
Finding Optimal Exact Reducts

Hassan AbouEisha
Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and

Technology, KAUST, Thuwal 23955-6900, Saudi Arabia

Keywords: Exact Reducts, Covering, Dynamic Programming, Knowledge Reduction, Feature Selection.

Abstract: The problem of attribute reduction is an important problem related to feature selection and knowledge dis-
covery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new
algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a
decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic program-
ming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a
collection of decision tables from UCI ML Repository. For many of the experimented tables, the simplification
steps solved the problem.

1 INTRODUCTION

The problem of constructing a reduct with minimum
cardinality for a given decision table is one of the
key problems in the rough set theory (Pawlak, 1992;
Pawlak and Skowron, 2007; Skowron and Rauszer,
1992). It is also related to knowledge discovery, fea-
ture selection and data mining. It is well known
that this problem is NP-hard (Skowron and Rauszer,
1992). Different approximate approaches for find-
ing minimal reducts have been presented in literature
(Hoa and Son, 1996; Wroblewski, 1995). However,
based on results of Feige for the set cover problem
(Feige, 1998), it is possible to show that, under some
natural assumptions about the classNP, the approxi-
mation ratio of the best approximate polynomial time
algorithm for reduct optimization is near to the nat-
ural logarithm on the number of pairs of rows (ob-
jects) with different decisions in the decision table
(Moshkov et al., 2008). Therefore, the improvement
of exact algorithms for reduct optimization continues
to be an important issue.

In this paper, I propose an algorithm which trans-
forms the initial decision tableT into a new tableT (1)

with the same set of reducts. After that, the algo-
rithm simplifies the tableT (1) by removal of some
rows and columns (there are some analogies between
this part of the algorithm and attribute reduction al-
gorithms using discernibility matrix (Skowron and
Rauszer, 1992)). As a result, we have a new deci-
sion tableT (2) and a subsetA of the set of removed

attributes. The union ofA and an arbitrary reduct
with minimum cardinality forT (2) is a reduct with
minimum cardinality forT . The problem of reduct
optimization forT (2) is equivalent to the problem of
minimization of decision tree depth forT (2). The last
problem can be resolved by a dynamic programming
algorithm (Alkhalid et al., 2011).

A similar approach but with essentially more com-
plicated simplification part (transformation ofT 1 into
T 2) was introduced in (AbouEisha et al., 2013). This
approach has more reduction rules that are continu-
ously executed until none of them can be applied.

In this paper, I consider a number of decision ta-
bles from UCI ML Repository (A. Asuncion, 2007)
and construct, for these tables, reducts with minimum
cardinality using the proposed algorithm.

The paper consists of four sections. In Section
2, the algorithm for reduct optimization is described.
Section 3 contains results of computer experiments,
and Section 4 provides a short conclusion.

2 MINIMIZATION OF REDUCT
CARDINALITY

In this section, I consider basic notions and describe
the algorithm for reduct optimization.

A decision table T is a rectangular table withn
columns labeled with conditional attributesf1, . . . , fn.
Rows of this table are filled by nonnegative inte-
gers which are interpreted as values of conditional at-

149AbouEisha H..
Finding Optimal Exact Reducts.
DOI: 10.5220/0005035501490153
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2014), pages 149-153
ISBN: 978-989-758-048-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

tributes. Rows ofT are pairwise different and each
row is labeled with a nonnegative integer (decision)
which is interpreted as value of the decision attribute.
The description above allows only consistent decision
tables. We say that an attributefi separates two rows
of different decisions if the value of the attribute at
one of those rows is different than the other.

A test (superreduct) for T is a subset of columns
(conditional attributes) on which any two rows with
different decisions are separated by an attribute from
this subset. Areduct for T is a test forT for which
each proper subset is not a test forT . In other words,
a reduct is a minimal (with respect to set inclusion)
test. We denote byR(T) the minimum cardinality of
a reduct forT . Reducts forT with cardinalityR(T)
will be calledoptimal. By P(T) I denote the number
of unordered pairs(ρ′,ρ′′) of rows ofT with different
decisions.

Fora = (a1, . . . ,ak),b = (b1, . . . ,bk) ∈ {0,1}k, we
will write a≤ b if a1≤ b1, . . . ,ak ≤ bk.

We now describe an algorithm for the construction
of an optimal reduct.

