
Framework for Securing Data in Cloud Storage Services

Mai Dahshan and Sherif Elkassass
Department of Computer Science and Engineering, American University in Cairo, Cairo, Egypt

Keywords: Cloud Storage, Cloud Security, Data Confidentiality, Fine Grained Access Control, Trusted Third Party.

Abstract: Nowadays, users rely on cloud storage as it offers cheap and unlimited data storage that is available for use
by multiple devices (e.g. smart phones, notebooks, etc.). Although these cloud storage services offer
attractive features, many customers are not adopting them, since data stored in these services is under the
control of service providers and this makes it more susceptible to security risks. Therefore, in this paper, we
addressed the problem of ensuring data confidentiality against cloud and against accesses beyond authorized
rights by designing a secure cloud storage system framework that simultaneously achieves data
confidentiality and fine-grained access control on encrypted data. This framework is built on a trusted third
party (TTP) service that can be employed either locally on users' machine or premises, or remotely on top of
cloud storage services for ensuring data confidentiality. Furthermore, this service combines multi-authority
ciphertext policy attribute-based encryption (MA-CP-ABE) and attribute-based Signature (ABS) for
achieving many-read-many-write fine-grained data access control on storage services. Last but not least, we
validate the effectiveness of our design by carrying out a security analysis.

1 INTRODUCTION

Cloud storage is a newly developed concept in the
field of cloud computation. It allows users to
outsource their data that has been managed
internally within the organization or by individual
users. The outsourcing of this data eliminates the
concerns associated with the installation of the
complex underlying hardware, saves increasing high
cost in data management and alleviates the
responsibilities of its maintenance. Although cloud

storage providers(CSPs) often state that they
offer safe environment for stored data, there have
been cases discovered where users’ data has been
modified or lost due to some security breach or some
human error. A study (CircleID Reporter, 2009)
surveyed more than 500 CTO and IT managers in 17
countries, showed that despite the potential benefits
of cloud storage, organizations and individuals do
not trust the existing cloud storage service providers
because the fear of the security threats associated
with them. When individual users and organizations
outsource their data to multi-tenant environment as
the cloud, they expect to have the same level of data
security as they would have in their own premises
(Sosinsky, 2010); However, this not the case in
cloud. Therefore, users cannot trust cloud for their

data confidentially.
This idea of securing data in cloud storage

services has attracted many researchers to work in
this field with the aim of constructing a trusted
control model of cloud storage. Most of the research
done in this field has focused on providing efficient
data access control mechanisms between data
owners and data users and cloud storage. The data
owners encrypt the data and enforce access control
policies on it locally before uploading it to the cloud.
After that, they provide decryption keys to users
they want to share with and leave to cloud the task
of managing the access control without have access
to any keys. However, this model of access control
is not feasible in cloud-based file sharing service
where there is no direct interaction between the data
owners and the data users(Yang et al.,2013).

2 PROBLEM STATEMENT

A recent security flaw in the Dropbox authentication
mechanism (Newton, 2011) begins the debate about
whether cloud storage services are sufficiently
secure to storesensitive data or not.(Hu et al. ,2010)
evaluated four cloud storage systems: Mozy,
Carbonite, Dropbox, and CrashPlan. After the

267Dahshan M. and Elkassas S..
Framework for Securing Data in Cloud Storage Services.
DOI: 10.5220/0005043802670274
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 267-274
ISBN: 978-989-758-045-1
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

evaluation, it was found out that none of these
systems can provide any guarantees for data
integrity, availability, or even confidentiality.
Moreover, Amazon S3 encrypts user's data by an
encryption key and an S3 master key and both keys
are stored at Amazon’s servers. Therefore, Amazon
is able to arbitrarily decrypt data leading to data's
confidentiality or integrity leakage.

Motivated by these limitations, in this paper we
pose the following research question:

How to construct cryptographic scheme that can
enforce data confidentiality and distributed data
access control efficiently in dynamic environments?

In other words. the main objective of the work is
to design cloud-based data sharing framework, in
which outsourced data, access control policy and
identity attributes of a user are considered as
confidential information.

