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Abstract: Rigorous nonlinear analysis of the physical model of Costas loop is very difficult task, so for analysis, simpli-
fied mathematical models and numerical simulation are widely used. In the work it is shown that the use of
simplified mathematical models, and the application of non rigorous methods of analysis may lead to wrong
conclusions concerning the operability of Costas loop.

1 INTRODUCTION

The Costas loop is a classical phase-locked loop
(PLL) based circuit for carrier recovery (Costas,
1956; Costas, 1962). Nowadays various modifica-
tions of Costas loop circuit are used in many com-
munication devices, e.g. Global Positioning Systems
(GPS) (Kaplan and Hegarty, 2006). In the paper the
classical analog Costas loop (Costas, 1956; Gardner,
1966; Lindsey, 1972; Best, 2007), used for BPSK de-
modulation, is considered (similar analysis can also
be done for QPSK Costas loop).

Costas loop is essentially a nonlinear control sys-
tem and its physical model is described by a nonlinear
non-autonomous discontinuous system of differential
equations (mathematical model in the signal space).
This system is a slow-fast system since there is con-
sidered simultaneously both very fast time scale of
signals and slow time scale of phase difference be-
tween the signals.

Thus in practice, for the analysis of Costas loop it
is widely used various simplified mathematical mod-
els and their numerical simulation (Costas, 1956;
Gardner, 1966; Lindsey, 1972; Best, 2007; Best et al.,
2014b).

In the work it is shown that 1) the use of simplified
mathematical models, and 2) the application of non
rigorous methods of analysis (e.g., a simulation) may
lead to wrong conclusions concerning the operability
of physical model of Costas loop.

To demonstrate this, below Costas loop operation
will be considered in details.

2 BPSK COSTAS LOOP
OPERATION

Consider Costas loop operation (see Fig. 1) after tran-
sient processes.
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Figure 1: Costas loop is in lock (the case of nonequal fre-
quencies of input carrier and free running VCO output):
there is a constant phase difference qD after synchroniza-
tion.

The input signal is BPSK signal, which is a prod-
uct of the transferred data m(t) = �1 and the har-
monic carrier sin(wt) with a high frequency w. Since
the Costas loop is considered to be in the locked state,
VCO (Voltage-Controlled Oscillator) signal is syn-
chronized with the carrier.
Assumption 1. The terms, whose frequency is about
twice the carrier frequency, do not affect the synchro-
nization of the loop.

By Assumption 1 the outputs of low-pass filters
LPF1 and LPF2 can be approximated in the follow-
ing way. After the multiplication of VCO signal and
the input signal by multiplier block (
) on the upper
branch one has
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φ2(t)=   m(t)(sin(θΔ(t))+sin(θ1(t)+θ2(t)))

Figure 2: Costas loop is out of lock: there is time-varying phase difference qD(t) = q1(t)�q2(t).

j1(t) =
1
2
�
m(t)cos(0)�m(t)cos(2wt)

�
=

=
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�
m(t)�m(t)cos(2wt)

�
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2
m(t);

(1)

i.e the upper loop works as demodulator. On the lower
branch the output signal of VCO, shifted by 90�, is
multiplied by the input signal:

j2(t) = m(t)sin(wt)cos(wt) =

=
1
2
�
m(t)sin(0)+m(t)sin(2wt)

�
=

=
1
2

m(t)sin(2wt)� 0:

(2)

Since after a transient processes there is no phase
difference, the control signal at the input of VCO,
which is used for VCO frequency adjustment to the
frequency of input carrier signal, has to be constant:

g(t) = const: (3)

Consider Costas loop before synchronization (see
Fig. 2) in the case when the phase of the input carrier
q1(t) and the phase of VCO q2(t) are different:

qD(t) = q1(t)�q2(t) 6= 0: (4)

In this case the signals j1;2(t) on the upper and lower
branches can be approximated as

j1(t) =
1
2

m(t)
�

cos(q1(t)�q2(t))� cos(q1(t)+q2(t))
�

� 1
2

m(t)cos(qD(t));

j2(t) =
1
2

m(t)
�

sin(q1(t)�q2(t))+ sin(q1(t)+q2(t))
�

� 1
2

m(t)sin(qD(t)): (5)

Assumption 2. The data signal m(t) does not affect
the synchronization of the loop.

