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Abstract: The spread of multiprocessor and multi-core architectures have a pervasive effect on the way software is de-
veloped. In order to take full advantage of them, a parallel implementation of every single program would be
needed, but also a radical reformulation of the algorithms that are more appropriate to that kind of implementa-
tion. In this work we design and implement an evolutionary computation model using programming languages
with built-in concurrent concepts. This article shows the advantages of these paradigms in order to implement
a parallel genetic algorithm (pGA) with an island pools based topology in the concurrent-functional oriented
programming languages: Erlang, Scala, and Clojure. Some implementation decisions are analyzed and the
results of the solution of a study case are shown.

1 INTRODUCTION

Genetic algorithms (GA) (Goldberg, 1989) are cur-
rently one of the most used meta-heuristics to solve
engineering problems. Furthermore, parallel genetic
algorithms (pGAs) are useful to find solutions of
complex optimizations problems in adequate times
(Luque and Alba, 2011); in particular, problems with
complex fitness. Some authors (Alba and Troya,
2001) state that using pGAs improves the quality
of solutions in terms of the number of evaluations
needed to find one. This reason, together with the im-
provement in evaluation time brought by the simul-
taneous running in several nodes, have made paral-
lel and distributed evolutionary algorithms a popular
methodology.

Running evolutionary algorithms in parallel is
quite straightforward, but programming paradigms
used for the implementation of such algorithms is far
from being an object of study. Object oriented or
procedural languages like Java and C/C++ are mostly
used. Even when some researchers show that imple-
mentation matters (Merelo-Guervós et al., 2011), par-
allels approaches in new languages/paradigms is not
normally seen as a land for scientific improvements.

New parallel platforms have been identified as
new trends in pGAs (Luque and Alba, 2011), how-
ever only hardware is considered. Software platforms,
specifically programming languages, remain poorly

explored; only Ada (Santos, 2002) and Erlang (A. Bi-
enz and Thede, 2011; Kerdprasop and Kerdprasop,
2013) were slightly tested.

This work explores the advantages of some non
mainstream languages (not included in the top ten of
any most popular languages ranking) with concurrent
and functional features in order to develop GAs in its
parallel versions. It is motivated by the lack of com-
munity attention on the subject and the belief that us-
ing concepts that simplify the modeling and imple-
mentation of such algorithms might promote their use
in research and in practice.

This research is intended to show some possible
areas of improvement on architecture and engineering
best practices for concurrent-functional paradigms,
as was made for Object Oriented Programming lan-
guages (Merelo-Guervós et al., 2000), by focusing
on pGAs as a domain of application and describing
how their principal traits can be modeled by means of
concurrent-functional languages constructs. We are
continuing the research reported in (Cruz et al., 2013;
Albert-Cruz et al., 2013).

The rest of the paper is organized as follows. Next
section presents the state of the art in concurrent and
functional programming language paradigms and its
potential use for implementing pGAs. Our proposal
to adapt pGAs to the paradigms using a study case is
explained in section 3.1 as well as the experimental
results in section 3.2. In section 3.3 we show a sam-
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ple program of canonical island/GA implemented in
Scala.

Finally, we draw the conclusions and future lines
of work in section 4.

2 FUNCTIONAL AND
CONCURRENT
PROGRAMMING

Developing correct software quickly and efficiently is
a never ending goal in the software industry. Novel
solutions that try to make a difference providing new
abstraction tools outside the mainstream of program-
ming languages have been proposed to pursue this
goal; two of the most promising are the functional and
the concurrent.

Concurrent Programming

The concurrent programming paradigm (or concur-
rent oriented programming (Armstrong, 2003)) is
characterized by the presence of programming con-
structs for managing processes like first class objects.
That is, with operators for acting upon them and the
possibility of using them like parameters or function’s
result values. This simplifies the coding of concurrent
algorithms due to the direct mapping between patterns
of communications and processes with language ex-
pressions.

