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Abstract: Model-Driven Engineering (MDE) is a subset of Software Engineering (SE) which focuses on models. 
MDE provides techniques and guidelines to create models (metamodeling) and to transform them onto other 
models (including code). Recently, several MDE approaches have been successfully applied to the world of 
Modeling and Simulation (M&S), of which DEVS (Discrete EVent system Specification) is one of the most 
popular formalisms. The goal of those approaches is to increase DEVS interoperability. Many of them resort 
to a metamodel to describe DEVS concepts. The most recent ones also provide automatic code generation 
“Model-To-Text” (M2T) towards DEVS simulators (DEVS “internal” interoperability) and establish links 
between DEVS and other formalisms, thanks to Model-To-Model (M2M) transformations (DEVS 
“external” interoperability). The purpose of this paper is to give a state of the art of the MDE contributions 
to DEVS formalism and to provide a comparative study of the most recent ones.  

1 INTRODUCTION 

Model-Driven Engineering (MDE) is a set of 
methods, approaches and techniques inherited from 
Software Engineering (SE). The common point 
shared by all of the MDE-oriented approaches is 
the use of models.  

DEVS (Discrete EVent system Specification) 
(Zeigler 1976) formalism relies on a strong 
mathematical background, inspired by the set 
theory, and enables to create models, which can be 
interconnected, and to simulate them. To simulate a 
DEVS model, it is needed to make a move from a 
theoretical model into a concrete implementation.  

There exist several different DEVS-oriented 
frameworks, lying on different object-oriented 
languages, used by several research teams in the 
world: that induces a lack of interoperability 
between DEVS models, which cannot be reused by 
the same team on another DEVS-oriented platform, 
and even less be shared among the whole DEVS 
community. But this lack of interoperability 
logically generates a need too. This need for 
interoperability between DEVS implemented 
models gave rise to several approaches, and a 
significant part of them is inspired by MDE.   

This paper is dedicated to those MDE 
contributions to DEVS formalism. We chose to 

highlight the approaches which propose a meta-
model for DEVS and involve transformation 
mechanisms. We present a comparative study of 
those approaches, focusing on three key aspects: the 
way they handle the DEVS basic concepts, the 
underlying meta-formalism, and the motivations of 
the work (improving interoperability, code 
generation…).   

This paper is organized as follows: it starts with 
a background section, dedicated to the DEVS 
formalism, and the key elements of MDE. The 
following section presents some of the MDE 
approaches that have been applied to DEVS 
formalism, and compare them. Finally, we conclude 
with a short discussion on the actual and future 
challenges in DEVS interoperability using MDE.  

2 BACKGROUND 

2.1 DEVS Formalism 

Since the 1970s, formal approaches have been 
proposed for the modeling and the simulation 
discrete event dynamic systems, and the DEVS 
formalism is a part of them. This formalism may be 
defined as a universal and general methodology, 
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machine diagram) into DEVS. This goes back to 
create DEVS models using Statecharts.  

Some researches proposed to use more than one 
UML diagram. For instance, (Zinoviev 2005) 
claims that DEVS suffers from a lack of graphical 
representation and uses UML to represent DEVS 
models. Atomic models are specified using UML 
state machine diagrams, while coupled models are 
described with UML component diagrams. This 
approach was not given any concrete 
implementation. On the other hand, (Mooney et al. 
2009) proposed a complete environment that allows 
the execution of DEVS models specified with 
UML: this approach tackles the temporal aspects, 
which are more present in DEVS than they are in 
UML.  

Other approaches rely on the UML extension 
mechanisms. Some use existing UML profiles, this 
is the case for (Nikolaidou et al. 2008). The authors 
employ SysML to graphically represent DEVS 
models created with DEVSML. Others create 
special profiles, for instance (Nikolaidou et al. 
2008). The authors also provide a partial code 
generation (skeleton).  

