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Abstract: This work concerns a system based on EMG sensors, signal conditioning circuitry, classification algorithm 
based on Artificial Neural Network, and virtual avatar representation, useful to identify hand movements 
within a set of five. This is to potentially make any trans-radial upper-limb amputee able to drive a virtual or 
real limb prosthetic hand. When using six EMG sensors, the system is able to recognize with an accuracy of 
88.8% the gestures performed by a subject, and replicated by an avatar. Here we focused on differences 
resulting with the adoption of a different number of sensors and therefore, by means of a very simple 
heuristic method, we compared different subsets of features, excluding the less significant sensors. We 
found optimal subsets of one, two, three, four and five sensors, demonstrating a decrease of the performance 
of only 0.8% when using five sensors, while with three sensors the accuracy can be as high as 81.7%.  

1 INTRODUCTION 

The electrical activity of a muscle can be detected by 
sensors able to convert electro-myogram (EMG) 
signals into electric ones. Surface and intramuscular 
EMGs differ from invasiveness and feasibility, and 
we deal with the surface one for practical reasons.  

In the recent years, different systems were 
proposed to use surface EMG (sEMG) signal 
acquired on human forearms as input data to control 
a real prosthesis (Matrone et al., 2010) or a virtual 
device (Li et al., 2010), either for interactive or 
clinical/rehabilitative (Scheme and Englehart, 2011) 
purposes. 

Most of the EMG-controlled device users are 
radial upper-limb amputees, i.e. amputation occurred 
below elbow. For these people, the replacement of 
missing arm functionalities could be a significant 
improvement to their quality of life. Moreover 
research showed that the visual-sensorial feedback 
provided by following the prosthetic or virtual hand 
movements can be useful to alleviate the phantom 
limb pain (Castellini et al., 2009, Alphonso et al., 
2012), an invalidating condition that affects between 
50% and 80% of amputees (Flor H, 2002). 

Standard EMG-controlled devices have usually 
relied on the detection of weak/strong contractions 
of just two forearm muscles to perform very simple 

movements (e.g. hand opening and closing) and this 
has restricted their usability by amputees (Zlotolow 
and Kozin, 2012). To avoid these limitations, pattern 
recognition on multiple forearm muscle signals has 
been proposed to discriminate hand movements 
(Chowdhury et al., 2013). Extracted patterns of 
EMG activity, which are different for each hand 
movement, allow to increase the amount of usable 
information and to realize a more natural, and hence 
satisfactory, reproduction of the gestures. A pattern 
recognition-based system is tipically structured in  
three main steps:  
1. EMG signal acquisition and condition by means 

of an array of sensors and electronic circuitry;  
2. feature extraction, consisting in the calculation 

of relevant characteristics from the signals, e.g. 
mean, energy, waveform length, etc. 
(Phinyomark et al. 2012)  

3. feature translation, or classification, to assign 
the extracted features to the class (gesture) they 
most probably belong to.  

Once the gesture attempted by the user of the 
system is recognized, it can be mapped towards the 
controlled device. 

In order to develop a fully reliable system to 
classify the intended hand gesture of the amputee, it 
seems reasonable to utilize as many EMG sensors as 
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possible. But this is untrue for several reasons, 
among which: 
 Limited space: the sensors must be arranged 

around the stump socket of the forearm, so that 
their maximum number is fixed by their physical 
dimensions; 

 Calibration procedure: the EMG sensors need to 
be manually and exactly calibrated in analog 
voltage gain, which is a time-expensive 
procedure, even for a skilled personnel; 

 Cost: efficient circuitry-integrated EMG sensors 
are quite expensive, which means a reduced 
number means a significative cost reduction for 
the patient; 

 Comfort: greater pressure assures optimal 
contact for signal extraction, but this implies that 
a great number of sensors produces higher 
discomfort for the patient; 

 Reliability: unlike what one can think, a greater 
number of EMG sensors can produce lower 
realibility. This is because it is necessary a 
higher number of electric contacts, that are the 
first carrier for the sweat to reach the electronic 
circuitry, so potentially give raise to electrical 
malfunctions. 
In this work we use a low density sEMG-based 

system for the recognition of hand gestures to be 
further replicated via a virtual limb in 3D computer 
graphics (avatar), useful in rehabilitation of 
amputees. For the aforementioned reasons, here we 
intend to find the best trade-off between accuracy 
and the optimal number of EMG sensors. 