Concurrent programming is hard for many rea-
sons, the communication/synchronization between
processes is key in the design of such algorithms. One
of the best efforts to formalize and simplify that is the
Hoares Communicating Sequential Processes (Hoare,
1978), this interaction description language is the the-
oretical support for many libraries and new program-
ming languages.

When a concurrent programming language is used
normally it has a particular way of handling units of
execution, being independent of the operation system
has several advantages: one program in those lan-
guages will work the same way on different operat-
ing systems. Also they can efficiently manage a lot of
processes even on a mono-processor machine.

Functional Programming

Functional programming paradigm, despite its advan-
tages, does not have many followers. Several years
ago was used in Genetic Programming (Briggs and
O’Neill, 2008; Huelsbergen, 1996; Walsh, 1999) and
recently in neuroevolution (Sher, 2013) but in GA its
presence is practically nonexistent (Hawkins and Ab-
dallah, 2001).

This paradigm is characterized by the use of func-
tions like first class concepts, and for discouraging the
use of state changes. The latter is particularly useful
for develop concurrent algorithms in which the com-
munication by state changes is the origin of errors and
complexity. Also, functional features like closures
and first class functions in general, allow to express
in one expression patterns like observer which in lan-
guage like Java need so many lines and files of source
code.

Multi-paradigms Emerging Languages

The field of programming languages research is
very active in the Computer Science discipline. To
find software construction tools with new and bet-
ter means of algorithms expression is welcome. In
the last few years the functional and concurrent
paradigms have produced a rich mix in which con-
cepts of the first one had been simplified by the use of
the second ones.

Among this new generation, the languages Erlang
and Scala have embraced the actor model of concur-
rency and get excelentes results in many application
domains; Clojure is another one with concurrent fea-
tures such as promises/futures, Software Transaction
Memory and agents. All of these tools have processes
like built-in types and scale beyond the restrictions of
the number of OS-threads.

3 A CONCURRENT AND
FUNCTIONAL APPROACH TO
PGAS

In order to design the architecture of a software in
the GAs application domain, we mostly identify the
main concepts involved and the relations among them.
Then, using the concepts of the paradigms and pro-
gramming techniques chosen, we define the structure
from the highest levels of abstraction indicating the
data to be processed and their flow. The quality and
extensibility of that structure might determine the suc-
cess or failure of the software development.

On the other hand, to develop an optimal codifica-
tion of an algorithm is mandatory to know every char-
acteristic of the programming language that is being
used.

We used an hybrid pGAs (island topology with a
pool based pGA in each node) for show the imple-
mentation recommendations. The main pGAs com-
ponents are listed in Table 1. We chose a classical
problem, the Max-SAT with 100 variable instances
(Hoos and Stutzle, 2000).
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Table 1: Parallel GA components.

AG Component Rol Description
chromosome Representing the solution. binary string

evaluated chromosome Pair fchromosome, fitnessg. relation thats indicate
the value of a

individual
population Set of chromosomes. list
crossover Relation between two chromosomes

producing other two new ones.
crossover’s function

mutation A chromosome modification. chromosome’s change
function

selection Means of population filtering. selection’s function
pool Shared population among node’s

calculating units.
population

island Topology’s node.
migration Random event for chromosome

interchange.
message

evolution Execution. A generation is made
evaluation Execution. A fitness calculi is

made

3.1 Modeling and Implementing in
Concurrent Languages

With the initial domain analysis and using the concur-
rent and functional concepts properly, the following
design and implementation were conceived.

Erlang Modeling

The main concurrent concepts are actor and message,
while the functional ones are function and list.

We propose to use actors (the execution units
of the language) for independent processes: islands
or evaluators/reproducers; for the communication
among the actors we use messages, which is the con-
cept available in the pattern for that aim.

To express the pGAs logic we propose to use the
functions (functional features for data transformation
and computation expression). For the data model we
propose use lists and tuples (the basic data structures
in the functional paradigm).

