
A Survey of Model-Driven Approaches Applied to DEVS
A Comparative Study of Metamodels and Transformations

Stéphane Garredu, Evelyne Vittori, Jean-François Santucci and Bastien Poggi
Department of Computer Science, University of Corsica, Campus Grimaldi, Corte, France

Keywords: M&S, DEVS, MDE, MDA, M2M, M2T, Interoperability.

Abstract: Model-Driven Engineering (MDE) is a subset of Software Engineering (SE) which focuses on models.
MDE provides techniques and guidelines to create models (metamodeling) and to transform them onto other
models (including code). Recently, several MDE approaches have been successfully applied to the world of
Modeling and Simulation (M&S), of which DEVS (Discrete EVent system Specification) is one of the most
popular formalisms. The goal of those approaches is to increase DEVS interoperability. Many of them resort
to a metamodel to describe DEVS concepts. The most recent ones also provide automatic code generation
“Model-To-Text” (M2T) towards DEVS simulators (DEVS “internal” interoperability) and establish links
between DEVS and other formalisms, thanks to Model-To-Model (M2M) transformations (DEVS
“external” interoperability). The purpose of this paper is to give a state of the art of the MDE contributions
to DEVS formalism and to provide a comparative study of the most recent ones.

1 INTRODUCTION

Model-Driven Engineering (MDE) is a set of
methods, approaches and techniques inherited from
Software Engineering (SE). The common point
shared by all of the MDE-oriented approaches is
the use of models.

DEVS (Discrete EVent system Specification)
(Zeigler 1976) formalism relies on a strong
mathematical background, inspired by the set
theory, and enables to create models, which can be
interconnected, and to simulate them. To simulate a
DEVS model, it is needed to make a move from a
theoretical model into a concrete implementation.

There exist several different DEVS-oriented
frameworks, lying on different object-oriented
languages, used by several research teams in the
world: that induces a lack of interoperability
between DEVS models, which cannot be reused by
the same team on another DEVS-oriented platform,
and even less be shared among the whole DEVS
community. But this lack of interoperability
logically generates a need too. This need for
interoperability between DEVS implemented
models gave rise to several approaches, and a
significant part of them is inspired by MDE.

This paper is dedicated to those MDE
contributions to DEVS formalism. We chose to

highlight the approaches which propose a meta-
model for DEVS and involve transformation
mechanisms. We present a comparative study of
those approaches, focusing on three key aspects: the
way they handle the DEVS basic concepts, the
underlying meta-formalism, and the motivations of
the work (improving interoperability, code
generation…).

This paper is organized as follows: it starts with
a background section, dedicated to the DEVS
formalism, and the key elements of MDE. The
following section presents some of the MDE
approaches that have been applied to DEVS
formalism, and compare them. Finally, we conclude
with a short discussion on the actual and future
challenges in DEVS interoperability using MDE.

2 BACKGROUND

2.1 DEVS Formalism

Since the 1970s, formal approaches have been
proposed for the modeling and the simulation
discrete event dynamic systems, and the DEVS
formalism is a part of them. This formalism may be
defined as a universal and general methodology,

179
Garredu S., Vittori E., Santucci J. and Poggi B..
A Survey of Model-Driven Approaches Applied to DEVS - A Comparative Study of Metamodels and Transformations.
DOI: 10.5220/0005041001790187
In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2014),
pages 179-187
ISBN: 978-989-758-038-3
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

which p
systems,
formalism
specifica
modular

DEV
platform
2013) or

At th
and platf
models.
one-dime
graphica
automato
tuples a
necessary
most of
its imp
Several a
standard
quote he
Interoper
2008). D
atomic m

2.1.1 D

The basi

AM =

•

•

•
•

•

•

•

2.1.2 D

The pur
describe

provides too
 whose behav
m lies on the
ation of compl
and hierarchi

VS has been
ms, for instanc

PyDEVS (Bo
his time, there
form-independ
Usually, a s

ensional (qu
ally represente
on. If it nee
are described
y, a pseudo-la
the time, a D

plemented fo
approaches h
representatio

ere the work
rability Stan
DEVS is com
models and the

DEVS Atomi

ic entity in DE

= < X, Y, S, ta

X = {(p,v)|p
input events
input ports a
values for tho
Y = {(p,v)|p
output events
output ports
values for tho

S is the states
ta: S → R0

+

function (or l
δint: S → S
function;
δext: Q × X
e∈[0,ta(s)]}
function;
λ: S → Y, wi
v∈Yp} is the