3 RELATED WORK

3.1 Data Confidentiality

Current cloud storage services try to secure user's
data by encrypting them either on server side or
client side. In server side encryption (e.g. Amazon
S3) the data owner relies on the service for securing
its data; however, this solution isn't feasible for two
reasons. First, the user will send his plaintext to
service which exposes it to internal attacks where
the attacker can exploit vulnerabilities of servers to
achieve user’s data. Second, there is no guarantee
that the service will encrypt the data before
uploading it to the cloud (Chacos ,2012).

On the other hand, in client side encryption (e.g.
Wuala and TrueCrypt), the service encrypts user's
data locally before it is uploaded to the cloud.
Although, these solutions appear ideal methods for
securing users' data, they are not so. This is because
the keys involved in the process of encryption are
managed by software manner. Therefore, if the TCB
of client is corrupted, the attacker will intercept
keys. In addition, the encryption software's are
complicated for end users to use and may end up
with incorrect configuration (Deniability et
al.,2010).Moreover, client side encryption by cloud
storage services may expose user's data to key
disclosure, manipulated file content and the most
dangerous threat is the secret agent working at the
provider. This agent may be able to manipulate the
client software by injecting a malware in the
customer's system (Borgmann et al., 2012).

3.2 Fine Grained Access Control

One of the most challenging issues in current cloud-
based file sharing service is the enforcement of
access control policies and the support of policies
updates. The current deployment model of cloud
storage services cannot be fully trusted by data
owners; as a result, traditional server-based access
control methods are no longer applicable to cloud
storage systems.

To prevent the un-trusted servers from accessing
sensitive data in a traditional server-based system,
traditional methods usually encrypt files by using the
symmetric encryption approach with content keys
and then use every user’s public key to encrypt the
content keys and only users holding valid keys can
access the data. These methods require complicated
key management schemes and the data owners have
to stay online all the time to deliver the keys to new
user in the system. Moreover, these methods incur
high storage overhead on the server for storing
multiple encrypted copies of the same data for users
with different keys (Goh et al., 2003).

Another prevalent methodology for enforcing
access control policy, which is employed by most of
the current CSP, is to provide the remote cloud
server the power of key management and
distribution under the assumption that the server is
trusted or semi-trusted. However, the server cannot
be trusted by the data owners in cloud storage
systems and thus these methods cannot be applied to
access control for cloud storage systems (Sahai et
al., 2005).

Attribute-based encryption (ABE) (di Vimercati
et al., 2007) is regarded as one of the most suitable
technologies for realizing a fine-grained attribute-
based access control mechanism. Since its
introduction, two complementary schemes have
been proposed, which are: key-policy ABE
(KPABE) (Sahai et al., 2005) and ciphertext- policy
ABE (CP-ABE) (Bethencourt et al., 2007). It is more
convenient to use CP-ABE in the cloud
environment, because the encryptor holds the
ultimate authority about the encryption policy unlike
KP-ABE scheme where the encryptor does not have
entire control over the encryption policy because the
encryption policy is described in the keys.
Moreover, the access policy checking is implicitly
conducted inside the cryptography. That is, there is
no one to explicitly evaluate the policies and make
decisions on whether allows the user to access the
data (Waters et al., 2011).

Most of the ABE approaches take a centralized
approach and allow only one single authority (Tang