Thus after multiplication of the outputs of LPF1
and LPF2 the transmitted data m(t) is neglected in the
signal j(t), i.e. one has m(t)2 = (�1)2 = 1.

Approximations (6) depend on the phase differ-
ence of signals, i.e. two multiplier blocks (
) on the
upper and lower branches operate as phase detectors.

Caveat to Assumptions. Low-pass filters can not
operate perfectly, especially, during the moments of
changing m(t), therefore the data pulse shapes are no
longer ideal rectangular pulses after filtration due to
distortion, created by the low-pass filters. This can
lead to incorrect conclusions on the performance of
the loop. One of such known examples is so-called
false-lock: while for m(t) � const the loop acquires
lock and proper synchronization of the carrier and
VCO frequencies, for time-varying m(t) 6= const the
loop can acquire lock without proper synchronization
of the frequencies (false lock) (Olson, 1975; Simon,
1978; Hedin et al., 1978). To avoid such undesirable
situation one may try to choose loop parameters in
such a way that the synchronization time is less than
the time between changes in the data signal m(t) or to
modify the loop design (see, e.g., (Olson, 1975)).

Finally, by Assumption 2, one can use the follow-
ing approximation for the input of loop filter

j(t)� j(qD(t)) =
1
8

sin(2qD(t)): (6)

Such an approximation, which depends on the phase
difference of signals, is called a phase detector char-
acteristic of Costas loop.

The relation between the input j(t) and the output
g(t) of linear loop filter (Thede, 2005) has the form

dx
dt

= Ax+bj(t); g(t) = c�x+hj(t); (7)

where A is a constant matrix, the vector x(t) is a fil-
ter state, b;c are constant vectors, h is constant, and
x(0) is initial state of filter. The control signal g(t)
is used to adjust VCO frequency to the frequency of
input carrier signal

q̇2(t) = w2(t) = w
free
2 +Lg(t): (8)

Here w
f ree
2 is free-running frequency of VCO and L is

VCO gain.
If the frequency of input carrier is a constant:

q̇1(t) = w1(t)� w1; (9)

then equations (7)-(9) give the following mathemati-
cal model of Costas loop:
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ẋ = Ax+bj(qD);

q̇D = wD�L(c�x)�Lhj(qD);
(10)

where qD(t) = q1(t)�q2(t) and j(qD) corresponds to
expression (7). Note that the initial frequencies differ-
ence (at t = 0) has the form

q̇D(0) = wD +Lc�x(0)+Lhj(qD(0)): (11)

Here to consider one-dimensional stability ranges de-
fined only by jwDj (see, e.g., capture and hold ranges)
it is necessary to assume that h = 0 and x(0) = 0.
For high-order filter, two different initial states x̃(0)
and ˜̃x(0) may lead to identical values of a0(0; x̃(0)) =
a0(0; ˜̃x(0)) but different functions a0(t; x̃(0)) and
a0(t; ˜̃x(0)) (to avoid this effect it is possible to require
the observability of system (8)).

G(t)
Loop filterVCO

PD

θ2(t)

input 
θ1(t) φ(θΔ(t))

Figure 3: Classical (simplified) mathematical model of
BPSK Costas loop in the signal’s phase space.

System (11) considered in the classical works
(Costas, 1962; Lindsey, 1972) and corresponds to the
block-diagram shown in Fig. 3, where j(qD) is phase
detector (PD) characteristic of Costas loop for sinu-
soidal signals.

Since mathematical model of Costas loop (11) is
nonlinear, in practice, for its analysis numerical sim-
ulation and linearization are widely used (Gardner,
2005; Lindsey, 1972; Best, 2007). Note that the lin-
earization without justification and the analysis of lin-
earized models of nonlinear control systems may re-
sult in incorrect conclusions1. Also the application
of standard numerical analysis of PLL-based circuits
cannot guarantee to find undesired multiple steady-
state solutions: see, e.g., examples of hidden oscilla-
tions2.

