A Survey of Model-Driven Approaches Applied to DEVS

A Comparative Study of Metamodels and Transformations

Stéphane Garredu, Evelyne Vittori, Jean-Frangois Santucci and Bastien Poggi
Department of Computer Science, University of Corsica, Campus Grimaldi, Corte, France

Keywords:

Abstract:

M&S, DEVS, MDE, MDA, M2M, M2T, Interoperability.

Model-Driven Engineering (MDE) is a subset of Software Engineering (SE) which focuses on models.

MDE provides techniques and guidelines to create models (metamodeling) and to transform them onto other
models (including code). Recently, several MDE approaches have been successfully applied to the world of
Modeling and Simulation (M&S), of which DEVS (Discrete EVent system Specification) is one of the most
popular formalisms. The goal of those approaches is to increase DEVS interoperability. Many of them resort
to a metamodel to describe DEVS concepts. The most recent ones also provide automatic code generation
“Model-To-Text” (M2T) towards DEVS simulators (DEVS “internal” interoperability) and establish links
between DEVS and other formalisms, thanks to Model-To-Model (M2M) transformations (DEVS
“external” interoperability). The purpose of this paper is to give a state of the art of the MDE contributions
to DEVS formalism and to provide a comparative study of the most recent ones.

1 INTRODUCTION

Model-Driven Engineering (MDE) is a set of
methods, approaches and techniques inherited from
Software Engineering (SE). The common point
shared by all of the MDE-oriented approaches is
the use of models.

DEVS (Discrete EVent system Specification)
(Zeigler 1976) formalism relies on a strong
mathematical background, inspired by the set
theory, and enables to create models, which can be
interconnected, and to simulate them. To simulate a
DEVS model, it is needed to make a move from a
theoretical model into a concrete implementation.

There exist several different DEVS-oriented
frameworks, lying on different object-oriented
languages, used by several research teams in the
world: that induces a lack of interoperability
between DEVS models, which cannot be reused by
the same team on another DEVS-oriented platform,
and even less be shared among the whole DEVS
community. But this lack of interoperability
logically generates a need too. This need for
interoperability between DEVS implemented
models gave rise to several approaches, and a
significant part of them is inspired by MDE.

This paper is dedicated to those MDE
contributions to DEVS formalism. We chose to

Garredu S., Vittori E., Santucci J. and Poggi B..

highlight the approaches which propose a meta-
model for DEVS and involve transformation
mechanisms. We present a comparative study of
those approaches, focusing on three key aspects: the
way they handle the DEVS basic concepts, the
underlying meta-formalism, and the motivations of
the work (improving interoperability, code
generation...).

This paper is organized as follows: it starts with
a background section, dedicated to the DEVS
formalism, and the key elements of MDE. The
following section presents some of the MDE
approaches that have been applied to DEVS
formalism, and compare them. Finally, we conclude
with a short discussion on the actual and future
challenges in DEVS interoperability using MDE.

2 BACKGROUND

2.1 DEVS Formalism

Since the 1970s, formal approaches have been
proposed for the modeling and the simulation
discrete event dynamic systems, and the DEVS
formalism is a part of them. This formalism may be
defined as a universal and general methodology,

A Survey of Model-Driven Approaches Applied to DEVS - A Comparative Study of Metamodels and Transformations. 179

DOI: 10.5220/0005041001790187

In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2014),

pages 179-187
ISBN: 978-989-758-038-3

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

SIMULTECH 2014 - 4th International Conference on Simulation and Modeling Methodologies, Technologies and

Applications

which provides tools to model and simulate
systems, whose behavior is based on events. This
formalism lies on the system theory and permits the
specification of complex discrete event systems in a
modular and hierarchical way.

DEVS has been implemented on several
platforms, for instance DEVSJAVA (DEVSJAVA
2013) or PyDEVS (Bolduc et al. 2001).

At this time, there exist no unique (standardized
and platform-independent) representation of DEVS
models. Usually, a simple DEVS model, with a
one-dimensional (qualitative) state variable, is
graphically represented as a kind of annotated finite
automaton. If it needs to be more accurate, its
tuples are described mathematically and, when
necessary, a pseudo-language is used. Nevertheless,
most of the time, a DEVS model only exists under
its implemented form (object-oriented code).
Several approaches have been trying to propose a
standard representation of DEVS models: we can
quote here the work of the SISO (Simulation
Interoperability ~Standards Organization) (SISO
2008). DEVS is composed of two artifacts: the
atomic models and the coupled models.