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

268

et al.,2012)(Zhiquan et al.,2012) for issuing users'
keys. However, this method may suffer from failure
or corruption because the authority can decrypt all
the encrypted data. Moreover, the authority may
become the performance bottleneck in the large
scale cloud storage systems. To address this issue,
multi-authority attribute-based access control
schemes were proposed, where multiple parties
could play the role of an authority. Although, multi-
authority ABE tries to solve the problem of single
authority CP-ABE, it needs to tie together different
components of a user’s secret key from multiple
authorities. (Chase M.,2007) (Muller et al.,2009)
suggest using a central authority to provide a final
secret key to integrate the secret keys from different
attribute authorities. However, the central authority
would be able to decrypt all the ciphertext because it
holds the master key of the system. Thus, the
central authority would be a vulnerable point for
security attacks and a performance bottleneck for
large scale systems. To overcome this problem,
(Chase and Chow, 2009)(Jung et al.,2013) propose a
multi-authority attribute-based access control
schemes without a central authority. They presented
secure multi-authority CP-ABE scheme that remove
the central authority by using a distributed PRF
(pseudo-random function). However, they have to
define a pre-determined number of authorities at
initialization, can tolerate collusion attacks for up to
N-2 authorities' compromise, and degrade the
performance of the system due to interaction among
the authorities during the system setup. (Lewko A.
and Waters B., 2011) proposed secure scheme
secure against any collusion attacks and it can
process the access policy expressed in any Boolean
formula over attributes. However, this method is
constructed in composite order bilinear groups that
incur heavy computation cost. (Liu,2011) presents a
fully secure multi-authority CP-ABE scheme in the
standard model with multiple CAs and AAs. Each
CA or AA operates independently from the others.
Before requesting the attribute-related keys from the
AAs, the user must ensure that he has obtained the
identity-related keys from all the CAs leading to
performance degradation. (Yang et al.,2013)(Yang
and Jia, 2013), eliminates the collusion problem
associated with previous work while maintaining
high performance.

4 MODELS AND ASSUMPTIONS

4.1 System Model

Based on our preliminary work (Dahshan and
Elkassass, 2014) and similar to (Yang and Jia,
2013) , the system model consists of six entities(as
in Figure 1).

The cloud storage provider (CSP) is a semi-
trusted entity. It is responsible for providing data
storage service (i.e. Backend Storage Servers) and
verification of users' data ciphertexts before it is
stored in the cloud.

Trusted third party (TTP) service: is an
independent entity that is trusted by all other system
components, and has capabilities to perform
extensive tasks (i.e. encryption, decryption and
signature). It maintains a key management service
that creates, manages, and destroys user's data files
encryption and decryption keys (DEK).

Data owner encrypts his data with the help of the
TTP service (which could be local or re-mote) by
defining the access policies over attributes from
multiple attribute authorities.

Each user has a global identity in the system. A
user can be either a reader or a writer and a reader
who may be entitled a set of attributes. we
differentiate writer from reader not at the individual
user level, but at the attribute level.

4.2 Security Model

 We consider the cloud service providers (CSPs)
are honest but curious. CSP will try to learn
information but will honestly follow any protocol
provided by the Data Owner (DO).

 The certificate authority (CA) is fully trusted in
the system. The CA is used to certify the
attribute authorities and the users that want to
join the system and provide global secret/public
keys to both attribute authorities and the users
respectively.

 We assume that legitimate users behave
honestly, by which we mean that they never
share their decryption key with the revoked
users.

 All communications between users/clouds are
secured by SSL/TLS protocol in order to secure
the data in transit.

Framework�for�Securing�Data�in�Cloud�Storage�Services

269

Figure 1: Secure Cloud Storage Service Design.

5 OUR PROPOSED SCHEME

5.1 Main Idea

In order to achieve secure fine-grained access
control on outsourced data, we utilize the following
cryptographic techniques: MA-CP-ABE, ABS(Cao
et al., 2011). The proposed service transfers the trust
from the cloud to the TTP service. It also provides
security for users' data with minimal overhead on
users. This TTP service has encryption/decryption
service that can be employed either locally or on top
of the cloud storage. Since users' data does not have
the same level of importance, offering a flat
encryption schemes without looking at the
importance of data by applying the same encryption
algorithm for all types of data expose the client
machine to huge computation overhead(Patel et
al.,2012).Therefore, the service offers different
encryption algorithms according to data's severity.
The TTP service does not store users' data; it only
stores the encryption and decryption keys. These
keys are critical components; therefore, they are
stored separately using a Hardware Security Module
or other secure elements(Shin et al.,2012). For
achieving data confidentiality against unauthorized
users, the TTP service collaborates with a number of
attribute authorities to achieve fine grained access
control. More specifically, the data owner associates
each data file with a set of attributes, and assign each
user (either a reader or a writer) an access structure
which is defined over these attributes. To enforce
this type of access control, we make use of MA-CP-
ABE. By doing so, we prohibit the cloud and
unauthorized users from getting access to owner's