DEVS Coupl

rpose of a D
a hierarchy:

ols to model
vior is based
system theory
lex discrete ev
ical way.
n implement
ce DEVSJAV
olduc et al. 20
exist no uniq

dent) represen
simple DEVS
ualitative) sta
ed as a kind of
ds to be mo

d mathematic
anguage is use
EVS model o

orm (object-
ave been tryi

on of DEVS
k of the SI

ndards Organ
mposed of tw
e coupled mod

ic Model

EVS is the ato

a, δint, δext, λ >

p InputPorts,
set; InputPo

and Xp is the
ose input ports
p∈OutputPorts
s set; OutputP
and Yp is the

ose output por

s set of the sys
+ ∪ +∞ is th
lifespan of a st
S is the int

→ S with
is the ext

ith Y = {(p,v)
output functio

led Model

DEVS couple
it has sub-mo

l and simul
on events. T

y and permits
vent systems i

ted on seve
VA (DEVSJAV
001).
que (standardiz
ntation of DE
S model, with
ate variable,
f annotated fin
ore accurate,
ally and, wh
ed. Neverthele
only exists un
oriented cod
ing to propos
models: we c
SO (Simulat

nization) (SI
wo artifacts:
dels.

mic model:

, where :

, v∈Xp} is
rts is the set

e set of possi
s;
s, v∈Yp} is

Ports is the set
e set of possi
rts;

stem;
he time advan
tate);
ternal transit

Q = {(s,e)/s
ternal transit

)|p∈OutputPo
on.

ed model is
odels (which c

late
This

the
in a

eral
VA

zed
EVS
h a

is
nite

its
hen
ess,

nder
de).
se a
can
tion
ISO
the

the
t of
ible

the
t of
ible

nce

tion

∈S,
tion

orts,

to
can

be e
them

CM

Wh

2.2

Thr
idea
for
DE
“int
of t
aim
bas
the

2.2

Eve
the
diff

DEV
sim
mod
are
(acc
intr
inte
a D
Thi
solv

either atomic
m. A coupled

M = <X, Y, D,

here

• X and Y
• D is the
• Md is a D
• EIC is t

an exte
between
coupled
its sub-m

• EOC i
coupling
link betw
coupled
of its sub

• IC is th
internal
the outp
input po

• select is

 DEVS In

roughout this
a of interoper
a simple clas
VS interopera
ternal” or “ex
the two differ

m to increase
ed or model-
second one.

.1 “Interna
Interope

en when it is
word inter

ferently, depen
For instance,
VS coupled

mulated togeth
dels, it’s not

not implem
cording to th
roduce here
eroperability, b
DEVS world,
s is a typica
ved using

or coupled) an
model is form

{Md|d∈	D}, E

Y are the same
set of compon

DEVS model
the set of exte
ernal input
n the input

model and th
models;
s the set
gs; an externa
ween the outp
model and th

b-models;
he set of in
coupling is a

put port of a
ort of another s

the tiebreaker

nteroperabil

article, we fr
rability. We b
ssification of t
abilities, in te
ternal”. Then
rent families
DEVS intero
based. In this

al” vs. “Exte
erability

employed wit
roperability
nding on the s
let us conside
models have
er. Although
possible to s

mented in t
he same sim

the conc
because this p

between tw
al case of an

a DEV

nd couplings
mally defined b

EIC, EOC, IC,

as in 2.2.1)
nent names, d
(atomic or co

ernal input co
coupling is
port of the

he input port o

of external
al output coup
put port of the
he output por

nternal coupli
a link which
a sub-model
sub-model;

er (selection) f

lity

frequently refe
begin with a p
the different

erms of range
n we give an o

of approache
operability: sim
s paper, we f

ernal”

thin a DEVS
can be und

situation.
er the ability
e to be imm
they both are

simulate them
the same l

mulator). Hen
cept of “i
problem takes

wo DEVS sim
 issue which

VS simulato

between
by:

 select>

d∈	D;	
oupled);
ouplings;

a link
current

of any of

output
pling is a
e current
rt of any

ings; an
involves
and the

function.

er to the
proposal
kinds of

e of use:
overview
es which
mulator-
focus on

context,
derstood

that two
mediately

e DEVS
m if they
language
nce, we
internal”
place in

mulators.
h can be
or-based

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

180

interoper
model to
refers to
once ag
world. T
oriented
successfu

On th
a DEVS
model,
problem
of remai
with two
formalism
call “ext
and anoth

Thos
issues ha
and (Gar

2.2.2 S
S

During t
made to
DEVS fr
have bee
in (Toura

The
interoper
simulato
between
where di
we can
oriented
based
Architec

2.3 Mo

MDE
methodo
and tran
MDE is
of the
formalism
incarnati
(OMG) M
2001).

2.3.1 Ab

Metamod
different

rability appro
o be exported
o an “intern
ain, this pro
This is a ty

interoperab
fully applied.
he other hand,
 model to be
it is obviou
is different fr

ining in a DE
o different for
ms and not im
ternal” the int
her formalism
e internal a
ave been expl
rredu et al. 20

Simulator-Ba
Solutions

the last decad
fill the gap b

frameworks. T
en used. An ov
aille et al., 200

first one
rability from
rs, using, for
at least two d

ifferent model
quote (Seo,
proposal for

interoperabili
ture.