Scala Modeling

Scala is a programming language with the same con-
current programming pattern (actors) as Erlang. In
the Scala implementation we followed the same crite-
ria utilized in Erlang but with differences for its object
support and JVM dependence.

Clojure Modeling

The Clojures main concurrent used concepts are
agent, ref and atom; the functional ones are func-
tion and list. Clojure is a language with a very strict
control of state changes; it demands a clear identifica-
tion of the code doing it and that is similar to Erlang

where the functional purity is pursued too.
Agents were the concept used for implement-

ing the independent units of execution (reproductors,
evaluators, and islands). The communication between
agents was made by protocols functions due to the
needed flexibility. GAs operations, their logic and
constraints, were expressed in functions and protocol
implementations and the data was encoded in lists and
vectors data structures.

Libraries Developed

We developed libraries in Erlang, Scala and Clojure
following the same design concepts and it was tested
with the study case. The code is open, under AGPL
license, at the following addresses:

Erlang https://github.com/jalbertcruz/erlEA/archive/v1.0.tar.gz

Scala https://github.com/jalbertcruz/sclEA/archive/v1.0.tar.gz

Clojure https://github.com/jalbertcruz/cljEA/archive/v1.0.tar.gz

3.2 Application Over the Study Case

All used languages have functional and concurrent
built-in features, with the first ones supporting the
second ones. Erlang and Scalas implementations are
based in the actor pattern for doing parallel computa-
tion. Clojure on the other hand works with the agent
concept, a similar model with simplified ways of read-
ing the involved information.

To communicate modules we used languages de-
pendent (and different) data types. The message’s
structure was tuples for Erlang and Scala, and for
agents it was necessary to encapsulate functions on
protocols (Clojure variants of Java interfaces). For
sharing individuals (the pool) we used functionals
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Table 2: Erlang constructions.

Erlang Concept Role
tuple Data structure for immutable compound data.
list Sequence data structure for variable length compound

data.
function Data relations, operations.

actor Execution unit, process.
message Communication among actors.

ets Set of chromosome shared by the pool.
random module Random number generation.

Table 3: Erlang/AG concepts mapping.

Erlang concept AG concept mapping
tuple evaluated chromosome
list chromosomes and populations

function crossover, mutation and selection
actor island, evaluator and reproducer

message migration
ets pool

Table 4: Scala concepts.

Scala concepts Role
tuple Data structure for immutable compound data.
list Sequence data structure for variable length compound

data.
function Data relations, operations.

Akka’s actor Execution unit, process.
symbol/message Communication among actors.

HashMap Set of chromosome shared by the pool.

Table 5: Scala/AG concepts mapping.

Scala concept AG concept mapping
tuple evaluated chromosome
list chromosomes and populations

function crossover, mutation and selection
Akka’s actor island, evaluator and reproducer

symbol/message migration
HashMap pool

consult/modification data structures: hash-like for
Scala/Clojure and the ets module in Erlangs case.
The data was encoded with compound data structures:
lists, vectors, tuples, records, etc. The Table 6 sum-
marizes the differences between the languages.

Results

The design was tested with a population of 1024 indi-
viduals on each island (two islands were used), doing
5000 evaluations on a dual-core (4 threads) laptop i7-
3520M with Windows 8 and 16 Gb of RAM. In order
to find the better combinations of evaluators/repro-
ducers, several of them were tested for each technol-
ogy (evaluators = 1::30 and reproducers = 1::10). In
every combination the number of evaluators is greater
than the reproducers because the fitness function is
more computational intensive than the reproduction
execution. 10 runs were used for each combination

and then the times with more dispersion were deleted
until the standard deviation (SD) remained below the
5 %.

For a speedup analysis, using the ideas presented
in (Alba, 2002), a sequential implementation with
the same data structures and operator’s implementa-
tions was made. Speedup is the ratio between E[T1]
(sequential implementation average time) and E[Tm]
(parallel implementation average time in m proces-
sors), the expected value is m = 4 in this case (the
number of logical processors in the used hardware).