plaintext or credentials, unlike most of the currently
available cloud storage services that either do not
provide file sharing services or give the cloud
provider full power over access control . Moreover,
we provide read or write or both accesses to a file
stored in the cloud by utilizing both MA-CP-ABE
and ABS. Last but not least, we shift most of the
heavy computations from the owner/user to the
cloud. We believe that our proposed scheme
combine different algorithms to form a larger and
more generic solution that supports the needs of a
cloud-based collaboration environment.

5.2 Scheme Description

We shall present the system level of following
operations: File Creation, User Grant, and File
Access.

5.2.1 New File Creation

The file creation process passes with two phases:
Encrypt Phase and Sign Phase.

Encrypt Phase:
a) Data owner selects the file along with

sensitivity level to be uploaded, defines a set of
attributes ܫ௨for read access policy (Ā) and a set
of attributes ܬ௨for write claim predicate (Ÿ).

b) It sends the file with its sensitivity level along
with Ā and Ÿ to TTP service.

c) TTP service asks the different authorities for
the related public/secret keys for Ā and Ÿ
based on their attributes.

d) Each AA run SKeyGen algorithm and return
related secret keys and public keys for both Ā
and Ÿ

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

270

e) TTP service generates a symmetric key
according to the sensitivity level.

f) The TTP service encrypts data file (F) with
symmetric key (DEK) and encrypts DEK with
the different authorities' public keys
ሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇ, global public parameter(GPP)
producing ciphertext CT.

 CT CP-ABE.Encrypt (GPP,
																					ሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇ, DEK , Ā)

Sign Phase
After the encryption, the TTP signs the CT both

for reader/writer differentiation and for providing
integrity verification to all parties that want to access
the file.

a) TTP service first hashes the CT which is
generated in the Encrypt Phase to produce
(H(c)). A timestamp is attached with hash code
to prevent replay attacks (H(c) ||t).

b) The hash is then signed by the secret key of
claim predicate (Ÿ) to produce the signature δ

 δ CP-ABS.Sign(GPP, h(CT)|| t,
Ÿ,ሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇሽ,(ࢊ࢏࢛ࡷࡼࡳ

 (ࢊ࢏ࢇ,ࢊ࢏࢛ࡷࡿ,(ࢊ࢏࢛′ࡷࡿࡳ,
c) After the Encrypt Phase and Sign Phase, TTP

service will send the ciphertext CT, the
attribute based encrypted decryption
keyሼܭܧܦሽሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇ , the signature δ, period

of validity t and claim predicate Ÿ {ܶܥ ,
ሼܭܧܦሽሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇ , δ , t , Ÿ } to owner.

d) The owner will upload {ܶܥ,ሼܭܧܦሽሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇ ,

δ , t , Ÿ } to the cloud storage provider (CSP).
e) The cloud storage provider (CSP) first checks

the validity of t with current time, and obtain
all verification keys that corresponds to
attributes depicted in the claim predicate Ÿ
from the AAs, then verify the δ by the boolean
value result

 R0→Verify (GPP, h(CT)|| t, δ,
Ÿሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇሽ)

If the signature is a valid signature, the CSP will
accept the upload request and save the time, Ÿ and
verification keys with the encrypted file CT.

5.2.2 New User Grant

a) The data owner defines the role of user and
determines if he is a reader or writer and sends
this information to AAs.

b) The user sends his certificate to AAs to get his
designated keys.

c) Each AA validates the signature to check if the
user is a legal user or not.

d) If the user is a legal user, then each AA will
assign him an attribute set S that is related to
his identity/role in its administration domain.
Otherwise, it aborts.

e) Each AA runs the SKeyGen algorithm to
generate all secret key components for the user.
If the user is a reader, he will only receive
secret key components to de-crypt the
ciphertext. If he is a writer, he will receive
secret key components to decrypt the data. In
addition to, secret key components to sign the
data.

f) After the user receives the key, he is able to
either read or write to data files stored at a
CSP.