2.1.1 DEVS Atomic Model
The basic entity in DEVS is the atomic model:
AM=<X Y, S, ta, iy, Oexs, » >, Where :

* X = {(p.v)|pEInputPorts, v€X,} is the
input events set; InputPorts is the set of
input ports and X, is the set of possible
values for those input ports;

* Y = {(p,v)[pEOutputPorts, v€Y,} is the
output events set; OutputPorts is the set of
output ports and Y, is the set of possible
values for those output ports;

¢ Sis the states set of the system;

e ta: S > R,” U +wo is the time advance
function (or lifespan of a state);

* d,x § — S is the internal transition
function;

* Our O x X — § with O = {(s,e)/s€S,
e€[0,ta(s)]} 1is the external transition
function;

e A S— Y, with Y = {(p,v)[pEOutputPorts,
VEY,} is the output function.

2.1.2 DEVS Coupled Model

The purpose of a DEVS coupled model is to
describe a hierarchy: it has sub-models (which can

180

be either atomic or coupled) and couplings between
them. A coupled model is formally defined by:

CM =<X, Y, D, {Md|d€ D}, EIC, EOC, IC, select>

Where

* XandY are the same as in 2.2.1)

* Dis the set of component names, d € D;

* M, is a DEVS model (atomic or coupled);

* EIC is the set of external input couplings;
an external input coupling is a link
between the input port of the current
coupled model and the input port of any of
its sub-models;

* EOC is the set of external output
couplings; an external output coupling is a
link between the output port of the current
coupled model and the output port of any
of its sub-models;

* IC is the set of internal couplings; an
internal coupling is a link which involves
the output port of a sub-model and the
input port of another sub-model,;

* select is the tiebreaker (selection) function.
2.2 DEVS Interoperability

Throughout this article, we frequently refer to the
idea of interoperability. We begin with a proposal
for a simple classification of the different kinds of
DEVS interoperabilities, in terms of range of use:
“internal” or “external”. Then we give an overview
of the two different families of approaches which
aim to increase DEVS interoperability: simulator-
based or model-based. In this paper, we focus on
the second one.

2.2.1 “Internal” vs. “External”
Interoperability

Even when it is employed within a DEVS context,
the word interoperability can be understood
differently, depending on the situation.

For instance, let us consider the ability that two
DEVS coupled models have to be immediately
simulated together. Although they both are DEVS
models, it’s not possible to simulate them if they
are not implemented in the same language
(according to the same simulator). Hence, we
introduce here the concept of “internal”
interoperability, because this problem takes place in
a DEVS world, between two DEVS simulators.
This is a typical case of an issue which can be
solved using a DEVS simulator-based

A Survey of Model-Driven Approaches Applied to DEVS - A Comparative Study of Metamodels and Transformations

interoperability approach. The ability for a DEVS
model to be exported onto several platforms also
refers to an “internal” interoperability because,
once again, this problem remains in the DEVS
world. This is a typical case where a model-
oriented interoperability —approach can be
successfully applied.

On the other hand, if we consider the ability for
a DEVS model to be simulated with a non-DEVS
model, it is obvious that this interoperability
problem is different from the previous ones. Instead
of remaining in a DEVS world, we have to deal
with two different formalisms. Here we deal with
formalisms and not implementation. We propose to
call “external” the interoperability between DEVS
and another formalism.

Those internal and external interoperability
issues have been explored in (Garredu et al. 2012)
and (Garredu et al. 2013).

2.2.2 Simulator-Based vs. Model-Based
Solutions

During the last decade, several efforts have been
made to fill the gap between the different existing
DEVS frameworks. Two major kinds of solutions
have been used. An overview of them can be found
in (Touraille et al., 2009).

The first one aims to increase the
interoperability from the point of view of the
simulators, using, for instance, standard messages
between at least two different simulation platforms
where different models are defined. As an example,
we can quote (Seo, 2009) which is a simulator-
oriented proposal for a better DEVS simulator-
based interoperability using Service-Oriented
Architecture.

2.3 Model-Driven Engineering

MDE is a generic software development
methodology that focuses on creating, exploiting
and transforming models: in fact, everything in
MBDE is seen as a model, i.e. an abstraction of a part
of the real world, described with a modeling
formalism. One of the most popular MDE
incarnations is the Object Management Group
(OMG) Model-Driven Architecture (MDA) (OMG
2001).