The results shown in Table 7 indicate for each lan-
guage the best time for the parallel implementation,
the combination of evaluators/reproducers in which
the parallel variant was obtained, the time for the se-
quential implementation, a relative speedup (speedup
calculated in relation to his sequential time) and the
speedup (relative to the best sequential time of all
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Table 6: Language concept used for each pGA component.

Erlang Scala Clojure
Parallel execution unit actor actor agent

Communication (messages) tuple tuple function (protocol)
pool ets HashMap hash-map

DS chromosome list list vector
DS population list list lazy list

Compound data tuple tuple/object record/vector
Runtime environment Erlang VM Java VM Java VM

Table 7: Experiment results for the minimum parallel time of all combinations tested.

Language Parallel time �
SD (ms)

Workers
combination

Sequential time
(ms)

Relative
speedup

Speedup

Erlang 2920.40 � 126 25 evaluators, 1
reproducer

8143.3 2.78 0.55

Clojure 1734.66 � 28.32 10 evaluators, 1
reproducer

3340.22 1.92 0.92

Scala 563 � 24.32 6 evaluators, 1
reproducer

1651.8 2.86 2.86

implementations, Scala’s in this case). Each worker
(evaluators and reproducers) is a unit of execution,
and in the used hardware only 4 units (at most) can
run at the same time.

Figure 1 shows the running times when one re-
producer is used with a variant number of evaluators;
Figure 2 shows the same but for two reproducers. In
both cases the overall behaviour of Scala is better.
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Figure 1: Parallel running times for one reproducer and
0..30 evaluators of hybrid pGAs implementation in Erlang,
Scala and Clojure.

0 5 10 15 20 25 30
0

2;000

4;000

6;000

8;000

Number o f evaluators

Pa
ra

ll
el

ti
m

e
(m

s)

Erlang
Clojure
Scala

Figure 2: Parallel running times for two reproducers and
0..30 evaluators of hybrid pGAs implementation in Erlang,
Scala and Clojure.

The computation complexity of the evaluation
function is greater than the reproduction phase and
this is why the results when one reproducer was used
are better than when two reproducers were used.

Figures 1 and 2 show that the three languages have
a good concurrent behaviour: the overhead of man-
aging more logical execution units than the available
physical ones did not show any impact on the exe-
cution time of the algorithm, even when that number
gradually increases.

The Scala implementation is smoother in its re-
sults in contrast with Clojure where many peaks were
obtained. These two languages use the JVM and the
same random library, however there are clear differ-
ences in their concurrent models. The results for
Scala and Clojure are better with a small number of
units of execution: when the number of evaluators
grows the efficiency of the algorithm falls. In this
sense Erlang have a non-typical behaviour, improv-
ing up to 25 evaluators, and then the speed begins to
decrease.

Erlang is the language with the worst execution
time; but its runtime, in the best case, is able to sched-
ule 52 units of execution (far more than the others).
The Erlang processes are scheduled using SMP whith
one scheduler per core. Each process is allowed to
run until it is paused to wait for input (a message
from some other processes) or until it has executed
a maximum fixed number of reductions (each VM in-
struction has associated a number of reductions). This
unique way of scheduling processes yields these par-
ticular results and will be better used in next studies.
Also the speedup obtained in relationship with his se-
quential time is very good. These two facts point to a
possible good scalability.

Clojure’s performance is medium, with a speedup
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close to 1. The send function was always used to com-
pute the expression by the agents therefore a hardware
dependent pool of treats was used.

Scala is the language with best results, even when
its runtime is the same of Clojure’s. It has a partic-
ular model of concurrency (actors on a event-based
dispatcher supported on the Java JSR166 fork-join
pool); and of computation (its balance between muta-
ble and immutable state), allowing the best behaviour
of the concurrent algorithm. Again is important to
note the quality of the concurrent abstractions made
by all these technologies in which the number of log-
ical units of executions is greater than the number of
the physical ones.