First, the algorithm transforms the decision table
T into a decision tableT (1) which hasn columns la-
beled with the conditional attributesf1, . . . , fn, and
P(T)+ 1 rows. The firstP(T) rows r1, . . . ,rP(T) are
filled with 0 and 1, and correspond to unordered pairs
(ρ′,ρ′′) of rows ofT with different decisions. The row
of T (1) corresponding to a pair(ρ′,ρ′′) contains 1 at
the intersection with the columnfi, i = 1, . . . ,n, if and
only if ρ′ andρ′′ have different values in the column
fi. The last rowrP(T)+1 in T (1) is filled with 0s. The
last row is labeled with the decision 2. All other rows
are labeled with the decision 1.

Each reduct of this tableT (1) must contain an at-
tribute that separates each rowri,1≤ i ≤ P(T) from
rP(T)+1. Since the value of all attributes on the row

rP(T)+1 is zero, then any reduct ofT (1) contains one
or more attributes with value 1 for all other rows. The
following statement is almost obvious.

Proposition 2.1. Decision tables T and T (1) have the
same set of reducts.

The next step of the algorithm (see Algorithm 1)
is to apply two reduction rules in the following order.

1. Reduction ruleR1: For each pair of columnsfi
and f j of T (1) such thati 6= j and fi ≤ f j, remove
column fi.

2. Reduction ruleR2: For each rowri of T (1), 1≤
i ≤ P(T) that is separated from the last row by
a unique attributef ′, add this attributef ′ to the
partial reductA and remove all of rows that are
separated by this attribute from rowrP(T)+1.

Algorithm 1: Simplification algorithm.

Input: A decision tableT (1) with m = |P(T)| +
1 rows r1, . . . ,rm and n conditional attributes
f1, . . . , fn

Output: A subsetA of conditional attributes and a
decision tableT (2)

A← /0
T (2)← T (1)

for each column fi of T (2) do
for each column f j of T (2) do

if i 6= j and fi ≤ f j then
remove columnfi from T (2)

end if
end for

end for
for each row ri of T (2) do

if i 6= m and there is a unique columnf j of T (2)

separatingri from rm then
A← A∪{ f j}

remove all rows ofT (2) that f j separates from
the last row
removef j from T (2)

end if
end for

We consider both rules in this order as the appli-
cation ofR1 may introduce more applications ofR2
but not vice versa.R1 states that if an attributef j sep-
arates all pairs of rows separated byfi then we can
replace fi by f j in any reduct containingfi and we
still have a reduct.R2 describes the fact that if a pair
of rows are separated by only one attribute then this
attribute must belong to any reduct.

It is clear that the space complexity of this step
of the algorithm isO(|P(T)|× n) where|P(T)| is the
number of unordered pairs of rows ofT with differ-
ent decisions andC = n is the number of conditional
attributes ofT . The first rule of the simplification al-
gorithm has time complexity ofO(|P(T)|×n2) while
time complexity of the second rule isO(|P(T)|× n).
Hence, the time complexity of the simplification al-
gorithm isO(|P(T)|×C2).

I denote byT (2) the table obtained after the appli-
cation ofR1 andR2. It is clear that this table contains
the rowrP(T)+1. One can prove the following state-
ment.

Proposition 2.2. The union of each optimal reduct
for T (2) with the set A obtained after the application
of R1 and R2 is an optimal reduct for the table T .

The last step of the algorithm is the construction,
for the decision tableT (2), a decision treeΓ with min-
imum depth. It is not difficult to prove the following
statement.

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

150

Proposition 2.3. The set B of attributes attached to
the path in Γ from the root to a terminal node which
accepts the row rP(T)+1 is an optimal reduct for the

table T (2).

Therefore the setA∪B is an optimal reduct forT .
Figure 1 presents an example of a decision table

that we use to illustrate the notions and algorithm.

f1 f2 f3 d
0 1 0 0
1 0 0 0
1 1 1 1

Figure 1: Decision table

This decision table contains three rows, three
conditional attributesf1, f2 and f3 in addition to the
decision attributed. We have here two reducts only:
{ f1, f2} and { f3}. The set of tests (superreducts)
is {{ f1, f2, f3},{ f1, f3},{ f2, f3},{ f1, f2},{ f3}}.
P(T) = {{r1,r3},{r2,r3}} where ri denotes the ith
row of T and|P(T)|= 2.