odel-Driven

is a gene
ology that foc
nsforming mo
seen as a mod
real world,
m. One of
ions is the
Model-Driven

bstraction L

dels and mod
t abstraction l

oach. The abil
d onto severa
al” interoper
blem remain

ypical case w
bility appro

, if we consid
 simulated w
us that this
rom the previo
EVS world, w
rmalisms. He

mplementation
teroperability

m.
and external
lored in (Garr
13).

ased vs. Mo

de, several ef
between the d
Two major ki
verview of th
09).

aims to
the point o

r instance, sta
different simu
ls are defined.
2009) which
r a better D
ty using S

n Engineeri

eric software
cuses on crea
odels: in fact
del, i.e. an abs
described w

f the most
Object Man

n Architecture

Levels in MD

dels are linked
evels, in the f

lity for a DE
al platforms a
rability becau
s in the DE

where a mod
oach can

der the ability
ith a non-DE

interoperabi
ous ones. Inste
we have to d
ere we deal w
n. We propose

between DE

interoperabil
redu et al. 20

del-Based

fforts have be
different exist
inds of solutio
em can be fou

increase
of view of
andard messag
ulation platfor
. As an examp

is a simulat
DEVS simulat
Service-Orien

ing

e developm
ating, exploit
t, everything

straction of a p
with a model

popular MD
nagement Gro
e (MDA) (OM

DE

d to each other
following way

EVS
also
use,

EVS
del-

be

for
EVS

lity
ead

deal
with
e to

EVS

lity
12)

een
ting
ons
und

the
the

ages
rms
ple,
tor-
tor-

nted

ment
ting
 in
part
ling

MDE
oup
MG

r at
y: a

mod
leve
A m
conf
met
“me
des
high
and
sho

2.3

Mo
met
tran
(M2

gen
foll
met
MM
betw
and
Her
betw
MM
Eac
to
tran
met
or
tran
MM
is c
(M2

del (M1 leve
el), and it conf
metamodel de
nforms itself to
taformalism i
eta” levels
cription and
her level than

d description a
own in Figure

Figure 1

.2 Model T

del transform
tamodels, th
nsformation is
2) and execut

neral case fo
lowing one: if
tamodels, and

Mx, the asso
ween MMx an

d My. It trans
re, we assum
ween the form

My, which is n
ch metamodel

a differe
nsformation it
taformalism to
MFy. If MM

nsformation is
My are the sam
called endoge
2M) transfo

el) describes
nforms to its m
scribes a mod
o a metaforma
s located at
hierarchy: it
conforms to

n M3. The con
are detailed in
1.

1: Abstraction le

Transformat

mations are,
he key conc
s defined at
ted at the mo
r a model tr
f MMx and M

d Mx is a mod
ociated transf
nd MMy and e
forms Mx int
me that ther
malisms descri
not always the
l, according to
nt metaform
tself, as a m
oo, which can
Mx and MM
s called exog
me metamode
nous. Usually

ormation fol

the real wo
metamodel (M
deling formali
alism (M3 lev
the top of th
t contains i
o itself: ther
ncepts of confo
n (Bézivin, 20

levels in MDE.

tions in MDE

 with mod
cepts of M
the metamod
odel level (M
transformation
MMy are two
del which con
formation is
executed betw
to another mo
re exists a m
ribed by MMx
e case.
o Figure 1, c

rmalism, an
model, conform
n be, in this ca

My are differ
genous. If M
el, the transfo
y, a Model-To
llows the

orld (M0
M2 level).

ism, and
vel). The
he MDE
its own
e is no

formance
004) and

E

els and
MDE. A
del level
M1). The
n is the
o distinct
forms to
defined

ween Mx
odel My.
mapping
x and by

conforms
nd the
ms to a

ase, MFx
rent, the

MMx and
ormation
o-Model
schema

A�Survey�of�Model-Driven�Approaches�Applied�to�DEVS�-�A�Comparative�Study�of�Metamodels�and�Transformations

181

presented
(M2T)
transform
its imple
turns a
resorting
model tr
(Mens et

F

2.3.3 A

The MD
2004) is
Figure 2
MOF (M
popular
approach
(UML) (

Neve
drawback
expresse
solutions
UML (p
metamod
used in p

One
former i
Languag
consider
latter off
often mo
instead o

MDA
CIMs (C
and PSM
Some
tools/lan
dedicated
(Jouault

d in figure 2
transformatio

mation (from
ementation is

model Mx
g to a target
ransformation
t al. 2006).

