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Abstract: This work shows the results of the practical implementation of the linearizing controller for the example 
laboratory pneumatic process of the third relative degree. Controller design is based on the Lie algebra 
framework but in contrast to the previous attempts, the on-line model update method is suggested to ensure 
offset-free control. The paper details the proposed concept and reports the experiences from the practical 
implementation of the suggested controller. The superiority of the proposed approach over the conventional 
PI controller is demonstrated by experimental results. Based on the experiences and the validation results, 
the possibilities of the potential application of the data-driven soft sensors for further improvement of the 
control performance are discussed. 

1 INTRODUCTION 

The application of the linearizing technique for the 
control of the higher relative degree nonlinear 
processes was extensively studied as a very 
promising approach, which provides the general 
framework for compensating for the complex 
dynamics of the nonlinear processes (Isidori, 1989; 
Henson and Seborg, 1997). In summary, this 
concept allows for deriving the nonlinear control law 
based on the nonlinear model of a process 
transformed using the Lie algebra. After assuming 
the reference model of the corresponding order, the 
final form of the controller is derived, which 
compensates for the process nonlinearities and 
allows for cancellation of the process higher degree.  

The results of the application of this technique to 
the control of the processes of the higher relative 
degree were reported in a relatively large number of 
publications but all of them were based on the 
simulation studies. The exceptions are the cases, in 
which the linearizing control technique is based on 
the simplified first-order dynamical model of a 
process - the higher relative degree is compensated 
by the proper conservative tuning while the offset-

free control is ensured by the compensation for the 
modeling inaccuracies by the application of the 
integral action (Lee and Sillivan, 1988; Metzger, 
2001) or by the on-line model update (Rhinehart and 
Riggs, 1991; Czeczot, 2001). 

It must be said that, even if the dynamics of the 
real processes usually is of higher relative degree, 
the idea of the linearizing technique accounting for 
such degree is not popular in the industrial control 
applications, due to the following difficulties: 
 it requires complex mathematical calculations 

based on the nonlinear model of a process; 
 offset-free control is possible only if the 

model of a process is perfect; 
 computational complexity of the linearizing 

controller is relatively high. 
Another important difficulty that must be faced 

when the linearizing control technique is to be 
applied in practice is that the measurement data from 
the disturbances and from the process state variables 
are required. Generally, when the appropriate 
sensors are not accessible, these quantities must be 
estimated by implementing observers based on the 
process model (Albertos and Goowin, 2002; 
Kravaris et al., 2013) or by applying suitable data-
driven soft sensors (Fortuna et al., 2007; Lin et al., 
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2007; Kadlec et. al 2009). The hybrid approach for 
this problem is also possible. 

Finally, for the control of the processes of the 
higher relative degree r > 1, the difficulties in 
controller tuning can be expected. Generally, for 
such a case, at least r tuning parameters must be 
adjusted and there are no simple methods that can be 
easily applied in practice. At the same time, it should 
be noticed that the linearizing controller requires the 
feedback from higher order time derivatives of the 
controlled variable to compensate for the process 
dynamics. These r-1 consecutive derivatives must be 
computed based on the noisy measurement data. 

In this work it is shown how the general 
linearizing technique can be applied for the 
improved control of the pneumatic process of the 
third relative degree. The method for on-line 
compensation for modeling inaccuracies is also 
suggested that ensures offset-free control. The 
experiences and results from the stage of practical 
implementation and validation are reported and 
discussed. Finally, based on these experiences and 
validation results, the potential options for further 
improvements are discussed and suggested, 
concentrating on the possibilities of the application 
of data-driven soft sensors derived from a family of 
statistical, computational intelligence and machine 
learning approches. 

2 CONTROLLER DESIGN 

In this paper, the model-based linearizing control of 
the nonlinear processes of the higher relative degree 
r > 1 is considered. It is assumed that the process is 
described by the following standard nonlinear state 
equations derived from first principle modelling 
where functions F(.) and h(.) are known while x and 
d respectively denote the process states and 
disturbances: 
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The control goal is to stabilize the controlled output 
Y at the set point Ysp by manipulating the input u.  