1See, e.g., counterexamples to the filter hypothesis,
hidden oscillations in counterexamples to Aizerman’s and
Kalman’s conjectures on the absolute stability of nonlinear
control systems (Bragin et al., 2011), and the Perron effects
of the largest Lyapunov exponent sign reversal for a non-
linear system and its linearization (Kuznetsov and Leonov,
2005; Leonov and Kuznetsov, 2007).

2An attractor is called a hidden attractor if its basin
of attraction does not intersect with small neighborhoods
of equilibria, otherwise it is called a self-excited attractor.
For example, hidden attractors are attractors in the systems
with no-equilibria or with the only stable equilibrium (a
special case of multistability and coexistence of attractors);
they arise in the study of well-known fundamental problems
such as 16th Hilbert problem, Aizerman & Kalman conjec-

In the next section a rigorous mathematical ap-
proach to derivation of nonlinear mathematical model
of Costas loop will be discussed.

3 RIGOROUS MATHEMATICAL
APPROACH TO DERIVATION
OF NONLINEAR
MATHEMATICAL MODEL OF
COSTAS LOOP

The relation between the inputs j1;2(t) and the out-
puts g1;2(t) of linear low-pass filters is as follows
(Thede, 2005)

dx1;2

dt
= A1;2x1;2 +b1;2j1;2(t); g1;2(t) = c�1;2x1;2:

(12)
Here A1;2 are constant matrices, the vectors x1;2(t) are
filter states, b1;2;c1;2 are constant vectors, and the vec-
tors x1;2(0) are initial states of filters. For the loop
filter one can consider more general equation (8).

Taking into account (13), (8), and (9), one obtains
the mathematical model in the signal space describing
the physical model of BPSK Costas loop:

ẋ1 = A1x1 +b1m(t)sin(q1(t))sin(q2);

ẋ2 = A2x2 +b2m(t)sin(q1(t))cos(q2);

ẋ = Ax+b(c�1x1)(c�2x2);

q̇2 = w
f ree
2 +L(c�x)+Lh(c�1x1)(c�2x2):

(13)

Here q2(0) is the initial phase shift of VCO, and the
vectors x1;2(0);x(0) are initial states of filters. Thus
the initial VCO frequency (at t = 0) has the form

w2(0) = w
f ree
2 +Lc�x(0)+Lhc�1x1(0)c�2x2(0): (14)

The mathematical model in the signal space (14)
is nonlinear nonautonomous discontinuous differen-
tial system, so in general case its analytical study
is a difficult task even for the continuous case when
m(t) � const. Besides it is a slow-fast system, so its
numerical study is rather complicated for the high-
frequency signals. The problem is that it is necessary
to consider simultaneously both very fast time scale of
the signals sin(q1;2(t)) and slow time scale of phase
difference between the signals qD(t), therefore one
very small simulation time-step must be taken over a

tures and in applied research of Chua circuits, drilling sys-
tem, phase-locked loop based circuits, aircraft control sys-
tems and others (Kuznetsov et al., 2010; Bragin et al., 2011;
Leonov et al., 2012; Kuznetsov et al., 2013; Andrievsky
et al., 2013; Leonov and Kuznetsov, 2013; Leonov et al.,
2014).
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very long total simulation period (Goyal et al., 2006;
Abramovitch, 2008a; Abramovitch, 2008b).