Figure 2: A clas

A Particular

DA approach
 very similar

2. At the top
Meta-Object

metamodels
hes is the U
(OMG UML 2
ertheless, the a
k when spe

ed. To solve t
s: use the sp
profiles), or
del (conformin
place of UML

of the most
is the OMG
ge) (OMG Sy
ed as an exten
fers a larger s
ore complicate
of using an exi
A uses three
Computation

Ms (Platform I
famous MD

nguages are A
d to M2T
et al. 2006) d

2. Even if a
on is, in th
a MDE-based

s often simpl
into source

t metamodel.
n techniques

ssic MDE trans

MDE Incar

(OMG 2001
to the archit
level lies the
Facility). On

s used in
Unified Mod
2011) (Rumba
adaptability o
ecific concep
this, the OM
pecialization

define a c
ng to the MO
.

famous app
SysML (SYS

ysML 2012),
nsion of a sub
et of possibili
ed to create a
isting one.

different ki
Independent

Independent/S
DA-inspired
Acceleo (AC
transformatio

dedicated to M

Model-To-T
heory, a mo
d point of vie
ified: it direc

e code, with
Many exist

are detailed

sformation.

rnation: MD

) (Kleppe et
tecture shown
e metaformali
ne of the m

MDA-orien
deling Langua
augh et al. 200
of UML can b
pts have to
G proposes t
mechanisms

completely n
F) which will

plications of
Stems Model
, which can
set of UML. T
ities, even if i
new metamo

inds of mode
Models), PI

Specific Mode
transformat

CCELEO 201
ons, and A
M2M. They b

Text
odel
ew),
ctly

hout
ting

in

DA

al.
n in
ism

most
nted
age
05).
be a

be
two

of
new
l be

the
ling

be
The
it is
odel

els:
IMs
els).
tion
13),

ATL
both

are
(EM

3

In t
the
a st
bee
The
repr
rath

dom
nec
met
new

a m
the
of t
atom
that
app
mod
200
the
one

3.1

Tho
inte
exis
met
den
app
(abs
nota
mod
wel
is th
from
al.
tech

to D
Stat
mod
sam
prop
Stat

available a
MF) (Steinberg

MDE AP
TO DEV

this section, th
background s

tate of the art
en applied to
e main purp
resent DEVS
her than code.
We have pre

main concepts
essary to res
tamodels cou

w ones could b
The biggest p

metamodel for
structure (cou
the behavior
mic functions
t the first (u

plied to DEV
dels (see 3.1)

07) are based
moment, the

es.

 UML-Li

ose MDE a
eroperability o
sting metamo
tamodel: UM

nominator. T
proaches is th
stract syntax)
ations as an ab
dels written i
ll-documented
hat it is often
m those UML

2007) who
hnological spa
One of the fi

DEVS was (Sc
techarts form
dels that wer

me philosoph
posed to us
techarts form

s Eclipse M
g et al. 2009) p

PPROACH
VS FORMA

he ideas and c
section are put

of the MDE
DEVS, in a

pose of thos
S models, fo

eviously stated

had to be exp
ort to a meta
ld be reused

be created.
problem that re

DEVS is not
upled models
(atomic mod

s. In broad ou
until 2007) M
VS were base

, while the mo
on new meta

se seem to be

ike Approac

approaches ta
of the DEVS
odels, or mo
L. Hence, UM

The main a
he use of UM
, so that the u
bstract syntax
in UML are
d. However, an

difficult to ob
L models, exc

use tools r
ace.
irst UML-Lik
chulz et al. 20
malism (Hare
re equal to D
hy, (Risco-M
se XML in
malism (know

Modeling Fra
plugins.

HES APPL
ALISM

concepts pres
t together. We
approaches th
model-orient

se approache
ocusing on c

d that, when
pressed (i.e. w
amodel), wel
(and special

emains when
t the represent
s), but the des
del), with the
utline, it can

MDE-like app
ed on existin
ost recent one
amodels (see
e the most pr

ches (before

ackled the
formalism by

ore exactly o
ML is their c
advantage of
ML as a me
user can use g
x. Globally, th

well-represen
n important d

obtain simulati
cept (Risco-M
related to th

ke approaches
000). It resorte
el 1987) to

DEVS models
Martin et al.

order to
wn as UM

amework

LIED

sented in
e present
hat have
ted way.
es is to
concepts

specific
when it is
ll-known
lized) or

defining
tation of
scription
e DEVS

be said
proaches

ng meta-
es (since
3.2). At

romising

2007)

lack of
y reusing
only one
common
f those
etamodel
graphical
he DEVS
nted and
rawback
ion code

Martin et
he XML

s applied
ed to the

o create
s. In the
. 2007)
translate

ML state

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

182

machine diagram) into DEVS. This goes back to
create DEVS models using Statecharts.

Some researches proposed to use more than one
UML diagram. For instance, (Zinoviev 2005)
claims that DEVS suffers from a lack of graphical
representation and uses UML to represent DEVS
models. Atomic models are specified using UML
state machine diagrams, while coupled models are
described with UML component diagrams. This
approach was not given any concrete
implementation. On the other hand, (Mooney et al.
2009) proposed a complete environment that allows
the execution of DEVS models specified with
UML: this approach tackles the temporal aspects,
which are more present in DEVS than they are in
UML.

Other approaches rely on the UML extension
mechanisms. Some use existing UML profiles, this
is the case for (Nikolaidou et al. 2008). The authors
employ SysML to graphically represent DEVS
models created with DEVSML. Others create
special profiles, for instance (Nikolaidou et al.
2008). The authors also provide a partial code
generation (skeleton).