For the model-based linearizing controller 
synthesis, after applying Lie algebra (e.g., Isidori, 
1989; Henson and Seborg, 1997), the model (1) 
should be rearranged into the known part of the 
dynamical equation of the r-th order, describing 
directly the controlled variable Y: 
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Due to modelling inaccuracies, any controller 
based only on the known part of Eq. (2) cannot 
ensure offset-free control without additional 
application of the integration of the regulation error 
or without any other on-line compensation for 
modelling error. Thus, based on the idea of the 
Balance-Based Adaptive Control (B-BAC) (e.g. 
Czeczot, 2001, 2006) or more generally on the 
additive disturbance estimate for Model Predictive 
Control (MPC) (e.g. Maciejowski, 2002), the single 
additive parameter RY completes the known part of 
Eq. (2). RY accounts for modelling inaccuracies 
which can be easily and effectively compensated by 
on-line estimation of its value. 

For the controller design, the r-th order reference 
model can be assumed for the closed loop dynamics: 
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with λ0 .. λr-1 denoting the tuning parameters and 

then, after substituting RY by its on-line estimate YR̂  

and inversing, the adaptive linearized controller for 
the considered process can be derived as: 
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The controller (4) potentially is able to 
compensate for the process nonlinearities and its 
higher order dynamics. It must be implemented 
jointly with the estimation procedure for computing 

the value of YR̂  and only then it can ensure the 

offset-free control. For this purpose, a simple 
method can be suggested taking advantage of the B-
BAC methodology (Czeczot, 1998; Stebel et al., 
2014), using the discretized model (2) and the 
measurement data for Y, x and d. After discretization 
of Eq. (2), the following equation can be derived: 
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where i denotes the i-th sampling, TR is the 
discretization instant,  Yr

RT  represents the r-th 

order finite backward difference operator and 
 iiii dxYHH ,,1,1  ,  iiii dxYHH ,,2,2  . Due to the 

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

692



presence of the measurement noise represented by 
the additive error ε, Eq. (5) is not recommended for 

directly calculating the estimate YR̂  and thus the 

estimation procedure based on the WRLS (Weighted 
Recursive Least-Squares) method is applied to 
minimize the influence of this noise on the 
estimation accuracy. Eq. (5) defines the measurable 
auxiliary variable w and it has the form of the linear 

equation affine to the unknown parameter YR̂  with 

the constant regressor (–TR
r). Consequently, it allows 

for the application of the simplified scalar discrete-
time form of the WRLS equations where α(0,1) 
denotes the forgetting factor: 
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with the initial values: P0 > 0 and freely but 

reasonably chosen 0,
ˆ

YR . The dynamical properties 

of the estimation procedure (6) are equivalent to the 
estimation procedure suggested previously for the  
B-BAController in the form dedicated for the 
processes of the unitary relative degree (Czeczot, 
2006a; Klopot, Czeczot and Klopot, 2012; Stebel et 
al., 2014). The accurate estimation is ensured 
without necessity of applying any additional 
excitation input signals. In fact, even at the steady 

state, the estimate YR̂  always converges to its true 

value RY with the rate of convergence depending 
only on the value of the forgetting factor α. For the 
considered case, the significant difference is that the 
estimation is based on the higher order dynamical 
model and thus the on-line calculation of the 
backward finite differences  Yr

RT  in Eq. (5) is 

required, based on the noisy measurements. 
When the controller (4) with the estimation 

procedure (6) are to be applied in practice, there are 
some difficulties that must be dealt with: 
 the higher relative degree r > 1 requires 

computing higher order time derivatives, both 
for the controller (4) and for the estimation 
procedure (6) - for this purpose, the backward 
finite differences of the respective order can 
be applied but then the calculations would be 
based on the noisy measurement data of Y; 

 tuning requires adjusting r parameters λ0 .. λr-1 
for the controller (4) and the forgetting factor 
α for the estimation procedure (6); 

 the measurement data for the states x and for 
the disturbances d are required; the not 

measurable ones should be computed by 
applying an observer designed based on the 
model (1) (Albertos and Goodwin, 2002; 
Kravaris et al., 2013) or as data-driven soft 
sensor (Kadlec and Gabrys, 2008; 2009; 
Kadlec et al., 2009). 

Summarizing, the suggested approach is very 
promising and it ensures very good control 
performance during the simulation experiments in 
the application to a various higher-degree nonlinear 
processes. At the same time, from the practical 
viewpoint, it requires relatively high computational 
effort and it is potentially sensitive to the 
measurement noise. Thus, the aim of this paper is to 
verify in practice if the application of the controller 
(4) with the estimation procedure (6) can improve 
the control performance that would be worth such 
additional modelling and implementation effort. 