2.3.1 Abstraction Levels in MDE

Metamodels and models are linked to each other at
different abstraction levels, in the following way: a

model (M; level) describes the real world (M,
level), and it conforms to its metamodel (M, level).
A metamodel describes a modeling formalism, and
conforms itself to a metaformalism (M3 level). The
metaformalism is located at the top of the MDE
“meta” levels hierarchy: it contains its own
description and conforms to itself: there is no
higher level than M;. The concepts of conformance
and description are detailed in (Bézivin, 2004) and

shown in Figure 1.

A X
Tl 00 e

B : :

S : ¥ -

T |, 7“1 Metamodeling |
R - formalism

A by

c P

T H

{ M, | — W H | 'Language or'modellng
0 | formalism

2

LX
: e describes

m o~

v Models -X, conformsto

™M Systemsto be
0 modeled

Figure 1: Abstraction levels in MDE.

2.3.2 Model Transformations in MDE

Model transformations are, with models and
metamodels, the key concepts of MDE. A
transformation is defined at the metamodel level
(M;) and executed at the model level (M;). The
general case for a model transformation is the
following one: if MMx and MMy are two distinct
metamodels, and Mx is a model which conforms to
MMXx, the associated transformation is defined
between MMx and MMy and executed between Mx
and My. It transforms Mx into another model My.
Here, we assume that there exists a mapping
between the formalisms described by MMx and by
MMy, which is not always the case.

Each metamodel, according to Figure 1, conforms
to a different metaformalism, and the
transformation itself, as a model, conforms to a
metaformalism too, which can be, in this case, MFx
or MFy. If MMx and MMy are different, the
transformation is called exogenous. If MMx and
MMy are the same metamodel, the transformation
is called endogenous. Usually, a Model-To-Model
(M2M) transformation follows the schema

181

SIMULTECH 2014 - 4th International Conference on Simulation and Modeling Methodologies, Technologies and

Applications

presented in figure 2. Even if a Model-To-Text
(M2T) transformation is, in theory, a model
transformation (from a MDE-based point of view),
its implementation is often simplified: it directly
turns a model Mx into source code, without
resorting to a target metamodel. Many existing
model transformation techniques are detailed in
(Mens et al. 20006).

/\ N .
Metaformalism [Metaformalism x or y] Metaformalism
Almy| MFx y) MFy
8
1

) 1 1x]
T 1 X 1 :x

! .
Z‘ Model Transformation
¢
/T M, | Definition >
o
N 1

'x
L |
I3
v
£ M, Execution
L W)

Figure 2: A classic MDE transformation.

2.3.3 A Particular MDE Incarnation: MDA

The MDA approach (OMG 2001) (Kleppe et al.
2004) is very similar to the architecture shown in
Figure 2. At the top level lies the metaformalism
MOF (Meta-Object Facility). One of the most
popular metamodels used in MDA-oriented
approaches is the Unified Modeling Language
(UML) (OMG UML 2011) (Rumbaugh et al. 2005).

Nevertheless, the adaptability of UML can be a
drawback when specific concepts have to be
expressed. To solve this, the OMG proposes two
solutions: use the specialization mechanisms of
UML (profiles), or define a completely new
metamodel (conforming to the MOF) which will be
used in place of UML.

One of the most famous applications of the
former is the OMG SysML (SYStems Modeling
Language) (OMG SysML 2012), which can be
considered as an extension of a subset of UML. The
latter offers a larger set of possibilities, even if it is
often more complicated to create a new metamodel
instead of using an existing one.

MDA uses three different kinds of models:
CIMs (Computation Independent Models), PIMs
and PSMs (Platform Independent/Specific Models).
Some famous MDA-inspired transformation
tools/languages are Acceleo (ACCELEO 2013),
dedicated to M2T transformations, and ATL
(Jouault et al. 2006) dedicated to M2M. They both

182

are available as Eclipse Modeling Framework
(EMF) (Steinberg et al. 2009) plugins.

3 MDE APPROACHES APPLIED
TO DEVS FORMALISM

In this section, the ideas and concepts presented in
the background section are put together. We present
a state of the art of the MDE approaches that have
been applied to DEVS, in a model-oriented way.
The main purpose of those approaches is to
represent DEVS models, focusing on concepts
rather than code.

We have previously stated that, when specific
domain concepts had to be expressed (i.e. when it is
necessary to resort to a metamodel), well-known
metamodels could be reused (and specialized) or
new ones could be created.