5.2.3 File Access

Whenever a user wants to read the file, he processes
as follows:

a) The reader requests the file from the CSP.
b) The cloud sends the file

{CT,ሼܭܧܦሽሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇ , δ , t , Ÿ } to the reader
c) The user sends {CT,ሼܧܦሽሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇ , δ , t , Ÿ }

to TTP
d) TTP request corresponding public keys from

AA to verify signature (δ)
 R1→Verify(GPP, h(CT)|| t, δ, Ā

,	ሼࢊ࢏ࢇ࢑ࡼሽ࡭ࡵ∋ࢊ࢏ࢇሽ)
g) If the signature is valid, the TTP uses user's

secret keys (ሼ࢑ࢊ࢏ࢇ,ࢊ࢏࢛ࡷࡿሽ࡭ࡵ∋࢑ࢊ࢏ࢇሻ to decrypt
attribute based encrypted decryption
keyሼܭܧܦሽಾಲష಴ುషಲಳಶ and get symmetric
decryption keyܭܧܦ. Otherwise, abort.

h) The TTP decrypts encrypted file CT using
symmetric decryption key ܭܧܦ to obtain
plaintext F.

i) TTP send plaintext F to reader.

Whenever a user wants to update a file, he
processes as follows:

a) Download the file as a reader (same steps as
stated above) to get plaintext.

b) The user encrypts the plaintext F as in the
encryption phase producing CT1

c) Then the user sign the CT1 as in sign phase
producing new signature δ1 with a new
timestamp

d) Upload the updated encrypted file CT1 ,the
attribute based encrypted decryption
keyሼܭܧܦሽಾಲష಴ುషಲಳಶ , the new signature δ1
with a new timestamp t1and claim predicate
ೞܶ೔೒೙ to the CSP.

Framework�for�Securing�Data�in�Cloud�Storage�Services

271

e) The CSP will first check the validity of t1,
then verify the δ1 by the Ÿ and verification
keys to check if the user is able to update the
file according to his secret keys or not.

f) If the user is valid user, the updated file will be
stored on the cloud otherwise the CSP will
reject the update request.

6 ANALYSIS OF PROPOSED
SCHEME

6.1 Security Analysis

6.1.1 Data Initialization and Key Generation

In multi-authority CP-ABE, user keys come from
different authorities. Therefore, user's secret keys
must be tied together for the same user without
exposing it to any collusion attacks. Based (Yang
and Jia, 2013), these issues are resolved by using CA
to tie secret keys,CA is not involved in any creation
of secret keys or management of attributes. CA is
responsible only for issuing global keys and global
unique identities to legal users and authorities along
with global master key GPMK. Since each user has
a unique global identifier uid andsecret keys issued
by different AAs for the same uid, users can be tied
keys for decryption without the need for a central
authority as in (Chase M.,2007). Therefore, a
colluding user cannot combine his secret keys from
a certain set of authorities with another user who has
enough keys from the other authorities to decrypt the
ciphertext, because each key has his uid. In addition,
each user key contains a random number t for
randomizing the key. Due to this random number t
and the AA global identifier aid, each component
associated with the attribute in the secret key is
distinguishable from each other. Therefore, users
and authorities cannot collude by combine their keys
to get access to user's data, even if some AAs may
issue the same attributes. Furthermore, the CA do
not havefull control over encrypted data, because its
GPMK is a share of the key not the whole key as in
(Chase M.,2007).

Moreover, each user is issued a certificate from
the CA that it is presented to AA for requesting the
secret keys. The AA validates this certificate using
the verification keys issued from CA before issuing
any keys to users. By doing his validation step, we
prevent any user from using a fake uid to request a
decryption keys from AAs. In addition, this
certificate prevents attribute authorities from

colluding with each other, because, users do not
present their unique identifiers to every authority for
requesting the key. They just submit a pseudonym
based on user unique identifier that proves to the
attribute authority that he has this uid, without
revealing the uid itself.