To overcome these problems, in place of using As-
sumption 1 one can apply averaging methods (Krylov
and Bogolyubov, 1947; Mitropolsky and Bogolubov,
1961; Samoilenko and Petryshyn, 2004; Sanders
et al., 2007) and consider a simplified mathematical
model in the signal’s phase space. However, this re-
quires the consideration of constant data signal (As-
sumption 2) and constant frequency of input carrier
(10):

q1(t) = w1t +q1(0):
In this case (14) is equivalent to

ẋ1 = A1x1 +b1 sin(w1t +q1(0))sin(w1t +q1(0)+qD);

ẋ2 = A2x2 +b2 sin(w1t +q1(0))cos(w1t +q1(0)+qD);

ẋ = Ax+b(c�1x1)(c�2x2);

q̇D = wD�L(c�x)�Lh(c�1x1)(c�2x2);
(15)

Assuming that input carrier is a high-frequency
signal (i.e. w1 is large), one can consider small pa-
rameter e = 1

w1
and apply classical averring theory for

the equations of low-pass filters. Thus one can obtain
a mathematical model of BPSK Costas loop in the sig-
nal’s phase space (see Fig. 4):

ẋ1 = A1x1 +
b1

2
cos(qD);

ẋ2 = A2x2 +
b2

2
sin(qD);

ẋ = Ax+b(c�1x1)(c�2x2);

q̇D = wD�L(c�x)�Lh(c�1x1)(c�2x2):

(16)

1
2

g(t)

G1(t)

G2(t)

LPF1

LPF2

Loop filterVCO

PD

PD

θ2(t)

90o

φ1(θΔ(t))=   cos(θΔ(t))
input 

φ(t)≈   sin(2θΔ(t))1
8

θ1(t)

1
2φ2(θΔ(t))=   sin(θΔ(t))

Figure 4: Mathematical model of BPSK Costas loop in the
signal’s phase space

Remark that here the initial frequencies difference
(at t = 0)

q̇D(0) = wD�Lc�x(0)�Lhc�1x1(0)c�2x2(0) (17)

is the same for system (17) and system (16) and it
does not coincide with expression (18) for classical
system (11). Here to consider one-dimensional sta-
bility ranges defined only by jwDj (see, e.g., capture
and hold ranges) it is necessary to assume that h = 0
and x(0) = x1(0) = x2(0) = 0.

In the general case one has to consider multi-
dimensional stability domain (wD;x(0);x1(0);x2(0)).

4 COUNTEREXAMPLES TO THE
ASSUMPTIONS

Note once more that various simplifications and the
analysis of linearized models of control systems may
result in incorrect conclusions3. At the same time the
attempts to justify analytically the reliability of con-
clusions, based on engineering approaches, and rigor-
ous study of nonlinear models are quite rare (see, e.g.,
(Abramovitch, 1990; Chang et al., 1993; Stensby,
1997; Shirahama et al., 1998; Watada et al., 1998;
Hinz et al., 2000; Wu, 2002; Piqueira and Mon-
teiro, 2003; Suarez and Quere, 2003; Margaris, 2004;
Vendelin et al., 2005; Banerjee and Sarkar, 2006;
Kudrewicz and Wasowicz, 2007; Wang et al., 2008;
Bueno et al., 2010; Wiegand et al., 2010; Stensby,
2011; Suarez et al., 2012; Sarkar et al., 2014; Chicone
and Heitzman, 2013; Yoshimura et al., 2013; Best
et al., 2014a)). One of the reasons is that “nonlin-
ear analysis techniques are well beyond the scope of
most undergraduate courses in communication the-
ory” (Tranter et al., 2010).

Further examples demonstrate that the use of As-
sumptions 1-2 requires further study and rigorous jus-
tification. The following examples demonstrate that
for the same parameters the behaviors of considered
models

� physical model (with data signal and low-pass fil-
ters) or its mathematical model in the signal space
(Figs. 2,5 and system (14))

� simplified mathematical model in the signal space
(without data signal and with low-pass filters))
(Figs. 2,5 with m(t) = const and system (16));

� simplified mathematical model the signal’s phase
space (with low-pass filters and without data sig-
nal) (Fig. 4 and system (17));