The biggest problem that remains when defining
a metamodel for DEVS is not the representation of
the structure (coupled models), but the description
of the behavior (atomic model), with the DEVS
atomic functions. In broad owtline, it can be said
that the first (until 2007) MDE-like approaches
applied to DEVS were based on existing meta-
models (see 3.1), while the most recent ones (since
2007) are based on new metamodels (see 3.2). At
the moment, these seem to be the most promising
ones.

3.1 UML-Like Approaches (before 2007)

Those MDE approaches tackled the lack of
interoperability of the DEVS formalism by reusing
existing metamodels, or more exactly only one
metamodel: UML. Hence, UML is their common
denominator. The main advantage of those
approaches is the use of UML as a metamodel
(abstract syntax), so that the user can use graphical
notations as an abstract syntax. Globally, the DEVS
models written in UML are well-represented and
well-documented. However, an important drawback
is that it is often difficult to obtain simulation code
from those UML models, except (Risco-Martin et
al. 2007) who use tools related to the XML
technological space.

One of the first UML-Like approaches applied
to DEVS was (Schulz et al. 2000). It resorted to the
Statecharts formalism (Harel 1987) to create
models that were equal to DEVS models. In the
same philosophy, (Risco-Martin et al. 2007)
proposed to use XML in order to translate
Statecharts formalism (known as UML state

A Survey of Model-Driven Approaches Applied to DEVS - A Comparative Study of Metamodels and Transformations

machine diagram) into DEVS. This goes back to
create DEVS models using Statecharts.

Some researches proposed to use more than one
UML diagram. For instance, (Zinoviev 2005)
claims that DEVS suffers from a lack of graphical
representation and uses UML to represent DEVS
models. Atomic models are specified using UML
state machine diagrams, while coupled models are
described with UML component diagrams. This
approach was not given any concrete
implementation. On the other hand, (Mooney et al.
2009) proposed a complete environment that allows
the execution of DEVS models specified with
UML: this approach tackles the temporal aspects,
which are more present in DEVS than they are in
UML.

Other approaches rely on the UML extension
mechanisms. Some use existing UML profiles, this
is the case for (Nikolaidou et al. 2008). The authors
employ SysML to graphically represent DEVS
models created with DEVSML. Others create
special profiles, for instance (Nikolaidou et al.
2008). The authors also provide a partial code
generation (skeleton).

3.2 Recent MDE Approaches (since 2007)

Usually, all the MDE approaches we study here
follow the same pattern, inherited from MDE
philosophy:

e Define a metamodel for DEVS

e Create M2T transformations (and/or)

e Define M2M mappings

The definition of a metamodel for DEVS is the
first step, it makes one able to define DEVS atomic
and coupled models. To create it, the starting point
is the basic definition of DEVS formalism (2.1);

In the second step, links between the DEVS
metamodel and DEVS simulators (code) are
established. The goal here is to reach several DEVS
frameworks from only one DEVS platform-
independent model (internal interoperability).
Hence, a single model would be simulated on
several platforms (M2T);

The third step establishes links between the
DEVS metamodel and other formalisms. Those
links tackle the external DEVS interoperability
problem using M2M techniques.

Regardless of the technique used, the most
essential element that directly influences the
viability, the power of expression and the accuracy
of the DEVS models is the quality of the metamodel
they lie on.

The approaches we study in the next subsections
take place within different technological spaces
(Bézivin et al. 2005). The metaformalisms used by
the following approaches are: XML Schema, MOF-
Ecore, EBNF (Extended Backus-Naur Form), E/R
Diagrams.

3.2.1 XML-Based Approaches

DEVSML (Mittal et al. 2007) is a metamodel used
for the description of DEVS models within Service-
Oriented Architectures (SOA). This approach
enables to specify DEVS models but it is not totally
platform-indepndent: the models can only be used
with Java-based DEVS platforms, because
DEVSML inherits from a XML-like language used
to describe Java programs, JavaML (Badros 2000).

More recently, (Mittal et al. 2012) introduced
the “DEVSML framework™ where it is possible to
create Domain-Specific Languages (DSLs) and
associate them to the DEVSML language. It is also
possible to generate DEVSJAVA (DEVSJAVA
2013) 'simulation code. This = MDE-oriented
approach is implemented within the Eclipse
Modeling Framework (EMF) but uses the EBNF
metaformalism.

There also exists a similar approach: SimStudio
(Touraille et al. 2011) based on a metamodel named
DEVS Markup Language (DML). The idea is to
improve DEVS internal interoperability using
“hybrid code”: some same parts of the code are
written in different languages so they can be chosen
during the code generation.