6.1.2 File Creation

Initially, the TTP service encrypts users data using a
symmetric key selected by the user according to
sensitivity of data either locally or remotely. The
keys are stored on a hardware device which makes
them it hard to for attackers to break.All user
sensitive data sent to the CSP are encrypted.
Therefore, the cloud has no access to plaintext.

6.1.3 File Access

Our design offers two-layer encryption for data
before outsourcing it to the cloud. The data is
encrypted according to the level of sensitivity. Then,
the encryption key is encrypted with MA- CP-ABE
secret key. After that, the encrypted outsourced
dataሼFሽీుే, the attribute based encrypted decryption
keyሼDEKሽ౉ఽషిౌషఽాు , encrypted decryption key,
signature and claim predicate T౩౟ౝ౤are uploaded to
the cloud. In order for the adversary to extract any
information about F, he has to decrypt DEK firstly
in order to extract any information about F.
However, such session key (DEK) is encrypted with
the access control policy (τ) it would further require
MA-CP-ABE secret key (SK) that can satisfy (τ).
Since, SK is only shared with the legitimate users by
the data owner, the computational complexity for an
attacker would be equal to deciphering CP-ABE
without SK. Actually, MA-CP-ABE used in this
paper is provably secure under given the decisional
q-parallel Bilinear Diffie-Hellman Exponent (q-
parallel BDHE) problem is hard. Furthermore,
unauthorized users cannot update any file, because
any user must be authenticated he to the cloud by
providing the secret keys that satisfy its claim
predicate predicateT౩౟ౝ౤. Since these users cannot
present these credentials to the cloud, they are not
allowed to update the file. Therefore the message
integrity with non-repudiation can be provided by
our proposed scheme. Moreover, our proposed
scheme is resistant to replay attacks, because,
whenever an unauthorized user upload an old
version encrypted file with an old signature which
was signed by a former writer to the cloud storage
server, they are not able to replace data with stale
information from previous writes. This is because of

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

272

the period of validity t (time stamp) associated with
each file.

7 CONCLUSIONS

In this paper, we defined a new framework for data
security in cloud storage services. Through this
framework, we were able to achieve data
confidentiality and fine grained access control by
delegating key management and enforcement access
control to a TTP with minimal overhead on cloud
users .Our framework was also able to conquer two
of most important outsourced data sharing attacks:
replay attacks and collusion attacks. In addition, our
scheme was able to shift most of the extensive
computation load to the cloud. Our future work is to
evaluate this system and implement it in a real
application to prove its efficiency.

REFERENCES

Bethencourt J., Sahai A., and Waters B., 2007. Cipher-
text-policy attribute based encryption. In 28th IEEE
Symposium on Security and Privacy.

Borgmann M., Hahn T., Herfert M., Kunz T., Richter M.,
Viebeg U., and Vowe S., 2012. On the Security of
Cloud Storage Services. Fraunhofer Institute for Se-
cure Information Technology SIT. Available from:
http://www.sit.fraunhofer.de/en/cloudstudy.html html
[Accessed 6 March 2014].

Cao D., Zhao B., Wang X., Su J., and Ji G., 2011. Multi-
authority Attribute-Based Signature. In INCoS '11,
Third International Conference on Intelligent
Networking and Collaborative Systems.

Chacos B., How to encrypt your cloud storage for free.
PCWorld. Available from:
http://www.pcworld.com/article/2010296/how-to-
encrypt-your-cloud-storage-for-free.html [Accessed 6
February 2014].

Chase M., 2007. Multi-authority attribute-based
encryption. In TCC’ 07, The Fourth Theory of
Cryptography Conference.

Chase M. and Chow S.M., 2009. Improving privacy and
security in multi-authority attribute-based encryption.
In CCS '09, 16th ACM conference on Computer and
communications security.

CircleID Reporter, 2009. Survey: Cloud computing 'no
hype', but fear of security and control slowing
adoption. Available from:
http://www.circleid.com/posts/20090226_cloud_comp
uting_hype_security [Accessed 7 January 2014].