3 PRACTICAL VALIDATION 

In the paper, the experimental setup of three serially 
connected pneumatic tanks presented in Fig. 1 is 
considered as the example process to be controlled. 
The respective volumes of the tanks are V1 = 5 [L], 
V2 = 2 [L] and V3 = 0.75 [L] and the corresponding 
relative pressures at each tank are denoted as p1, p2, 
p3 [bar]. The respective pressure capacities are 
denoted as cpa, cpb and cpc [m*s2]. The system is 
manipulated by the supplying air pressure ps [bar] 
and the air flows between the tanks through the 
constant pneumatic resistances Rpa, Rpb, Rpc [m*s]. In 
the last tank, the air flows out through the adjustable 
pneumatic resistance Rpd [m*s] and the relative 
pressure outside the tank is denoted as p4 [bar]. The 
supplying relative pressure ps is adjustable by the 
proportional valve MPPES-3-1 from Festo within 
the range 0 - 4 [bar]. All the pressures ps, p1, p2, p3 
are measured on-line by the SDE1 pressure sensors 
and the pneumatic resistance Rpd at the outlet from 
the third tank can be changed by automatic 
switching between two pneumatic valves of different 
resistance. The relative pressure p4 = 0. The 
pneumatic process is connected to the SCADA 
system (Golda, 2013) written in zenon from COPA-
DATA and the on-off valves are controlled by the 
controller CPX-CEC-C1 from Festo. 
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Figure 1: Pneumatic experimental setup. 

For the controller synthesis, the mathematical 
model of the process has been derived in the form of 
Eqs. (1), assuming laminar flow (Golda, 2013):  
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For the chosen operating point, the values of the 
model parameters have been identified off-line from 
the measurement data as: cpa = 6*10-8, cpb = 2.5*10-8, 
cpc = 1*10-8, Rpa = 0.25*108, Rpb = 0.6*108,  
Rpc = 12*108 and Rpd = 25 *108. Readers should note 
that this linear flow modelling is a simplification 
because for some operating regions, the flow in the 
real process is nonlinear. 

The control goal is defined to stabilize the 
pressure Y = p3 at the set point Ysp by manipulating 
the supplying pressure u = ps. The process is 
disturbed by the relative pressure p4 and by the 
outlet pneumatic resistance Rpd. Its relative degree is 
r = 3 and assuming constant disturbances, the model 
(7) can be rearranged into the dynamic equation of 
the form of Eq. (2), describing the dynamics of the 
controlled variable: 
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where the expressions for A, B(Rpd), C(Rpd), D(Rpd), 
E(Rpd) are given in the Appendix. After defining: 
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the form of the controller (4) can be directly applied, 
jointly with the estimation procedure (6) for the 
unknown parameter RY. Assuming p4 = 0, this 
approach requires the measurement data from the 
disturbance Rpd and from the other states p1, p2. 
Additionally, based on the measurement data, 1st, 2nd 
and 3rd order time derivatives of the controlled 
pressure Y = p3 must be computed numerically. 

During practical implementation and validation, 
it was assumed that only the relative pressures u = ps 
and Y = p3 are measurable on-line. Additionally, the 
values of the disturbing Rpd for the considered 
operating points were approximately identified off-
line from measurement data so they could be 
assumed to be known. The moments of the 
switching between different values of the disturbing 
resistance Rpd were known as well. 

The suggested controller (4) requires the 
measurement data from the relative pressures p1, p2 
which are assumed to be not measurable. Thus, it 
was decided to apply the model (7) excited by the 
same signals as the real process as the open-loop 
observer, to avoid the additional dynamics 
introduced by the correction term required for on-
line update of the closed-loop observer. This 
approach is justified by the fact that in practice, 
when the model is incorrect, the correction term 
does not ensure perfect state estimation and this 
inaccuracy must be compensated anyway. For the 
suggested approach, the estimation procedure 
ensures the compensation of any modelling 
inaccuracies directly in the control law so the 
inaccuracy of the observer is acceptable and there is 
no need to introduce the additional dynamics 
resulting from the its correction term that yet has to 
be tuned. 

The first attempt to the practical implementation 
was based on the numerical computation of the 1st, 
2nd and 3rd order time derivatives of the controlled 
pressure Y = p3 directly from the measurement data 
by successive application of the library functions 
DERIVATIVE accessible in the programming 
environment CoDeSYS. The results were 
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unacceptable because all the pressures are measured 
by the sensors equipped with A/D converters of 
limited resolution which results in significant and 
unpredictable quantization effect that can be 
considered as a type of measurement noise. 
Consequently, the consecutive time derivatives 
computed based on this data vary in a wide range 
producing peaks, which is presented in Fig. 2. The 
higher order derivatives are corrupted even more and 
more significantly and these peaks result in very 
large chattering of the manipulated variable 
computed by the controller (4), which is 
unacceptable. 