DEVSML has been wused for M2M
transformations towards DEVS (Risco-Martin et al.
2007) (see 3.1). The M2T implementations use the
language Xtend while all the transformations in
SimStudio use XSLT (eXtensible Stylesheet
Language Transformations).

3.2.2 E/R Diagrams-Based Approaches

The metamodeling environment AToM® (Lara et al.
2002) has been used by (Posse et al. 2003) and after
that by (Levytskyy et al. 2003) to create a DEVS
metamodel based on the E/R Diagrams
metaformalism. Those approaches use the abilities
of AToM? in order to generate a graphical modeling
environment based on the DEVS meta-model. All
the DEVS states are enumerated (sequential states).

Another DEVS metamodel, introduced in (Song
2006), allows specifying state variables as
attributes. The transition functions are specified
with text blocks. For all of those approaches, it is

183

SIMULTECH 2014 - 4th International Conference on Simulation and Modeling Methodologies, Technologies and

Applications

possible to generate Python code for the simulator
PyDEVS (Bolduc et al. 2001) wusing M2T
mechanisms. Moreover, some M2M approaches
were implemented, for instance (Borland 2003)
proposed a transformation from Statecharts to
DEVS. Code generation and model transformations
are performed using the Python language.

3.2.3 MOF-Based Approaches

Those approaches are the most recent ones. They
are located in the object-oriented technological
space, and use MOF (and its subset EMF Ecore) as
a metaformalism: in other words, they can be
considered as MDA approaches.

(Lei et al. 2009) use a M2M transformation
from DEVS to SMP2 (Simulation Model Portability
2). To do so, they resort to two packages. One of
them contains the definition of the DEVS
formalism. The DEVS functions are taken into
account but the programmer needs to fill them:
otherwise, they remain empty. The states are
explicitly enumerated, under a textual form.

On the contrary, EMF-DEVS (Sarjoughian et al.
2012) is only centered on the DEVS formalism and
its internal interoperability (EMF-DEVS does not
provide any M2M transformation). The Ecore
metamodel proposed by this approach enables to
generate Java code using the native M2T EMF
mechanisms. The atomic functions are abstract, and
must be implemented manually. Only the coupling
functions are automatically generated.

MDD4MS (Cetinkaya et al. 2012) was
originally based on the GME environment, but it is
now fully implemented within EMF Ecore. The
authors follow a MDA -oriented approach to define
a DEVS metamodel. The atomic functions are
specified using a platform-independent pseudo-
code, which seems to be described itself by a
metamodel, linked to the DEVS metamodel. The
states are handled by state variables, they can be
typed and they also can be affected an initial value.
A total code generation is provided, towards Java
platforms (M2T). A M2M transformation from
BPMN to DEVS is also proposed.

MetaDEVS (Garredu et al. 2012) is a
metamodel for DEVS based on a MDA approach,
implemented within the Eclipse EMF framework. It
specifies the DEVS states using typed variables that
can be either enumerated or not. The functions are
defined in a platform-independent way, using the
DEVSRule concept based on Conditions and
Actions. Code generation mechanisms use Acceleo.
A generic approach form M2M transformations

184

have also been proposed in (Garredu et al. 2013)
and applied to a transformation between FSMs and
DEVS.

3.2.4 Comparison of the MDE Approaches

Those approaches can be compared following
several criteria. As far as we are concerned, the
most significant ones are the solutions chosen to
express states and functions. All of them favor
finite and enumerated states and some ones also use
state variables: (Song 2006), (Mittal et al. 2012),
(Touraille et al. 2010), (Lei et al. 2009), (Cetinkaya
et al. 2012), (Garredu et al. 2012). The advantage of
taking into account the state variables in addition to
enumerated states is-that multidimensional states
can be specified. In our opinion, these solutions
appear to be complementary.

Modeling the behavioral functions is also a
criteria to evaluate the DEVS metamodels. Three
different approaches are used.

The first one is proposed by the approaches that
chose to represent the states in a finite way: (Posse
et al. 2003), (Song 2006), (Mittal et al. 2012), (Lei
et al. 2009). In this case, the transition functions are
enumerated and explicitly specify the state changes
that must occur. The time advance and output
functions are instantiated with each state: therefore,
a state contains its lifespan and the associated
output. The main advantage of the approach is that
it leads to a complete automatic code generation,
while its main drawback is that it is not able to
specify more complex logical behaviors.