3.2 Recent MDE Approaches (since 2007)

Usually, all the MDE approaches we study here
follow the same pattern, inherited from MDE
philosophy:

 Define a metamodel for DEVS
 Create M2T transformations (and/or)
 Define M2M mappings

The definition of a metamodel for DEVS is the

first step, it makes one able to define DEVS atomic
and coupled models. To create it, the starting point
is the basic definition of DEVS formalism (2.1);

In the second step, links between the DEVS
metamodel and DEVS simulators (code) are
established. The goal here is to reach several DEVS
frameworks from only one DEVS platform-
independent model (internal interoperability).
Hence, a single model would be simulated on
several platforms (M2T);

The third step establishes links between the
DEVS metamodel and other formalisms. Those
links tackle the external DEVS interoperability
problem using M2M techniques.

Regardless of the technique used, the most
essential element that directly influences the
viability, the power of expression and the accuracy
of the DEVS models is the quality of the metamodel
they lie on.

The approaches we study in the next subsections
take place within different technological spaces
(Bézivin et al. 2005). The metaformalisms used by
the following approaches are: XML Schema, MOF-
Ecore, EBNF (Extended Backus-Naur Form), E/R
Diagrams.

3.2.1 XML-Based Approaches

DEVSML (Mittal et al. 2007) is a metamodel used
for the description of DEVS models within Service-
Oriented Architectures (SOA). This approach
enables to specify DEVS models but it is not totally
platform-indepndent: the models can only be used
with Java-based DEVS platforms, because
DEVSML inherits from a XML-like language used
to describe Java programs, JavaML (Badros 2000).

More recently, (Mittal et al. 2012) introduced
the “DEVSML framework” where it is possible to
create Domain-Specific Languages (DSLs) and
associate them to the DEVSML language. It is also
possible to generate DEVSJAVA (DEVSJAVA
2013) simulation code. This MDE-oriented
approach is implemented within the Eclipse
Modeling Framework (EMF) but uses the EBNF
metaformalism.

There also exists a similar approach: SimStudio
(Touraille et al. 2011) based on a metamodel named
DEVS Markup Language (DML). The idea is to
improve DEVS internal interoperability using
“hybrid code”: some same parts of the code are
written in different languages so they can be chosen
during the code generation.

DEVSML has been used for M2M
transformations towards DEVS (Risco-Martin et al.
2007) (see 3.1). The M2T implementations use the
language Xtend while all the transformations in
SimStudio use XSLT (eXtensible Stylesheet
Language Transformations).

3.2.2 E/R Diagrams-Based Approaches

The metamodeling environment AToM3 (Lara et al.
2002) has been used by (Posse et al. 2003) and after
that by (Levytskyy et al. 2003) to create a DEVS
metamodel based on the E/R Diagrams
metaformalism. Those approaches use the abilities
of AToM3 in order to generate a graphical modeling
environment based on the DEVS meta-model. All
the DEVS states are enumerated (sequential states).

Another DEVS metamodel, introduced in (Song
2006), allows specifying state variables as
attributes. The transition functions are specified
with text blocks. For all of those approaches, it is

A�Survey�of�Model-Driven�Approaches�Applied�to�DEVS�-�A�Comparative�Study�of�Metamodels�and�Transformations

183

possible to generate Python code for the simulator
PyDEVS (Bolduc et al. 2001) using M2T
mechanisms. Moreover, some M2M approaches
were implemented, for instance (Borland 2003)
proposed a transformation from Statecharts to
DEVS. Code generation and model transformations
are performed using the Python language.

3.2.3 MOF-Based Approaches

Those approaches are the most recent ones. They
are located in the object-oriented technological
space, and use MOF (and its subset EMF Ecore) as
a metaformalism: in other words, they can be
considered as MDA approaches.

(Lei et al. 2009) use a M2M transformation
from DEVS to SMP2 (Simulation Model Portability
2). To do so, they resort to two packages. One of
them contains the definition of the DEVS
formalism. The DEVS functions are taken into
account but the programmer needs to fill them:
otherwise, they remain empty. The states are
explicitly enumerated, under a textual form.

On the contrary, EMF-DEVS (Sarjoughian et al.
2012) is only centered on the DEVS formalism and
its internal interoperability (EMF-DEVS does not
provide any M2M transformation). The Ecore
metamodel proposed by this approach enables to
generate Java code using the native M2T EMF
mechanisms. The atomic functions are abstract, and
must be implemented manually. Only the coupling
functions are automatically generated.

MDD4MS (Cetinkaya et al. 2012) was
originally based on the GME environment, but it is
now fully implemented within EMF Ecore. The
authors follow a MDA-oriented approach to define
a DEVS metamodel. The atomic functions are
specified using a platform-independent pseudo-
code, which seems to be described itself by a
metamodel, linked to the DEVS metamodel. The
states are handled by state variables, they can be
typed and they also can be affected an initial value.
A total code generation is provided, towards Java
platforms (M2T). A M2M transformation from
BPMN to DEVS is also proposed.