 

Figure 2: Example magnified results for computing the 1st 
(second diagram) and 2nd (third diagram) time derivatives 
of the controlled variable from measurement data of the 
original signal (first diagram). 

Because the model (7) must be integrated 
numerically jointly with the controller (4) and the 
estimation procedure (6) (as the open-loop observer) 
to provide the required information about the 
pressures p1, p2, it was decided to substitute the 
measurement data of the controlled pressure p3 by its 
value reconstructed by the model (7) for computing 
the consecutive time derivatives. This approach 
allows to avoid the quantization effect because the 
variations of the modeled pressure p3 are smooth. 
Consequently, unacceptable chattering in the 
manipulated variable disappears and the control 
performance of the suggested linearizing controller 
is acceptable from the practical viewpoint. 

Figures 3 - 5 show the comparative experimental 
results for three different operating points defined by 
the corresponding set point Ysp. Each experiment 
was carried out under the same scenario including 
the initial step change of the set point and the 
successive step changes of the disturbing resistance 
Rpd applied to the system and shown in all Figures. 

 

 

Figure 3: Experimental results of the control performance 
for the operating point Ysp = 1. 

 

Figure 4: Experimental results of the control performance 
for the operating point Ysp = 1.5. 

 

Figure 5: Experimental results of the control performance 
for the operating point Ysp = 0.5. 

During experiments, the conventional PI 
controller was applied as a benchmark, due to its 
huge popularity among industrial engineers (it is still 
the most frequently used control algorithm in the 
existing industrial control loops), even if the 
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methods for design of the PID-based control loops 
are still developing, e.g. (Åström and Hägglund, 
2005; Ang, Chong and Li, 2005; Jin and Liu, 2014). 

Initially, PI controller was tuned for a single 
operating point, using the Chien-Hrones-Reswick 
tuning method. Linff represents the suggested 
controller with the feedforward action from the 
varying value of Rpd included in the function H1(.) 
defined by Eq. (9a) and in the model (7) computed 
jointly with the suggested controller. Lin is the same 
controller but without such action where the constant 
value of Rpd identified for the chosen operating point 
is applied for the whole experiment. Initial tuning of 
both Linff and Lin controllers was based on locating 
the roots of the characteristic polynomial 
s3+λ2s

2+λ1s+λ0 as the negative real values to ensure 
stable reference model (3) (Henson and Seborg, 
1997). Finally, all controllers were retuned manually 
to ensure the same tracking properties with possibly 
small overregulation to ensure fair comparison 
 (kc = 1.55, TI = 10.03 [s] for PI controller and  
λ2 = λ1 = 0.7, λ0 = 0.08 for Linff and Lin controllers). 
The forgetting factor for the estimation procedure 
(6) was adjusted as α = 0.95. 

The results show the superiority of the suggested 
controller. Even Lin ensures smaller overregulations 
for disturbance rejection in comparison with the 
benchmark conventional PI controller. The 
application of Linff that incorporates the information 
about the variations of the disturbing resistance Rpd 
allows for more significant improvement in the 
disturbance rejection by ensuring shorter settling 
time and smaller overregulations, with the same 
smooth tracking properties. 

4 CONCLUSIONS 

This paper reports the preliminary results of the 
practical validation of the proposed control method 
in the application to the example pneumatic process 
of the relative degree r = 3. After assuming the 
closed loop reference model of the 3rd order, the 
linearizing controller is derived based on the 
simplified first-principle model. Inclusion of the 
higher order time derivatives of the controlled 
pressure Y = p3 in the control law provides the 
compensation for the higher relative degree of the 
process dynamics. Potential modelling inaccuracies 
in the steady state are compensated by the on-line 
estimation of the additive parameter RY, which 
ensures the offset-free control. The simplified first-
principle model of the process must be also 
numerically integrated on-line and applied as the 

open loop observer to provide the required 
information about not measurable states and to 
enable computing the higher order time derivatives 
of the controlled pressure, which is necessary due to 
poor quality of the measurement data. 

The experimental results show the practical 
applicability of the suggested approach and its 
superiority over the conventional PI controller, even 
in the case when there is no feedforward action from 
the disturbing pneumatic resistance Rpd. Inclusion of 
this action additionally improves the control 
performance even if the simplified first-principle 
model of the process used both for the controller 
synthesis and as the open loop observer is simplified 
and partially inaccurate. 