The system was tested with 20 able-bodied 
subjects, 10 males and 10 females. A comparison of 
classification accuracy obtained by feeding the 
classification algorithm with different feature 
vectors was performed. The different feature subsets 
were chosen in order to determine what sensors can 
be excluded without excessive degradation of the 
performance.  

2 MATERIALS AND METHODS 

An experiment was carried out with a dataset 
acquired from 20 subjects. The system was trained 
off-line. The described validation,  compared with 
different sets of sensors, was entirely off-line. The 
whole cross-validation, including repeated training 
and test of the network takes about 20 seconds per 
subject on Pentium 4, while the classification of a 
single window takes about 100 sec, which means 
that it can be done in real-time. The system has also 
been tested in real-time, but only using 6 sensors. 

2.1 Subjects 

Testers were twenty able-bodied subjects, ten males 
and ten females, free of known muscular and/or 
neurological diseases, with an average age of 32 
years. Each subject gave informed consent before 
performing experiments. Eighteen subjects were 
right-handed and two left-handed. For every subject 
we considered both a session with the right hand and 
a session with the left hand. 
 

 

a) 

 
b)                             c)                            d)  

Figure 1: Positioning of the EMG sensors and bracelet. a) 
the six sensors equally spaced in the bracelet; final 
bracelet dimensions are 51.3xLx7 mm where L depends 
on subject’s forearm diameter b) sensor 1 positioning; c) 
sensor 6 positioning; d) bracelet positioning on the 
forearm. 

2.2 Setup 

Six commercial active sEMG sensors (Ottobock 
13E200=50, 27x18x9.5 mm) were placed on the 
subjects’ forearm using a silicone bracelet, as 
depicted in Fig.1 a-d. Sensors were placed equally 
spaced in the bracelet (Fig. 1a), so that the first 
sensor was placed on the flexor carpi-radialis muscle 
(Fig. 1b) and the sixth sensor on the brachio-radialis 
muscle (Fig. 1c). The bracelet was placed around the 
forearm, 5cm below the elbow (Fig. 1d). This 
configuration was chosen to simulate the positioning 
of the prosthesis sensors on amputees’ forearms. 
Sensors operated in 0÷5V range with a bandwidth of 
90-450Hz and a Common-Mode Rejection Ratio 
(CMRR) >100dB. Data were collected using a 
purpose-built acquisition system (12 bits A/D 
converter, 1 kHz sampling frequency) and USB-
transmitted to the PC. 
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2.3 Experimental Procedure 

The subjects were sitting in a comfortable chair in 
front of a PC monitor, where the gestures to be 
performed were depicted as follow (see Fig. 2): 

1) Rest: hand relaxed. 
2) Fist: hand with all fingers closed. 
3) Pinch: hand with thumb and finger 

touching as if picking a small 
object. 

4) Spread: hand open and stretched.  
5) Pointing: hand with all fingers closed with 

the index pointing.  
We chose the aforementioned five gestures because 
they are considered the most meaningful ones in 
everyday life (Saggio et al. 2011). 

 

Figure 2: The five hand gestures. 

Every gesture was randomly repeated 10 times and 
Recorded for 2s. We empirically determined 
gestures duration by means of preliminary studies. 
As steady-state sEMG signals are more robust than 
transient signal for classification purposes 
(Englehart et al., 2001, Oskoei and Hu, 2008) 
transitions between gestures were not recorded. 
The whole recording procedure was performed 
twice, once with the dominant hand and once with 
the non-dominant hand. Half the subjects, randomly 
selected, started the recording session with the 
dominant hand and the other half with non- 
dominant hand. 