Let us illustrate the algorithm by applying it to the
decision table in Figure 1. The algorithm transforms
this decision table into a new decision tableT (1) pre-
sented in Figure 2.

f1 f2 f3 d
1 0 1 1
0 1 1 1
0 0 0 0

Figure 2: Decision tableT (1).

The algorithm then applies the reduction ruleR1
twice and remove the columnsf1 and f2 as f1 ≤ f3
and f2 ≤ f3. Finally, R2 is applied only once where
the attributef3 is added to the partial reductA so that
A= { f3}. In the end, we obtain the decision tableT (2)

that does not contain any conditional attributes and
only one row with the decision 0. A decision treeΓ
with minimum depth forT (2) contains only one node
labeled with the decision 0. Hence, a reduct with min-
imum cardinality for tableT is { f3}.

To constructΓ, I use a dynamic programming al-
gorithm implemented in the system Dagger (Alkhalid
et al., 2011) which finds a subset of the set of all de-
cision trees with minimum depth for a given decision
table. As subproblems of the initial problem (decision
table) this algorithm uses subtables of this table given
by conditions of the kind “attribute = value”. I call
these kind of subtables separable subtables. The run
time of this algorithm is polynomial in the number of
separable subtables of the input table. In the worst

case, this algorithm has exponential time complexity
relative to the size of decision table. However, it is
applicable, usually, to medium size decision tables.

3 RESULTS OF EXPERIMENTS

In this section, I present experimental results for 23
datasets (decision tables) from UCI ML Repository
(A. Asuncion, 2007). I perform a set of preprocessing
steps on these datasets in order to handle problems
such as: inconsistencies and missing values. Some
tables contain missing values so I fill each such value
with the most common value of the corresponding at-
tribute. Inconsistencies with the decision table may
appear when a group of identical rows are labeled
with different decisions. In that case, such group is
represented by a single row labeled with the most
common decision of this group. Finally, redundant
attributes that have the same value for all rows of the
table are removed.

Table 1 contains information about decision tables
and results of experiments:

• name of initial decision tableT ;

• size of decision tableT – the number of condi-
tional attributes #atts and rows #rows;

• numberP(T) such that the number of rows inT (1)

is equal toP(T)+1 (the number of attributes in
T (1) is the same as inT);

• size of final decision tableT (2) – the number of
conditional attributes #atts and rows other than the
last row #rows;

• cardinality |A| of the set of attributesA con-
structed during the simplification ofT (1);

• minimum cardinalityR(T) of a reduct forT ;

• Time1 is the time in seconds taken for creating
T (1) from T and then transforming it intoT (2);

• Time2 is the time taken in seconds for finding op-
timal reducts inT (2) with Dagger.

A Mac Pro desktop with 16 GB of RAM memory
and dual Intel(R) Xeon(R) processors of 2.67 GHz is
used for the experiments. Both phases of the algo-
rithm are run sequentially. The time of each phase is
measured on average of ten executions of this stage
for each data set.

For 15 out of the 23 considered data sets, the re-
duction rules in the simplification part of the algo-
rithm managed to find the optimal reduct. It also re-
duced the number of attributes of other data sets dra-
matically such as: kr-vs-kp and soybean-small. Data
sets solved by the simplification part of the algorithm

Finding�Optimal�Exact�Reducts

151

Table 1: Characteristics of decision tables and results of experiments.