The practical disadvantage of the proposed 
controller is its relatively high mathematical 
complexity. It requires possibly accurate first-
principle model that then must be rearranged by 
applying Lie algebra into the corresponding higher 
order equation describing the dynamics of the 
controlled variable. Even for the simplified process 
model, the calculations are complex and they 
become more complex if the highly nonlinear model 
of the process is to be applied for this purpose. 

5 FUTURE DEVELOPMENTS 

In the considered case, the successful practical 
implementation of the suggested adaptive linearizing 
controller requires on-line numerical solving of the 
simplified model (7) of the process to provide the 
information about two not measurable state variables 
p1, p2 and about the controlled pressure p3 that is 
measurable but the quality of the measurement data 
does not allow for computing the consecutive 
required time derivatives. 

The model (7) operates as the open-loop 
observer and thus its accuracy is of the highest 
importance. Especially it is important to ensure 
possibly the best compensation for the higher degree 
dynamics of the real process in the transients. The 
results presented in this work were obtained for the 
case when the model (7) is time invariant with the 
only exception of the feedback from the 
approximately known measurable disturbance Rpd. 
All modeling inaccuracies are compensated by the 

on-line estimation of the additive parameter YR̂  but 

in fact, this approach is fully effective only in the 
steady state to ensure offset-free control. A surely 
much better control performance could be obtained 
if the model (7) was additionally adaptively updated 
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to ensure possibly highest modeling accuracy of the 
process dynamics. For this purpose, a range of data 
driven methods for designing the adaptive soft 
sensors (Fortuna et al., 2007; Lin et al., 2007; 
Kadlec et. al, 2011) can be considered and combined 
with the model (7). 

As one of the key aspects of the proposed 
method's success is either the availability of the 
measurements or their robust estimation procedure 
the data driven soft sensors could also be employed 
in the case of individual measurements prediction 
like in the case of values which are only infrequently 
measured (e.g. pressure values p1 and p2 from our 
example) or for the smoothing/interpolation 
purposes to avoid numerical problems resulting from 
the usage of inaccurate hard sensors (e.g. controlled 
pressure p3 in our example). 

There have been great advancements made in the 
learning algorithms used for the construction and 
adaptation of soft sensors and their multitude of 
applications and successful deployments have been 
summarized in comprehensive reviews (Lin et al., 
2007; Kadlec et. al, 2009; Kadlec et. al 2011) and 
textbooks, e.g. (Fortuna et al., 2007). The illustrated 
ability to start working with only few historical 
samples available (Kadlec and Gabrys, 2010) or to 
adapt and provide robust prediction in dynamically 
changing environments with noisy measurements 
(Kadlec and Gabrys, 2008, 2009, 2011) make the 
modern, intelligent soft sensing approaches a very 
attractive proposition to combine with model-based 
control approaches either as a replacement of the 
traditional observers (which require the knowledge 
of the plant model) or by providing information 
about variables which cannot be measured or can be 
measured only infrequently making them of limited 
use for control purposes. Such variables can be 
modeled and predicted on the basis of other 
measurable process variables which soft sensor 
techniques successfully exploit. Our future work will 
therefore focus on enhancing and robust evaluation 
of the proposed nonlinear model-based control 
algorithms dedicated for the processes of the higher 
relative degree, utilizing a variety of data driven soft 
sensing approaches. One possibility is to substitute 
the first-principle process model by the data-driven 
soft sensor based on the initial off-line learning from 
the measurement data and providing the prediction 
of the required state and controlled variables. The 
other approach could be based on the adaptive data-
driven update of the existing first-principle model to 
ensure the on-line compensation for modeling 
inaccuracies. In the latter, if the compensation was 
accurate, it would be possible to remove the 

estimation procedure for the additive parameter YR̂  

from the final form of the controller that now 
ensures the offset-free control in the presence of the 
steady state modeling inaccuracy. 

The results presented in this paper show that the 
example pneumatic process is of the 3rd relative 
degree but not very nonlinear. In fact, the simplified 
model (7) describes its dynamics with relatively high 
accuracy. Apart of what is described above, the 
future work will also concentrate on the practical 
validation of the suggested control strategy in the 
application of the higher order systems with stronger 
nonlinearities. 
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APPENDIX 

For the considered pneumatic system, the parameters 
of the dynamic model (8) are expressed as follows: 
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