2.4 Feature Extraction 

After acquisition, raw EMG data were segmented 
using the overlapped windowing technique (Oskoei 
and Hu, 2008): the windows length was fixed to 
256ms, with 64ms of overlap between two 
successive windows. This timing was chosen in 
order to fulfill the requirements of real-time 
applications, such as the control of virtual hands or 
real prosthesis. For each sensor and each window, 
features were extracted; in particular, by indicating 
with xi the ith time sample in a window and with N 
the total length of the window (in samples), the 
following time-domain features were used: 
 Mean (M): it is defined in Eq. 1 and represents 

the mean value of the EMG amplitude: 
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 Root Mean Square (RMS): it is defined in Eq. 2 
and represents the mean power of the signal.  
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 Willison Amplitude (WA): it is defined in Eq. 3 
and represents the number of counts for each 
change in the EMG signal amplitude that 
exceeds a predefined threshold, set to avoid 
background noise-induced counts. It is related 
to the level of muscle contraction. 
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 Slope Sign Change (SSC): it is defined in Eq. 4 
and represents the number of times the slope of 
the EMG signal changes sign. 
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• Simple Square Integral (SSI): it is defined in 
Eq. 5 and represents, similarly to Energy in 
continuous-time signal, the area under the 
curve of the squared signal: 

 

SSI  xi
2
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• Variance (V): it is defined in Eq. 6 and 
represents a statistical measure of how signal 
varies from its average value (Mean, as defined 
in Eq. 1) during the observation: 
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• Waveform Length (WL): it is defined in Eq. 7 and 
represents cumulative length of the EMG signal 
waveform. WL is a measure of EMG signal 
complexity:

  
 

WL  | xi1  xi |
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(7) 
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2.5 Classification 

We implemented an Artificial Neural Network 
(ANN) with 10 neurons in the hidden layer and 
back-propagation training method. The number of 
neurons of the hidden layer was empirically 
determined in previous tests.   

3 SENSOR SELECTION 

When using all sensors, a 5-fold cross-validation to 
measure the performance of every configuration 
gives a mean accuracy among all subjects of 88.8%, 
anyway there was a strong difference among 
subjects, being the standard deviation 7.2%. 
 

 

Figure 3: Accuracy (%) of the classifier when excluding 
each one of the sensors. 

In order to determine what sensors are more 
important, we first repeated the whole test, with the 
cross-validation, excluding sensor 1, i.e. considering 
only the features based on sensors 2, 3, 4, 5, 6. Then 
we excluded sensor 2, and cross-validated the 
network using the features based on sensors 1, 3, 4, 
5, 6. The same was repeated excluding, one at a 
time, all the sensors. 

We had to judge the configuration that gives the 
best results. As we stated above, there is a big 
variance among subjects, so the mean value is not 
very significant: we should consider more robust 
indicators, such as median (50th percentile), and 
other percentiles.  Figure 3 shows a box-plot of the 
accuracy: on each box, the central mark is the 
median, the edges of the box are the 25th and 75th 
percentiles (1st and 3rd quartiles), the whiskers 
extend to the most extreme data points not 
considered outliers. Outliers are individually plotted 
as crosses.  

By examining the graph, it is evident that the 
best performance can be achieved by excluding 
sensor 1: in fact it has higher median but also higher 

1st and 3rd quartiles, so we can deduce that the best 
configuration if we want to use only five sensors is 
when using sensors 2, 3, 4, 5, 6. 