Dahshan M. and Elkassass S. 2014. Data Security in
Cloud Storage Services. In CLOUD
COMPUTING’14, The Fifth International Conference
on Cloud Computing, GRIDs, and Virtualization.

Deniability P., Gasti P., Ateniese G., and Blanton M.,
2010. Deniable cloud storage: sharing files via public-
key deniability. In WPES '10, 9th annual ACM
workshop on Privacy in the electronic society.

Di Vimercati S. D. C., Foresti S., Jajodia S., Paraboschi S.,
and Samarati P., 2007. A data outsourcing architecture
combining cryptography and access control. In CSAW
’07, ACM workshop on Computer security
architecture.

Goh E., Shacham H., Modadugu N., and Boneh D., 2003.
SiRiUS: Securing remote untrusted storage. In
NDSS'03 , Tenth Network and Distributed System
Security Symposium.

Hu W., Yang T., and Matthews J. N, 2010. The good, the
bad and the ugly of consumer cloud storage. In ACM
SIGOPS'10, Operating Systems Review.

Jung T., Li X., Wan Z., and Wan M., 2013. Privacy
preserving cloud data access with multi- authorities.
InINFOCOM’13, 33rd IEEE International Conference
on Computer Communications.

Lewko A. and Waters B., 2011. Decentralizing attribute-
based encryption. In Proceedings of EUROCRYPT'11,
30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques.

 Liu Z., Cao Z., Huang Q., Wong D. S., and Yuen T.
H.,2011. Fully secure multi-authority ciphertext-policy
attribute-based encryption without random oracles. In
ESORICS’11, The European Symposium on Research
in Computer Security.

Muller S., Katzenbeisser S., and Eckert C.,2009. On multi-
authority ciphertext-policy attribute-based encryption.
In Bulletin of the Korean Mathematical Society.

Newton, D. 2011. Dropbox authentication: insecure by
design. Available from:
http://dereknewton.com/2011/04/dropbox-
authentication-static-host-ids/[Accessed 17 February
2014].

Patel H. R., Patel D., Chaudhari J., Patel S., and Prajapati
K., 2012. Tradeoffs between performance and security
of cryptographic primitives used in storage as a service
for cloud computing. In CUBE '12, 2012
International Information Technology Conference.

Sahai A., and Waters B.,2005. Fuzzy Identity-based
Encryption. In EUROCRYPT'05, 24th Annual
International Conference on the Theory and
Applications of Cryptographic Techniques.

ShinJ., KimY., ParkW., and ParkC., 2012. DFCloud: A
TPM-based secure data access control method of
cloud storage in mobile devicesIn CloudCom’12,
IEEE 4th International Conference on Cloud
Computing Technology and Science.

Sosinsky, B., 2010. Cloud Computing Bible. John Wiley
& Sons. First Edition.

Tang Y., Lee P. P. C., Lui J. C. S., and Perlman R., 2012.
Secure Overlay Cloud Storage with Access Control
and Assured Deletion. In Proc. of TDSC’12, 2012
IEEE Transactions on Dependable and Secure
Computing.

Waters B., 2011. Ciphertext-policy attribute-based
encryption: An expressive, efficient, and provably

Framework�for�Securing�Data�in�Cloud�Storage�Services

273

secure realization. In PKC’11, 4th International
Conference on Practice and Theory in Public Key
Cryptography.

Yang, K., Jia, X., Ren, K., and Zhang B., 2013. DAC-
MACS: Effective data access control for multi-
authority cloud storage systems. In INFOCOM’13 ,
33rd IEEE International Conference on Computer
Communications.

Yang K., and Jia X., 2013. Expressive, Efficient and
Revocable Data Access Control for Multi- Authority
Cloud Storage. In TPDS'13, IEEE Transactions on
Parallel and Distributed Systems.

Zhiquan L., Hong C., Zhang M., and Feng D., 2012. A
secure and efficient revocation scheme for fine-
grained access control in cloud storage. In
CloudCom’12, IEEE 4th International Conference on
Cloud Computing Technology and Science.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

274