3.3 Sample Program of Canonical
Island/GA in Scala

In order to highlight the simplicity of the code based
in the built in concurrent concepts of the selected lan-
guages. We will describe a canonical island-based
GA implementation in Scala. We take and island-
based GA implementation because is simpler parallel
GA model than hybrid pGAs we use for time evalua-
tions.

Scala inherit keywords from several languages to
express programming concepts: from Java take ex-
tends for express inheritance and from Python/Ruby
take def to define methods. In order to help the type
inference they have Pascal-like syntax for declaring
types.

The listing 1 shows a class declaration: an actor
class.

class Island extends Actor {
// Set of actors (workers)
var workers: Set[ActorRef] = _
def receive = {

case ’start =>
// All executing units to work!
workers.forEach(_ ! ’start)

}
}

Listing 1: Actor declaration.

Island is an actor, it have a set of others actors
(the workers reproducers and evaluators). All actors
classes should have a receive method, this block of
code is compound of a list of case instructions: one
for each kind of message the actor is able to respond.
In this method there is only one case: for send a ’start
message to each worker. All actors have a method of
name ! to send messages to them.

// One of the worker classes
class Reproducer extends Actor {

def receive = {

case(’evolve , pool:HashMap , n:Int)
=>

val pop = pool.filter((a: (List ,
(Int, Int))) => a._2._2==2).
keys.toList.map(i =>

(i, pool(i)._1))
val (res, resultData) =

Reproducer.evolve(
Reproducer.extractSubpop(pop,n),

parentsCount = n / 2 })
// Continue the iteration with
// res and resultData

}
}

Listing 2: Functional processing of data.

The listing 2 shows the class for the reproducers,
in this case the message processed is composed of a
tuple of 3 elements. The first statement apply a filter
and a transformation (method map) over the pool of
individuals.

// Creating 4 islands
val islands = for(_ <- 1 to 4)

yield sys.actorOf(Props[Island])

// Puting the migrants destination &
// start each island
for(i <- 0 to 3){

islands(i) ! (’migrantsDest ,
islands((i+1)%4))

islands(i) ! ’start
}

Listing 3: Main code.

Finally the listing 3 create islands and start the evolu-
tions.

4 CONCLUSIONS

This work shows the simplicity of the modeling and
implementation of a hybrid parallel genetic algorithm
in three different concurrent-functional languages.
Most of the developed code is open, under AGPL li-
cense, at https://github.com/jalbertcruz/. In particular
we described a canonical island-based GA implemen-
tation in Scala to show its simplicity using the built-
in concurrent concepts. Erlang and Clojure are lan-
guages that encourage a non mutable state-all func-
tional programming style with advantages in the de-
sign and correction of the algorithms. The protocols
of Clojure allow the principles of OO without the
complications of inheritance; its concurrent concepts
are specialized and flexible at the same time. The
Scala language is multi-paradigm and hybrid in re-
lation with the computation models supported. When
a shared data structure is needed this language allows
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a more direct access and that could be an advantage,
although this has not been shown in our experiments
through the scaling capability.

Among the new trends in pGAs are new parallel
platforms, the new languages with built-in concurrent
abstractions are parallel platforms too, and their use
for developing pGAs can be a very good approach for
new GA developments. The functional side, which is
present in all of them, is a key component to compose
software components and simplifying the communi-
cation strategies among concurrent activities. In the
pGA model used in this work the chosen GA archi-
tecture is concurrent-rich but the implementation re-
mains simple thanks of the high level of abstraction
of the implementation technologies.

Our experiments show that the performance of
Scala is the best and point to Erlang as a very scal-
able runtime.

In order to complete the methodology we plan to
study others concurrent oriented languages such Go,
Haskell, and F# as well as going deeper in other con-
current features of the already studied languages.

We are also planning to enrich the experiments
with more complex cases of study and to test the li-
braries in heterogeneous hardware in order to check
the scalability of each language.
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