Next step is trying to use four sensors. In spite of 
testing all the possible combinations of four sensors, 
we made the test excluding sensor 1 and 2, then 1 
and 3, until 1 and 6. This is because we are 
exploiting the information acquired on previous 
experiment, where we found that sensor 1 is the least 
useful one. This is a heuristic method that allows us 
to avoid the exploration of configurations that are 
less likely to give the optimal solution. Results are in 
Figure 4. 
 

 

Figure 4: Accuracy (%) of the classifier when excluding 
each couple of sensors reported on the column. 

 

Figure 5: Accuracy (%) of the classifier when excluding 
each triplet of sensors reported on the column. 

Although it has a wider range, and for some 
subjects it has an accuracy lower than 60%, the third 
combination (1, 4) reached what can be considered 
globally the best performance, because it has a 
higher median and 3rd quartile. Hence we can argue 
that, if we want to classify with only four sensors, 
best choice is more likely 2, 3, 5, 6, even if we 
didn’t test all the possible configurations. 

We now followed with the same procedure: 
excluding sensor 1 and 4 together with every 
remaining one. Result is shown in Figure 5.  

In this case, the last trial, which is the one where 
we excluded sensors 1, 4, 6, gave better results. 
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Therefore, if we want to use only three sensors the 
best choice is to consider the numbers 2, 3, 5. Going 
on, we excluded another sensor. Figure 6 shows the 
best result achieved by excluding sensors 1, 3, 4, 6. 
This means that if we want to use only two sensors 
the best choice falls on sensors 2 and 5. 
 

 

Figure 6: Accuracy (%) of the classifier when excluding 
each 4-tuple of sensors reported on the column. 

Finally, we considered the best solution when 
adopting just a single sensor. In this occurrence, we 
didn’t test only sensor 2 and sensor 5, but the entire 
set of six, in order to give a validation of our 
heuristic method as well. 
 

 

Figure 7: Accuracy (%) of the classifier when using only 
one sensor, reported on the column. 

Results are reported in Figure 7, where we can see 
that the best sensor, when used alone, is the number 
5, which was one of our two candidates as the most 
useful sensor. In addition, sensor 2 and 3 perform 
relatively well when used alone, while sensor 1, 4, 
and 6 are the worst when tested alone, and they 
actually were the first ones that we excluded. 

4 RESULTS 

On Table 1, for every considered number of sensors

we resume the best combination of sensors and the 
mean value of the accuracy. Moreover, for the 
chosen combinations of sensors, on Figure 8 we 
show the box-plot of the accuracy. 

Results show that when the number of used 
sensors grows, the accuracy increases, but with a 
non-linear relationship. With only three sensors (2, 
3, 5) it is possible to obtain a quite good level of 
accuracy, with a mean value of 81.7%. With five 
sensors (2, 3, 4, 5, 6) the accuracy is almost the same 
as with all the six sensors, with a difference as little 
as 0.8%. 

Table 1: Mean accuracy and best combinations for every 
considered number of sensors. 

Number of 
sensors 

Sensor combination Accuracy 

1 5 48.3 % 
2 2, 5 70.0 % 
3 2, 3, 5 81.7 % 
4 2, 3, 5, 6 84.6 % 
5 2, 3, 4, 5, 6 88.0 % 
6 1, 2, 3, 4, 5, 6 88.8 % 

 

 

Figure 8: Box-plot of the accuracy for every considered 
number of sensors. 

5 CONCLUSIONS 

We propose a system composed of a bracelet with 
six EMG sensors, a data condition circuitry, a 
Neural Network classifier, adopted to recognize 
hand’s gesture within a set of five. Our intent was to 
investigate the possibility of reduction in the number 
of sensors, to determine the optimal trade-off 
between their number and the accuracy obtained in 
the gesture classification. Mean accuracy resulted 
from an unacceptable 48.3% in the case of only one 
sensor, up to a useful 88.8% with the adoption of all 
six sensors. From this value, the performance 
degraded of a negligible 0.8% with five sensors, 
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while a significant 7.1% when using only three 
sensors. 
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