3.2 Recent MDE Approaches (since 2007) 

Usually, all the MDE approaches we study here 
follow the same pattern, inherited from MDE 
philosophy:  

 Define a metamodel for DEVS 
 Create M2T transformations (and/or) 
 Define M2M mappings 

 
The definition of a metamodel for DEVS is the 

first step, it makes one able to define DEVS atomic 
and coupled models. To create it, the starting point 
is the basic definition of DEVS formalism (2.1);  

In the second step, links between the DEVS 
metamodel and DEVS simulators (code) are 
established. The goal here is to reach several DEVS 
frameworks from only one DEVS platform-
independent model (internal interoperability). 
Hence, a single model would be simulated on 
several platforms (M2T);  

The third step establishes links between the 
DEVS metamodel and other formalisms. Those 
links tackle the external DEVS interoperability 
problem using M2M techniques.  

Regardless of the technique used, the most 
essential element that directly influences the 
viability, the power of expression and the accuracy 
of the DEVS models is the quality of the metamodel 
they lie on.  

The approaches we study in the next subsections 
take place within different technological spaces 
(Bézivin et al. 2005). The metaformalisms used by 
the following approaches are: XML Schema, MOF-
Ecore, EBNF (Extended Backus-Naur Form), E/R 
Diagrams.  

3.2.1 XML-Based Approaches 

DEVSML (Mittal et al. 2007) is a metamodel used 
for the description of DEVS models within Service-
Oriented Architectures (SOA). This approach 
enables to specify DEVS models but it is not totally 
platform-indepndent: the models can only be used 
with Java-based DEVS platforms, because 
DEVSML inherits from a XML-like language used 
to describe Java programs, JavaML (Badros 2000).   

More recently, (Mittal et al. 2012) introduced 
the “DEVSML framework” where it is possible to 
create Domain-Specific Languages (DSLs) and 
associate them to the DEVSML language. It is also 
possible to generate DEVSJAVA (DEVSJAVA 
2013) simulation code. This MDE-oriented 
approach is implemented within the Eclipse 
Modeling Framework (EMF) but uses the EBNF 
metaformalism.  

There also exists a similar approach: SimStudio 
(Touraille et al. 2011) based on a metamodel named 
DEVS Markup Language (DML). The idea is to 
improve DEVS internal interoperability using 
“hybrid code”: some same parts of the code are 
written in different languages so they can be chosen 
during the code generation.  

DEVSML has been used for M2M 
transformations towards DEVS (Risco-Martin et al. 
2007) (see 3.1). The M2T implementations use the 
language Xtend while all the transformations in 
SimStudio use XSLT (eXtensible Stylesheet 
Language Transformations).  

3.2.2 E/R Diagrams-Based Approaches 

The metamodeling environment AToM3 (Lara et al. 
2002) has been used by (Posse et al. 2003) and after 
that by (Levytskyy et al. 2003) to create a DEVS 
metamodel based on the E/R Diagrams 
metaformalism. Those approaches use the abilities 
of AToM3 in order to generate a graphical modeling 
environment based on the DEVS meta-model. All 
the DEVS states are enumerated (sequential states).  

Another DEVS metamodel, introduced in (Song 
2006), allows specifying state variables as 
attributes.  The transition functions are specified 
with text blocks. For all of those approaches, it is 
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possible to generate Python code for the simulator 
PyDEVS (Bolduc et al. 2001) using M2T 
mechanisms. Moreover, some M2M approaches 
were implemented, for instance (Borland 2003) 
proposed a transformation from Statecharts to 
DEVS. Code generation and model transformations 
are performed using the Python language.  

3.2.3 MOF-Based Approaches 

Those approaches are the most recent ones. They 
are located in the object-oriented technological 
space, and use MOF (and its subset EMF Ecore) as 
a metaformalism: in other words, they can be 
considered as MDA approaches.  

(Lei et al. 2009) use a M2M transformation 
from DEVS to SMP2 (Simulation Model Portability 
2). To do so, they resort to two packages. One of 
them contains the definition of the DEVS 
formalism. The DEVS functions are taken into 
account but the programmer needs to fill them: 
otherwise, they remain empty. The states are 
explicitly enumerated, under a textual form.  