Decision tableT Size of tableT P(T) Size of tableT (2) |A| R(T) Time1 Time2

#rows #atts #rows #atts
adult-stretch 16 4 48 0 2 2 2 0.001
balance-scale 625 4 111168 0 0 4 4 0.036
breast-cancer 266 9 14440 0 1 8 8 0.007
cars 1728 6 682721 0 0 6 6 0.312
hayes-roth-data 69 4 1548 0 0 4 4 0.001
house-votes-84 279 16 17204 4 6 10 11 0.012 0.137
kr-vs-kp 3196 36 2548563 18 9 27 29 6.168 0.196
lenses 24 4 155 0 0 4 4 0.006
lymphography 148 18 5801 5801 18 0 6 0.003 33.653
monks-1-test 432 6 46656 0 3 3 3 0.021
monks-1-train 124 6 3844 0 3 3 3 0.002
monks-2-test 432 6 41180 0 0 6 6 0.016
monks-2-train 169 6 6720 0 0 6 6 0.002
monks-3-test 432 6 46512 0 3 3 3 0.011
monks-3-train 122 6 3720 0 2 4 4 0.001
mushrom 8124 22 16478528 16478528 19 0 4 75.026 329.542
nursery 12960 8 57319460 0 0 8 8 78.86
shuttle-landing 15 6 54 0 1 5 5 0
soybean-small 47 35 810 810 14 0 2 0.002 0.727
spect-test 169 22 1288 11 14 8 11 0 0.185
Teeth 23 8 253 0 2 6 6 0
tic-tac-toe 958 9 207832 207832 9 0 8 0.08 2.937
zoo-data 59 16 1405 105 14 2 5 0.002 0.43

have zero as the number of rows and/or columns.
Some data sets have zero rows and more than zero
columns as our implementation of the algorithm fin-
ishes its work once no more rows need to be separated
from the last row.

The simplification phase of the algorithm
achieved fast runtime for most of the data sets with
exception of mushroom and nursery due to the
huge size of the tableT (1). A simple brute force
algorithm may find optimal reducts by considering
each possible subset and testing whether it form a
reduct or not. Such brute force algorithm would
have complexity ofΩ(2n × P(T)) on tableT with
n conditional attributes. It will be very difficult to
apply this algorithm on data sets such as: kr-vs-kp,
mushroom, nursery and soybean-small.

Note that the dynamic programming algorithm is
used if |A| < R(T). If |A| = R(T) then an optimal
reductA for T is constructed during the simplification
of the tableT (1). In such cases, the value of the cell
Time2 for this data set is empty.

The dynamic programming algorithm solvedT (2)

in a considerably fast time for all data sets with excep-
tion of lymphography and mushroom due to the large
number of separable subtables of each.

4 CONCLUSION

We considered a new algorithm for reduct cardinal-
ity minimization. Results of experiments for decision
tables from UCI ML Repository showed that this al-
gorithm is applicable to medium size decision tables.

One bottleneck of our algorithm is the memory
used to store the tableT (1) as for large data sets the
size ofT (1) may not accommodate the main memory.
This challenge may be studied in future work by de-
veloping an external memory algorithm to deal with
large tables. Another interesting possibility is a com-
parative study with other algorithms for finding exact
optimal reducts.

REFERENCES

A. Asuncion, D. N. (2007). UCI machine learning reposi-
tory.

AbouEisha, H., Farhan, M. A., Chikalov, I., and Moshkov,
M. (2013). An algorithm for reduct cardinality mini-
mization. InGrC, pages 1–3.

Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov,
M., and Zielosko, B. (2011). Dagger: A tool for analy-
sis and optimization of decision trees and rules.Com-

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

152

putational Informatics, Social Factors and New Infor-
mation Technologies: Hypermedia Perspectives and
Avant-Garde Experiences in the Era of Communica-
bility Expansion, pages 29–39.

Feige, U. (1998). A threshold of ln n for approximating set
cover.J. ACM, 45(4):634–652.

Hoa, N. S. and Son, N. H. (1996). Some efficient algorithms
for rough set methods.Proceedings of the sixth Inter-
national Conference on Information Processing Man-
agement of Uncertainty in Knowledge Based Systems,
pages 1451–1456.

Moshkov, M. J., Piliszczuk, M., and Zielosko, B. (2008).
Partial Covers, Reducts and Decision Rules in Rough
Sets - Theory and Applications, volume 145 ofStudies
in Computational Intelligence. Springer.

Pawlak, Z. (1992). Rough Sets: Theoretical Aspects of
Reasoning About Data. Kluwer Academic Publishers,
Norwell, MA, USA.

Pawlak, Z. and Skowron, A. (2007). Rudiments of rough
sets.Information Sciences, 177(1):3–27.

Skowron, A. and Rauszer, C. (1992). The discernibility
matrices and functions in information systems. InIn-
telligent Decision Support, pages 331–362. Springer
Netherlands.

Wroblewski, J. (1995). Finding minimal reducts using ge-
netic algorithms. InProccedings of Second Joint An-
nual Conference on Information Sciences, pages 186–
189.

Finding�Optimal�Exact�Reducts

153