The second one, chosen by (Song 20006),
(Sarjoughian et al. 2012) and (Risco-Martin et al.
2007) is depending on the platforms. It defines the
elements that must be specified, or completed, by
the programmer. Those elements depend on the
target platform. Hence, some approaches consider
the atomic functions are considered as abstract
methods, textual meta-attributes, or code blocks. To
provide a complete code generation, the same
function must be written in several languages, but
the logic they specify is not platform-independent
(Touraille et al. 2010).

Finally, the third one uses specifics metamodels
in order to allow creating behavioral rules that
define all the functions in a platform-independent
way. The goal is to perform automatic code
generations by limiting as much as possible the
intervention of the programmer. The two main
solutions aim to use a pseudo language (Cetinkaya
et al. 2012) or a behavioral logic within the

A Survey of Model-Driven Approaches Applied to DEVS - A Comparative Study of Metamodels and Transformations

Table 1: Comparison of the recent DEVS-MDE approaches.

Enum.| State

Metaformalism
States| Vars

Approach DEVS Functions (8;,:— Ocxe— A —ta)

AToM? DEVS V1 (Posse et al. 2003)
AToM? DEVS V2 (Song 2006)
DEVSML V2 (Mittal et al. 2012) EBNF YES YES
DEVSML V1 (Risco-Martin et al. 2007) XML Schema YES NO
SimStudio/DML (Touraille et al. 2010) XML Schema YES YES Partially Described (Hybrid code)
DEVS to SMP2 (Lei et al. 2009) MOF Ecore YES YES Finite
MDD4MS (Cetinkaya et al. 2012) MOF Ecore YES YES
EMF-DEVS (Sarjoughian et al. 2012) MOF Ecore YES NO
MetaDEVS (Garredu et al. 2012) MOF Ecore YES YES

ER Diagrams YES NO Finite

ER Diagrams YES YES Finite or code blocks
Finite (DEVS State Machines)

Code Blocks

Platform-Independent Pseudo-Code

Abstract Methods

Platform-Independent Meta-Classes

Table 2: Transformations associated to some recent DEVS-MDE approaches.

M2M Transformation M2T Transformation
Approach Nature Transformation Destination Platform Transformation
Approach Approach
AToM? DEVS V1 (Posse et al. 2003) sco e Graph F. DEVS Model Parsing
and (Borland 2003) (Python) Y (Python)
DEVSML V2 (Mittal et al. 2012) DSLs—>DEVSML Xtend DEVSJAVA Xtend
DEVSML V1 (Risco-Martin et al. 2007) | SC—>DEVS-SM XML Parser DEVS-XML XML Parser
SimStudio/DML (Touraille et al. 2010) X X DML-Lang & DML XML Parser
DEVS to SMP2 (Lei et al. 2009) DEVS - SDML ATL X X
MDD4MS (Cetinkaya et al. 2012) BPMN - DEVS ATL DEVSJAVA Model Parsing (Java)
EMF-DEVS (Sarjoughian et al. 2012) X X DEVS-Suite Model Parsing (Java)
MetaDEVS (Garredu et al. 2013) FSM = DEVS ATL PyDEVS & Other Acceleo (template)

associated DEVS metamodel (Garredu et al. 2012).
Table 1 summarizes our comparison.

Moreover, some of the approaches were used in
M2M and/or M2T contexts. Some approaches are
located in the OMG MDA technological space and
use M2M transformation languages as ATL: (Lei et
al. 2009), (Cetinkaya et al. 2012), (Garredu et al.
2012). Other approaches use different
transformation techniques (because of the
technological spaces they belong to), such as XML
for (Risco-Martin et al. 2007) or Python for
(Borland 2003). Some approaches do not perform,
at this time, M2M transformations.

The transformations associated to the
approaches we have presented are shown in Table
2. Some information about their M2M (DEVS

external interoperability) and M2T (DEVS internal
interoperability) aspects is provided.

4 CONCLUSION

In this article, an overview of some significant
MDE-oriented approaches linked to DEVS was
presented. Some of them were detailed and
compared. Using a MDE approach in a DEVS
context increases the lifetime of the models,
improves the way they are defined, makes them be
reusable, and enhances their interoperability with
other platforms and even other formalisms. Many
MDE-oriented tools have been developed, in

185

SIMULTECH 2014 - 4th International Conference on Simulation and Modeling Methodologies, Technologies and

Applications

particular for the Eclipse EMF platform, as
additional plug-ins.