On the contrary, EMF-DEVS (Sarjoughian et al. 
2012) is only centered on the DEVS formalism and 
its internal interoperability (EMF-DEVS does not 
provide any M2M transformation). The Ecore 
metamodel proposed by this approach enables to 
generate Java code using the native M2T EMF 
mechanisms. The atomic functions are abstract, and 
must be implemented manually. Only the coupling 
functions are automatically generated.  

MDD4MS (Cetinkaya et al. 2012) was 
originally based on the GME environment, but it is 
now fully implemented within EMF Ecore. The 
authors follow a MDA-oriented approach to define 
a DEVS metamodel. The atomic functions are 
specified using a platform-independent pseudo-
code, which seems to be described itself by a 
metamodel, linked to the DEVS metamodel. The 
states are handled by state variables, they can be 
typed and they also can be affected an initial value. 
A total code generation is provided, towards Java 
platforms (M2T). A M2M transformation from 
BPMN to DEVS is also proposed.  

MetaDEVS (Garredu et al. 2012) is a 
metamodel for DEVS based on a MDA approach, 
implemented within the Eclipse EMF framework. It 
specifies the DEVS states using typed variables that 
can be either enumerated or not. The functions are 
defined in a platform-independent way, using the 
DEVSRule concept based on Conditions and 
Actions. Code generation mechanisms use Acceleo. 
A generic approach form M2M transformations 

have also been proposed in (Garredu et al. 2013) 
and applied to a transformation between FSMs and 
DEVS.  

3.2.4 Comparison of the MDE Approaches 

Those approaches can be compared following 
several criteria. As far as we are concerned, the 
most significant ones are the solutions chosen to 
express states and functions. All of them favor 
finite and enumerated states and some ones also use 
state variables: (Song 2006), (Mittal et al. 2012), 
(Touraille et al. 2010), (Lei et al. 2009), (Cetinkaya 
et al. 2012), (Garredu et al. 2012). The advantage of 
taking into account the state variables in addition to 
enumerated states is that multidimensional states 
can be specified. In our opinion, these solutions 
appear to be complementary.  

Modeling the behavioral functions is also a 
criteria to evaluate the DEVS metamodels. Three 
different approaches are used.  

The first one is proposed by the approaches that 
chose to represent the states in a finite way: (Posse 
et al. 2003), (Song 2006), (Mittal et al. 2012), (Lei 
et al. 2009). In this case, the transition functions are 
enumerated and explicitly specify the state changes 
that must occur. The time advance and output 
functions are instantiated with each state: therefore, 
a state contains its lifespan and the associated 
output. The main advantage of the approach is that 
it leads to a complete automatic code generation, 
while its main drawback is that it is not able to 
specify more complex logical behaviors.  

The second one, chosen by (Song 2006), 
(Sarjoughian et al. 2012) and (Risco-Martín et al. 
2007) is depending on the platforms. It defines the 
elements that must be specified, or completed, by 
the programmer. Those elements depend on the 
target platform. Hence, some approaches consider 
the atomic functions are considered as abstract 
methods, textual meta-attributes, or code blocks. To 
provide a complete code generation, the same 
function must be written in several languages, but 
the logic they specify is not platform-independent 
(Touraille et al. 2010).  

Finally, the third one uses specifics metamodels 
in order to allow creating behavioral rules that 
define all the functions in a platform-independent 
way. The goal is to perform automatic code 
generations by limiting as much as possible the 
intervention of the programmer. The two main 
solutions aim to use a pseudo language (Cetinkaya 
et al. 2012) or a behavioral logic within the  
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Table 1: Comparison of the recent DEVS-MDE approaches. 

Table 2: Transformations associated to some recent DEVS-MDE approaches. 

 

associated DEVS metamodel (Garredu et al. 2012). 
Table 1 summarizes our comparison.  

Moreover, some of the approaches were used in 
M2M and/or M2T contexts. Some approaches are 
located in the OMG MDA technological space and 
use M2M transformation languages as ATL: (Lei et 
al. 2009), (Cetinkaya et al. 2012), (Garredu et al. 
2012). Other approaches use different 
transformation techniques (because of the 
technological spaces they belong to), such as XML 
for (Risco-Martín et al. 2007) or Python for 
(Borland 2003). Some approaches do not perform, 
at this time, M2M transformations.   