MetaDEVS (Garredu et al. 2012) is a
metamodel for DEVS based on a MDA approach,
implemented within the Eclipse EMF framework. It
specifies the DEVS states using typed variables that
can be either enumerated or not. The functions are
defined in a platform-independent way, using the
DEVSRule concept based on Conditions and
Actions. Code generation mechanisms use Acceleo.
A generic approach form M2M transformations

have also been proposed in (Garredu et al. 2013)
and applied to a transformation between FSMs and
DEVS.

3.2.4 Comparison of the MDE Approaches

Those approaches can be compared following
several criteria. As far as we are concerned, the
most significant ones are the solutions chosen to
express states and functions. All of them favor
finite and enumerated states and some ones also use
state variables: (Song 2006), (Mittal et al. 2012),
(Touraille et al. 2010), (Lei et al. 2009), (Cetinkaya
et al. 2012), (Garredu et al. 2012). The advantage of
taking into account the state variables in addition to
enumerated states is that multidimensional states
can be specified. In our opinion, these solutions
appear to be complementary.

Modeling the behavioral functions is also a
criteria to evaluate the DEVS metamodels. Three
different approaches are used.

The first one is proposed by the approaches that
chose to represent the states in a finite way: (Posse
et al. 2003), (Song 2006), (Mittal et al. 2012), (Lei
et al. 2009). In this case, the transition functions are
enumerated and explicitly specify the state changes
that must occur. The time advance and output
functions are instantiated with each state: therefore,
a state contains its lifespan and the associated
output. The main advantage of the approach is that
it leads to a complete automatic code generation,
while its main drawback is that it is not able to
specify more complex logical behaviors.

The second one, chosen by (Song 2006),
(Sarjoughian et al. 2012) and (Risco-Martín et al.
2007) is depending on the platforms. It defines the
elements that must be specified, or completed, by
the programmer. Those elements depend on the
target platform. Hence, some approaches consider
the atomic functions are considered as abstract
methods, textual meta-attributes, or code blocks. To
provide a complete code generation, the same
function must be written in several languages, but
the logic they specify is not platform-independent
(Touraille et al. 2010).

Finally, the third one uses specifics metamodels
in order to allow creating behavioral rules that
define all the functions in a platform-independent
way. The goal is to perform automatic code
generations by limiting as much as possible the
intervention of the programmer. The two main
solutions aim to use a pseudo language (Cetinkaya
et al. 2012) or a behavioral logic within the

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

184

Table 1: Comparison of the recent DEVS-MDE approaches.

Table 2: Transformations associated to some recent DEVS-MDE approaches.

associated DEVS metamodel (Garredu et al. 2012).
Table 1 summarizes our comparison.

Moreover, some of the approaches were used in
M2M and/or M2T contexts. Some approaches are
located in the OMG MDA technological space and
use M2M transformation languages as ATL: (Lei et
al. 2009), (Cetinkaya et al. 2012), (Garredu et al.
2012). Other approaches use different
transformation techniques (because of the
technological spaces they belong to), such as XML
for (Risco-Martín et al. 2007) or Python for
(Borland 2003). Some approaches do not perform,
at this time, M2M transformations.

The transformations associated to the
approaches we have presented are shown in Table
2. Some information about their M2M (DEVS

external interoperability) and M2T (DEVS internal
interoperability) aspects is provided.

4 CONCLUSION

In this article, an overview of some significant
MDE-oriented approaches linked to DEVS was
presented. Some of them were detailed and
compared. Using a MDE approach in a DEVS
context increases the lifetime of the models,
improves the way they are defined, makes them be
reusable, and enhances their interoperability with
other platforms and even other formalisms. Many
MDE-oriented tools have been developed, in

Approach Metaformalism
Enum.

States

State

Vars
DEVS Functions (δint – δext – λ – ta)

AToM3 DEVS V1 (Posse et al. 2003) ER Diagrams YES NO Finite

AToM3 DEVS V2 (Song 2006) ER Diagrams YES YES Finite or code blocks

DEVSML V2 (Mittal et al. 2012) EBNF YES YES Finite (DEVS State Machines)

DEVSML V1 (Risco‐Martín et al. 2007) XML Schema YES NO Code Blocks

SimStudio/DML (Touraille et al. 2010) XML Schema YES YES Partially Described (Hybrid code)

DEVS to SMP2 (Lei et al. 2009) MOF Ecore YES YES Finite

MDD4MS (Cetinkaya et al. 2012) MOF Ecore YES YES Platform‐Independent Pseudo‐Code

EMF‐DEVS (Sarjoughian et al. 2012) MOF Ecore YES NO Abstract Methods

MetaDEVS (Garredu et al. 2012) MOF Ecore YES YES Platform‐Independent Meta‐Classes

M2M Transformation M2T Transformation

Approach Nature
Transformation

Approach
Destination Platform

Transformation

Approach

AToM3 DEVS V1 (Posse et al. 2003)

and (Borland 2003)
SC → DEVS

Graph

(Python)
PyDEVS

Model Parsing

(Python)