� classical mathematical model the signal’s phase
space (without low-pass filters and data signal)
(Fig. 3 and system (11))

may be very different from each other.
Simulation Parameters. Low pass filters transfer
functions Hl p f (s) = 1

s=w3+1 , w3 = 1:2566 � 106 and
corresponding equations (8) parameters are A1;2 =
�w3, b1;2 = 1, c1;2 = 1; Loop filter transfer function
Hl f (s) =

t2s+1
t1s , t2 = 3:9789 � 10�6, t1 = 2 � 10�5,

3see also counterexamples to the filter hypothesis, Aiz-
erman’s and Kalman’s conjectures on the absolute stability
of nonlinear control systems (Kuznetsov et al., 2011; Bra-
gin et al., 2011; Leonov and Kuznetsov, 2013), and the Per-
ron effects of the largest Lyapunov exponent sign inversions
(Kuznetsov and Leonov, 2005; Leonov and Kuznetsov,
2007), etc.
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1
2 Hlpf(s)

Hlpf(s)

Hlf(s)

sin(θ (t))

m(t)sin(θ (t))

90o

g1(t)

g2(t)

input 

x(0)

x1(0)

x2(0)

θ2(0)

1
ssin +

ωfree

(m(t)cos(θΔ(t))-m(t)sin(θ1(t)+θ2(t)))

φ(t)≈   sin(2θΔ(t))

1
2
(m(t)sin(θΔ(t))+m(t)sin(θ1(t)+θ2(t)))

1
8L

g(t)θ2(t)

Figure 5: Block-diagram of Costas loop mathematical model in the signal space described by transfer functions and initial
conditions.

0
-0.9

-0.6

-0.3

0

0.02 0.04

 

 

Figure 6: Loop filter output g(t) for averaged model (17)
(black) and physical model (red) in Fig. 2.

and corresponding differential equations (8) parame-
ters are A = 1, b = 0, c = 1

t1
, h = t2

t1
; carrier frequency

is w1 = 2�p�400000 and initial carrier phase is zero:
q1(0) = 0.

Example 1. In Fig. 6 is shown that Assumption 1 may
not be valid: while simplified mathematical model in
the signal’s phase space (17) (see Fig. 4) acquires
lock (black), physical model (14) (see Fig. 5) is out
of lock (red).

Here VCO free-running frequency: w
f ree
2 =

3:5500 � 106; initial states of filters are all zero
a0(t) = x(0) = x1(0) = x20 = 0.

Example 2. In Fig. 7 is shown that Assumption 2 may
not be valid: while simplified mathematical model in
the signal space (16) (see physical model in Fig. 5
with constant data signal m(t) � 1) acquire lock
(black), physical model with periodic data signal (14)

0

-0.6

-0.4

-0.2

0

0.2

1 x10-4

Figure 7: Loop filter output g(t) for physical model (black)
with periodic data signal, physical model (red) with con-
stant data signal m(t)� 1.

(see Fig. 5) is out of lock (red).
Here VCO free-running frequency w

f ree
2 =

3:0753 � 106, initial states of filters are all zero
a0(t) = x(0) = x1(0) = x2(0) = 0, data signal is pe-
riodic m(t) = sign sin(100000�2�pt).

Example 3. In Fig. 8 is shown that low-pass filters
may affect stability of models in the signal’s phase
space: while simplified mathematical model the sig-
nals phase space (17) (see Fig. 4) is out of lock (red),
classical mathematical model the signals phase space
(11) (see Fig. 3), where low-pass filters are not taken
into account, acquires lock (black). Therefore the
consideration of classical (simplified) model in sig-
nal’s phase space (Fig. 3 and system (11)) may lead
to wrong conclusion.

Here VCO free-running frequency w
f ree
2 =
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0

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

1 2 3 4 x10-3
 

 

Figure 8: Loop filter output g(t) for signal’s phase space
model (black curve) without low-pass filters, signal’s phase
space model (red curve) with low-pass filters.

3:5133�106, initial states of filters are zero: a0(t) =
x(0) = x1(0) = x2(0), no data is being transmitted
m(t) = 1.

5 CONCLUSION

In the work it is shown that 1) the consideration
of simplified mathematical models, constructed intu-
itively by engineers, and 2) the application of non rig-
orous methods of analysis can lead to wrong conclu-
sions concerning the operability of Costas loop.
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