 
Tହ (cont.). 

In distributed Q-learning approach, each robot 
learns its state-action pairs without regarding the 
others’ actions. Because all robots aim to perform 
high-priority tasks, task completion ratio gets higher 
for high-priority tasks whereas task completion ratio 
for low-priority tasks significantly decreases. The 
behaviour conflict that is the major disadvantage of 
distributed learning explains these results. 

Results of the strategy-planned distributed Q-
learning are not good as the results of centralized Q-
learning but reasonably better than distributed Q-
learning and no-learning cases. While task 
completion ratios of high-priority tasks for almost all 
task types are a bit less than the ones for other 
learning approaches, task completion ratios of low-
priority tasks are significantly higher than that of the 
others. 

As seen from the graphs, the best results are 
obtained in centralized Q-learning approach and the 
worst results are observed in distributed Q-learning 
as it is expected. From the point of view of learning 
space dimensions and computational load, the 
centralized approach has great disadvantage. For the 
system evaluated in this study, the dimension of 
learning space for distributed Q-learning and 
strategy-planned Q-learning is found as 102, 
whereas it is 1856 for centralized Q-learning. The 
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significant difference between these values is clear 
although the system considered here can be specified 
as a simple system. So, by taking into account the 
task completion ratios and computational loads, it is 
evident that the proposed approach, strategy-planned 
distributed Q-learning, yields appropriate and useful 
results. 

8 CONCLUSIONS 

In this paper, a new learning-based task allocation 
approach, Strategy-Planned Distributed Q-Learning, 
is proposed. Traditional Q-learning algorithm is 
defined in MDP environments. But MRS 
environments are no longer Markovian because of 
unpredicted behaviours of other robots and presence 
of uncertainties. There are two major approaches 
about Q-learning for multi-agent systems, 
distributed and centralized approaches. The 
proposed algorithm combines the advantages of 
distributed and centralized approaches. It is a 
distributed learning approach in nature but it assigns 
to robots different learning strategies in a centralized 
manner. Experimental results show that task 
completion ratio of high-priority tasks gets higher 
for all three learning approaches because the robots 
make use of their past task allocation experiences for 
future task execution through their learning ability. 
The experimental results show that the centralized 
learning approach produces the best solutions about 
task completion ratios of both high-priority and low-
priority tasks. The proposed approach results in a bit 
less task completion ratios than centralized 
approach. However, it is indicated that the proposed 
algorithm provides reasonable solutions with its low 
learning space dimension and computational load. 
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