However, the metamodels that have been proposed
for DEVS face a difficult issue: the definition of the
states and the transition functions in a platform-
independent way. Doing so highly reduces the
power of expression of the metamodel. Some
research need to be done in order to increase the
power of expression of the metamodels, maybe with
a combination of graphical and textual notations.

An important criteria, which was not evaluated here,
is linked to the semantics of the metamodels: indeed,
a metamodel only specifies an abstract syntax and
needs semantics to be more accurate. MDAbased
meta-models usually resort to Object Constraint
Language (OCL) to express those semantics.
However, the power of a metamodel’s semantics
remain hard to evaluate.

REFERENCES

ACCELEO2013. ttp://www.eclipse.org/acceleo/.

Badros, G., 2000. “JavaML: A Markup Language for Java
Source Code.” Proceedings of the 9th International
World ~ Wide Web Conference (Amsterdam,
Netherlands, May. 15-19),159- 7.

Bézivin J., « Sur les principes de base de 1’ingénierie des
modeles », RSTI-L’Objet, 10(4):145-157, 2004.

Bézivin,J and Kurtev, I. : Model-based Technology
Integration with the Technical Space Concept. In
Metainformatics Symposium, Esbjerg, Denmark,
2005. Springer-Verlag.

Bolduc, J.S., Vangheluwe, H. A modelling and simulation
package for classical hierarchical DEVS. MSDL
technical report ~ MSDL-TR-2001-01, McGill
University, June 2001

Borland, S., Transforming Statechart models to
DEVS,2003.

Cetinkaya D., Verbraeck A., and Seck M. D., Model
transformation from BPMN to DEVS in the
MDD4MS framework, Proceedings of the 2012
Symposium on Theory of Modeling and Simulation -
DEVS Integrative M&S Symposium, Orlando,
Floride, 2012

DEVSJAVA2013. http://www.acims.arizona.edu/

SOFTWARE/software.shtml#DEVSJAVA.

Garredu, S., Vittori, E., Santucci, J.-F., and Bisgambiglia,
P.-A., A Meta-Model for DEVS - Designed following

Model Driven Engineering Specifications,
Proceedings of the 2nd International Conference on
Simulation and Modeling Methodologies,

Technologies and Applications, Simultech 2012,
Rome, Italy, 28 - 31 July, 2012.

Garredu, S., Vittori, E., Santucci, J.-F., and Bisgambiglia,
P.-A., (In Press) From State-Transition Models to
DEVS Models - Improving DEVS external

186

interoperability using MetaDEVS: a MDE approach,
Proceedings of the 3rd International Conference on
Simulation and Modeling Methodologies,
Technologies and Applications, Reykjavik, Simultech
2013, Iceland, 29 - 31 July, 2013.

Harel D., Statecharts : A visual formalism for complex
systems, Science of Computer Programming,
8(3):231-274, 1987.

Jouault, F. and Kurtev, 1. (2006) On the architectural
alignment of ATL and QVT. In: Proceedings of the
2006 ACM symposium on Applied computing, Dijon,
France.

Kleppe, A., Warmer, S., Bast, W., "MDA Explained. The
Model Driven Architecture: Practice and Promise",
Addison-Wesley, April 2003.

Lara J., Vangheluwe, H., “Using AToM as a Meta CASE
Tool”, 4th International Conference on Enterprise
Information Systems, Universidad de Castilla-La
Mancha, Ciudad Real (Spain), 3-6, April 2002.

Lei, Y., Wang, W., Li, Q., and Zhu, Y., A transformation
model from DEVS to SMP2 based on MDA,
Simulation Modelling Practice and Theory, Vol. 17,
Nr. 10 (2009) , p. 1690-1709.

Levytskyy, A., Kerckhoffs, E. J., Posse, E. and
Vangheluwe, H., “Creating DEVS components with
the meta-modelling tool AToM® in 15" European
Simulation Symposium (ESS), A. Verbraeck and V.
Hlupic, Eds. Society for Modeling and Simulation
International (SCS), October 2003, pp. 97 — 103, delft,
The Netherlands.

Mens, T., Czarnecki, K., and Van Gorp, P., A Taxonomy
of Model Transformations, Electronic Notes in
Theoretical Computer Science (ENTCS) Volume 152,
March, 2006, pp. 125-142.

Mittal, S., Martin. J. L. R., Zeigler, B.P., « DEVSML.:
automating DEVS execution over SOA towards
transparent simulators », Proceedings of the 2007
ACM Spring Simulation Multiconference, March 25-
29,2007, Norfolk, VA, USA, Vol. 2, pp. 287-295.