DEVSML V2 (Mittal et al. 2012) DSLs→DEVSML Xtend DEVSJAVA Xtend

DEVSML V1 (Risco‐Martín et al. 2007) SC→DEVS‐SM XML Parser DEVS‐XML XML Parser

SimStudio/DML (Touraille et al. 2010) x x DML‐Lang & DML XML Parser

DEVS to SMP2 (Lei et al. 2009) DEVS → SDML ATL x x

MDD4MS (Cetinkaya et al. 2012) BPMN → DEVS ATL DEVSJAVA Model Parsing (Java)

EMF‐DEVS (Sarjoughian et al. 2012) x x DEVS‐Suite Model Parsing (Java)

MetaDEVS (Garredu et al. 2013) FSM → DEVS ATL PyDEVS & Other Acceleo (template)

A�Survey�of�Model-Driven�Approaches�Applied�to�DEVS�-�A�Comparative�Study�of�Metamodels�and�Transformations

185

particular for the Eclipse EMF platform, as
additional plug-ins.
However, the metamodels that have been proposed
for DEVS face a difficult issue: the definition of the
states and the transition functions in a platform-
independent way. Doing so highly reduces the
power of expression of the metamodel. Some
research need to be done in order to increase the
power of expression of the metamodels, maybe with
a combination of graphical and textual notations.
An important criteria, which was not evaluated here,
is linked to the semantics of the metamodels: indeed,
a metamodel only specifies an abstract syntax and
needs semantics to be more accurate. MDAbased
meta-models usually resort to Object Constraint
Language (OCL) to express those semantics.
However, the power of a metamodel’s semantics
remain hard to evaluate.

REFERENCES

ACCELEO2013. ttp://www.eclipse.org/acceleo/.
Badros, G., 2000. “JavaML: A Markup Language for Java

Source Code.” Proceedings of the 9th International
World Wide Web Conference (Amsterdam,
Netherlands, May. 15-19),159- 7.

Bézivin J., « Sur les principes de base de l’ingénierie des
modèles », RSTI-L’Objet, 10(4):145–157, 2004.

Bézivin,J and Kurtev, I. : Model-based Technology
Integration with the Technical Space Concept. In
Metainformatics Symposium, Esbjerg, Denmark,
2005. Springer-Verlag.

Bolduc, J.S., Vangheluwe, H. A modelling and simulation
package for classical hierarchical DEVS. MSDL
technical report MSDL-TR-2001-01, McGill
University, June 2001

Borland, S., Transforming Statechart models to
DEVS,2003.

Cetinkaya D., Verbraeck A., and Seck M. D., Model
transformation from BPMN to DEVS in the
MDD4MS framework, Proceedings of the 2012
Symposium on Theory of Modeling and Simulation -
DEVS Integrative M&S Symposium, Orlando,
Floride, 2012

DEVSJAVA2013. http://www.acims.arizona.edu/
SOFTWARE/software.shtml#DEVSJAVA.
Garredu, S., Vittori, E., Santucci, J.-F., and Bisgambiglia,

P.-A., A Meta-Model for DEVS - Designed following
Model Driven Engineering Specifications,
Proceedings of the 2nd International Conference on
Simulation and Modeling Methodologies,
Technologies and Applications, Simultech 2012,
Rome, Italy, 28 - 31 July, 2012.

Garredu, S., Vittori, E., Santucci, J.-F., and Bisgambiglia,
P.-A., (In Press) From State-Transition Models to
DEVS Models - Improving DEVS external

interoperability using MetaDEVS: a MDE approach,
Proceedings of the 3rd International Conference on
Simulation and Modeling Methodologies,
Technologies and Applications, Reykjavik, Simultech
2013, Iceland, 29 - 31 July, 2013.

Harel D., Statecharts : A visual formalism for complex
systems, Science of Computer Programming,
8(3):231-274, 1987.

Jouault, F. and Kurtev, I. (2006) On the architectural
alignment of ATL and QVT. In: Proceedings of the
2006 ACM symposium on Applied computing, Dijon,
France.

Kleppe, A., Warmer, S., Bast, W., "MDA Explained. The
Model Driven Architecture: Practice and Promise",
Addison-Wesley, April 2003.

Lara J., Vangheluwe, H., “Using AToM as a Meta CASE
Tool”, 4th International Conference on Enterprise
Information Systems, Universidad de Castilla-La
Mancha, Ciudad Real (Spain), 3-6, April 2002.

Lei, Y., Wang, W., Li, Q., and Zhu, Y., A transformation
model from DEVS to SMP2 based on MDA,
Simulation Modelling Practice and Theory, Vol. 17,
Nr. 10 (2009) , p. 1690-1709.

Levytskyy, A., Kerckhoffs, E. J., Posse, E. and
Vangheluwe, H., “Creating DEVS components with
the meta-modelling tool AToM3” in 15th European
Simulation Symposium (ESS), A. Verbraeck and V.
Hlupic, Eds. Society for Modeling and Simulation
International (SCS), October 2003, pp. 97 – 103, delft,
The Netherlands.