The transformations associated to the 
approaches we have presented are shown in Table 
2. Some information about their M2M (DEVS 

external interoperability) and M2T (DEVS internal 
interoperability) aspects is provided.  

4 CONCLUSION 

In this article, an overview of some significant 
MDE-oriented approaches linked to DEVS was 
presented. Some of them were detailed and 
compared. Using a MDE approach in a DEVS 
context increases the lifetime of the models, 
improves the way they are defined, makes them be 
reusable, and enhances their interoperability with 
other platforms and even other formalisms. Many 
MDE-oriented tools have been developed, in 

Approach  Metaformalism
Enum. 

States

State  

Vars
DEVS Functions (δint – δext – λ – ta ) 

AToM3 DEVS V1 (Posse et al. 2003)  ER Diagrams YES NO Finite 

AToM3 DEVS V2 (Song 2006)  ER Diagrams YES YES Finite or code blocks 

DEVSML V2 (Mittal et al. 2012)  EBNF YES YES Finite (DEVS State Machines) 

DEVSML V1 (Risco‐Martín et al. 2007)  XML Schema YES NO Code Blocks 

SimStudio/DML (Touraille et al. 2010)  XML Schema YES YES Partially Described (Hybrid code)

DEVS to SMP2 (Lei et al. 2009)  MOF  Ecore YES YES Finite 

MDD4MS (Cetinkaya et al. 2012)  MOF  Ecore YES YES Platform‐Independent Pseudo‐Code

EMF‐DEVS (Sarjoughian et al. 2012)  MOF  Ecore YES NO Abstract Methods 

MetaDEVS (Garredu et al. 2012)  MOF  Ecore YES YES Platform‐Independent Meta‐Classes

 
M2M Transformation  M2T Transformation 

Approach  Nature 
Transformation

Approach 
Destination Platform 

Transformation 

Approach 

AToM3 DEVS V1 (Posse et al. 2003) 

and (Borland 2003) 
SC → DEVS 

Graph 

(Python) 
PyDEVS 

Model Parsing 

(Python) 

DEVSML V2 (Mittal et al. 2012)  DSLs→DEVSML  Xtend  DEVSJAVA  Xtend 

DEVSML V1 (Risco‐Martín et al. 2007)  SC→DEVS‐SM  XML Parser  DEVS‐XML  XML Parser 

SimStudio/DML (Touraille et al. 2010)  x  x  DML‐Lang & DML  XML Parser 

DEVS to SMP2 (Lei et al. 2009)  DEVS → SDML  ATL  x  x 

MDD4MS (Cetinkaya et al. 2012)  BPMN → DEVS  ATL  DEVSJAVA  Model Parsing (Java)

EMF‐DEVS (Sarjoughian et al. 2012)  x  x  DEVS‐Suite  Model Parsing (Java)

MetaDEVS (Garredu et al. 2013)  FSM → DEVS  ATL  PyDEVS & Other  Acceleo (template) 

A�Survey�of�Model-Driven�Approaches�Applied�to�DEVS�-�A�Comparative�Study�of�Metamodels�and�Transformations

185



 

particular for the Eclipse EMF platform, as 
additional plug-ins. 
However, the metamodels that have been proposed 
for DEVS face a difficult issue: the definition of the 
states and the transition functions in a platform-
independent way. Doing so highly reduces the 
power of expression of the metamodel. Some 
research need to be done in order to increase the 
power of expression of the metamodels, maybe with 
a combination of graphical and textual notations. 
An important criteria, which was not evaluated here, 
is linked to the semantics of the metamodels: indeed, 
a metamodel only specifies an abstract syntax and 
needs semantics to be more accurate. MDAbased 
meta-models usually resort to Object Constraint 
Language (OCL) to express those semantics. 
However, the power of a metamodel’s semantics 
remain hard to evaluate. 
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