Mittal, S., Douglass, S.A., DEVSML 2.0: The Language
and the Stack, DEVS Symposium, Spring Simulation
Multiconference 2012, Orlando.

Mooney, J. and Sarjoughian, H.S., A Framework for
executable UML models, In High Performance

Computing & Simulation Symposium, Spring Simulation
Conference, pages 1-8, 2009.

Nikolaidou, M., Dalakas, V., Kapos, G.-D., Mitsi, L. and
Anagnostopoulos, D., « A UML 2.0 profile for DEVS:
Providing code generation capabilities for simulation
» in Proceedings of 16th International.

Conference on Software Engineering and Data
Engineering (SEDE-2007), Las Vegas, USA, July
2007 (Invited paper).

Nikolaidou, M., Dalakas, V., Mitsi, L., Kapos, G.-D.,
Anagnostopoulos, D. « A SysML Profile for Classical
DEVS Simulators » (Conference Paper) Proceedings
of the 2008 The Third International Conference on
Software Engineering Advances, 978-0-7695-3372-8,
Pp 445-450, 2008, 10.1109/ICSEA.2008.24, IEEE
Computer Society.

A Survey of Model-Driven Approaches Applied to DEVS - A Comparative Study of Metamodels and Transformations

OMG 2001. Model Driven Architecture homepage -
http://www.omg.org/mda/.

OMG UML 2011. Unified Modeling Language
specifications-http://www.omg.org/spec/UML/2.4.1
OMG SysML 2012. Systems Modeling Language -

http://www.omg.org/spec/SysML/1.3/.

Posse, E., Bolduc, J.S., Vangheluwe, H., Generation of
DEVS Modelling & Simulation Environments. In
Proceedings of the 2003 Summer Computer
Simulation Conference SCSC 2003.

Risco-Martin, J.L., Mittal, S., Zeigler, B.P., Cruz, J.L,
"From UML Statecharts to DEVS State Machines
using XML", Multi-paradigm Modeling, [EEE/ACM
International ~ Conference on Model Driven
Engineering Languages and Systems , 2007.

Rumbaugh, J., Jacobson, I. and Booch, G., “The unified
modeling language reference manual”, The Addison-
Wesley object technology series, Addison-Wesley,
2005.

Sarjoughian H.S. and Markid, A.M., 2012. EMF-DEVS
modeling. In Proceedings of the 2012 Symposium on
Theory of Modeling and Simulation - DEVS
Integrative M&S Symposium (TMS/DEVS '12).
Society for Computer Simulation International, San
Diego, CA, USA.

Schulz, S., T. C. Ewing, and J. W. Rozenblit. 2000.
Discrete event system specification (DEVS) and
statemate statecharts equivalence for embedded
systems modeling, Proceedings of the 7th IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems, Edinburgh,
Scotland, 2000.

Seo, C. "Interoperability between DEVS Simulators using
Service Oriented Architecture and DEVS
Namespace", Ph.D. dissertation, Electrical and
Computer Engineering Dept., University of Arizona,
Spring 2009.

SISO 2008. Simulation Interoperability Standards
Organisation, SISO-REF-019-2008: Discrete-Event
Systems Specification (DEVS).

http://www.sisostds.org/ProductsPublications/ReferenceD
ocuments.aspx.

Song, H., Infrastructure for DEVS Modelling and
Experimentation. Master's thesis. McGill University.
School of Computer Science. (2006)

Steinberg, F.D., Budinsky, F., Paternostro, M., and Merks,
E. Eclipse Modeling Framework 2™ Edition, Addison
Wesley, 2009.

Touraille, L., Traoré, M.XK. Hill, D., "On the
interoperability of DEVS components : On-Line vs.
OffLine Strategies.", 2009, UMR CNRS 6158,
LIMOS/RR-09-04, 13 p.

Touraille, L., Traoré, M.K., and Hill, D. R. C., 2011. A
model-driven software environment for modeling,
simulation and analysis of complex systems. In
Proceedings of the 2011 Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S
Symposium (TMS-DEVS '11). Society for Computer
Simulation International, San Diego, CA, USA, 229-
237.

Zinoviev, D., "Mapping DEVS Models onto UML
Models," Proc. of the 2005 DEVS Integrative M&S
Symposium, San Diego, CA, April 2005, pp. 101-106.

Zeigler, B.P., Theory of Modeling and Simulation, New-
York: Wiley-Interscience, 1976.

187