Mens, T., Czarnecki, K., and Van Gorp, P., A Taxonomy
of Model Transformations, Electronic Notes in
Theoretical Computer Science (ENTCS) Volume 152,
March, 2006, pp. 125-142.

Mittal, S., Martín. J. L. R., Zeigler, B.P., « DEVSML:
automating DEVS execution over SOA towards
transparent simulators », Proceedings of the 2007
ACM Spring Simulation Multiconference, March 25-
29, 2007, Norfolk, VA, USA, Vol. 2, pp. 287-295.

Mittal, S., Douglass, S.A., DEVSML 2.0: The Language
and the Stack, DEVS Symposium, Spring Simulation
Multiconference 2012, Orlando.

Mooney, J. and Sarjoughian, H.S., A Framework for
executable UML models, In High Performance

Computing & Simulation Symposium, Spring Simulation
Conference, pages 1-8, 2009.

Nikolaidou, M., Dalakas, V., Kapos, G.-D., Mitsi, L. and
Anagnostopoulos, D., « A UML 2.0 profile for DEVS:
Providing code generation capabilities for simulation
» in Proceedings of 16th International.

Conference on Software Engineering and Data
Engineering (SEDE-2007), Las Vegas, USA, July
2007 (Invited paper).

Nikolaidou, M., Dalakas, V., Mitsi, L., Kapos, G.-D.,
Anagnostopoulos, D. « A SysML Profile for Classical
DEVS Simulators » (Conference Paper) Proceedings
of the 2008 The Third International Conference on
Software Engineering Advances, 978-0-7695-3372-8,
Pp 445-450, 2008, 10.1109/ICSEA.2008.24, IEEE
Computer Society.

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

186

OMG 2001. Model Driven Architecture homepage -
http://www.omg.org/mda/.

OMG UML 2011. Unified Modeling Language
specifications-http://www.omg.org/spec/UML/2.4.1

OMG SysML 2012. Systems Modeling Language -
http://www.omg.org/spec/SysML/1.3/.

Posse, E., Bolduc, J.S., Vangheluwe, H., Generation of
DEVS Modelling & Simulation Environments. In
Proceedings of the 2003 Summer Computer
Simulation Conference SCSC 2003.

Risco-Martin, J.L., Mittal, S., Zeigler, B.P., Cruz, J.L,
"From UML Statecharts to DEVS State Machines
using XML", Multi-paradigm Modeling, IEEE/ACM
International Conference on Model Driven
Engineering Languages and Systems , 2007.

Rumbaugh, J., Jacobson, I. and Booch, G., “The unified
modeling language reference manual”, The Addison-
Wesley object technology series, Addison-Wesley,
2005.

Sarjoughian H.S. and Markid, A.M., 2012. EMF-DEVS
modeling. In Proceedings of the 2012 Symposium on
Theory of Modeling and Simulation - DEVS
Integrative M&S Symposium (TMS/DEVS '12).
Society for Computer Simulation International, San
Diego, CA, USA.

Schulz, S., T. C. Ewing, and J. W. Rozenblit. 2000.
Discrete event system specification (DEVS) and
statemate statecharts equivalence for embedded
systems modeling, Proceedings of the 7th IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems, Edinburgh,
Scotland, 2000.

Seo, C. "Interoperability between DEVS Simulators using
Service Oriented Architecture and DEVS
Namespace", Ph.D. dissertation, Electrical and
Computer Engineering Dept., University of Arizona,
Spring 2009.

SISO 2008. Simulation Interoperability Standards
Organisation, SISO-REF-019-2008: Discrete-Event
Systems Specification (DEVS).

http://www.sisostds.org/ProductsPublications/ReferenceD
ocuments.aspx.

Song, H., Infrastructure for DEVS Modelling and
Experimentation. Master's thesis. McGill University.
School of Computer Science. (2006)

Steinberg, F.D., Budinsky, F., Paternostro, M., and Merks,
E. Eclipse Modeling Framework 2nd Edition, Addison
Wesley, 2009.

Touraille, L., Traoré, M.K., Hill, D., "On the
interoperability of DEVS components : On-Line vs.
OffLine Strategies.", 2009, UMR CNRS 6158,
LIMOS/RR-09-04, 13 p.

Touraille, L., Traoré, M.K., and Hill, D. R. C., 2011. A
model-driven software environment for modeling,
simulation and analysis of complex systems. In
Proceedings of the 2011 Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S
Symposium (TMS-DEVS '11). Society for Computer
Simulation International, San Diego, CA, USA, 229-
237.

Zinoviev, D., "Mapping DEVS Models onto UML
Models," Proc. of the 2005 DEVS Integrative M&S
Symposium, San Diego, CA, April 2005, pp. 101-106.

Zeigler, B.P., Theory of Modeling and Simulation, New-
York: Wiley-Interscience, 1976.

A�Survey�of�Model-Driven�Approaches�Applied�to�DEVS�-�A�Comparative�Study�of�Metamodels�and�Transformations

187

