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Abstract: On rough terrain, there are a variety of soil types having different soil strength. It means that it is needed for 
outdoor robots to change wheel control strategies since optimal slip and maximum traction levels on wheels 
differ depending on soil strength. Therefore this paper proposes an algorithm for acquiring optimal control 
parameters, such as maximum traction coefficient and optimal slip ratio to maximize traction or minimize 
energy consumption, based on estimating strength of soils. In this paper the optimal models of wheel 
traction and slip are derived through indoor experiments by a testbed for analysis of wheel-terrain 
interactions on three types of soil; grass, gravel and sand. For estimating soil strength, actual traction 
coefficient, including information of motion resistance, is observed by a state estimator related to wheeled 
robot dynamics. The actual traction coefficient and slip ratio on wheels are employed to estimate soil 
strength by a numerical method on the basis of derived optimal models. The proposed algorithm was 
verified through real driving experiments of a wheeled robot on various types of soil. 

1 INTRODUCTION 

Outdoor wheeled robots have overcame obstructions 
of moving on rough terrains, such as a slippery 
surface or a steep slope, in order to fulfil important 
tasks regarding the purpose of exploration, 
reconnaissance, rescue, etc. For achieving such goals, 
wheeled robots should have abilities to handle two 
kinds of characteristic changes on rough terrains; a 
change of soil types (slippery or non-slippery) and 
surface shapes (flat or steep). Both the terrain 
characteristic changes are crucial factors in the 
decision regarding optimal wheel slip or traction as a 
control parameter of a wheel controller since tractive 
force of a wheel is differently exerted on a surface 
according to such changes (Terry et al., 2008, Krebs 
et al., 2010, Joo et al., 2013, Ding et al, 2010, 
Ishigami et al., 2008, Brooks et al., 2012). In case of 
changing surface shapes, it is relatively easy for 
wheeled robots to realize the level of the change by 
motion sensors like inertial measurement units 
(IMU). On the contrary to this, it is not such an easy 
undertaking to judge a type of soil where a robot is 
operated in spite of using various sensors mounted 
on a robot. To solve this issue, many researches 

related to soil identification have been introduced in 
the field of robotics.  

The studies on soil identification based on 
proprioceptive sensor data, not including dynamic 
state information of a moving robot, have been 
proposed. As proprioceptive sensors, the vibration 
information of an accelerometer or IMU and the 
current information of wheel motors were used to 
make the data signals, which are transformed into 
soil feature data in frequency domain using a Fast 
Fourier Transform (FFT). The soil feature data were 
classified into one of pre-learned soil models by a 
support vector machine (SVM) (Brooks et al., 2012, 
Iagnemma et al., 2005) or a probabilistic neural 
network (PNN)  (Coyle et al., 2008, Ojeda et al., 
2006). The performance of identifying a soil type 
was verified through driving simulations or real 
driving experiments on rough terrains. However, 
these algorithms have physical limitations on real 
applications of wheeled robots. First of all, the 
vibration and current information is strongly 
influenced by a robot speed and also a surface shape. 
Therefore, although two robots move on the same 
type of soil, it might indicate the result of identifying 
one into another soil type depending on a robot 
speed and a surface shape.  
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With wheel-soil interaction models for planetary 
rovers on loose soils, the algorithms for soil 
identification and for optimal wheel control were 
proposed. In Brooks et al., 2012, the purpose of soil 
identification is to estimate the maximum traction 
through optimization of a traction force model, 
based on observed rover wheel torque and sinkage. 
And in Iagnemma et al., 2004, the purpose of soil 
identification is to estimate key soil parameters, 
cohesion c and internal friction angle ϕ which can be 
used to compute maximum shear stress related to 
maximum traction of wheels. To identify distinct 
type of soil, in these researches, proprioceptive 
sensor data are needed to be measured or estimated, 
such as the vertical load, torque, wheel angular 
speed, wheel linear speed and sinkage. The 
algorithms were demonstrated using experimental 
data from a four-wheeled robot in an outdoor Mars-
analogue environment. However, these methods 
cannot be utilized for some wheeled robots like 
military vehicles which are sometimes operated on 
hard surfaces such as grass or firm soil, where the 
sinkage does not occur because the force equations 
become zero. On loose soils, it is also not easy to be 
employed since it is difficult to precisely estimate 
sinkage by vision or distance sensors.  

To solve these problems, this paper proposes an 
algorithm to estimate optimal control parameters; 
maximum traction coefficient and optimal slip ratio 
on rough surfaces with various soil types from a 
hard surface through a loose surface, based on soil 
strength without estimating wheel sinkage. 

2 MODELLING OF OPTIMAL 
CONTROL PARAMETERS 

2.1 Improved Brixius Equation based 
on Soil Strength 

Brixius equation is well-known as one of empirical 
methods, which express tractive characteristics of 
bias-ply pneumatic tyres on a variety of soil types in 
outdoor environments (Brixius, 1987, Tiwari et al., 
2010). To meet the purpose of this paper, previous 
Brixius equation is changed into a function of wheel 
slip ratio S and soil strength K which can be 
measured or estimated by on-board sensors in real-
time, as shown in (3) – (6). In (1), slip ratio is a key 
state variable and it is expressed as a function of the 
linear velocity Vx [m/s] and the circumference 
velocity ωRw [m/s]. 
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where Rw [m] is the wheel radius and ω [rad/s] is the 
wheel angular velocity. Soil strength K is also a 
crucial variable for soil identification. Soil strength 
K is actually estimated on a real-time system of a 
robot by an algorithm for soil identification in this 
paper.  

 

Figure 1: Forces acting on a driving wheel. 

Figure 1 shows forces acting on a driving wheel during a 
wheel-terrain interaction by wheel torque T [Nm] and 
normal load W [N]. In (2), drawbar pull FDP [N] is 
expressed by difference of gross traction FGT [N] and 
motion resistance FMR [N].  

MRGTDP FFF  (2)

By Brixius equation, gross traction FGT and motion 
resistance FMR are as follows: 
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By (2), drawbar force FDP is defined as: 
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where 1C , 2C , 3C , 4C , 5C , and 6C are Brixius 

constants and the values are determined by a 
nonlinear regression technique. Equation (5) is 
divided by normal load W as follows: (upper sign: S > 
0, lower sign: S < 0) 
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Equation (6) represents traction – slip curves 
according to strength of soil K. 

2.2 Derivation of OCP Models 

For derivation of optimal slip models, indoor 
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experiments to acquire force data (FDP, FGR, and FMR) 
in Figure 1 were conducted on three types of soil: 
sand, gravel and grass where soil strengths are 
different, as shown in Figure 2. In the system of the 
testbed, the maximum angular velocity is 4.5 rad/s 
and the maximum linear velocity is 32 cm/s. 
Experimental slip conditions were controlled at 0.1, 
0.2, 0.3, 0.4, 0.5 and 0.6. From measured data of the 
testbed, Brixius equation can be completed based on 
soil strength K of each soil type. Brixius constants in 
the equations are calculated by a nonlinear 
regression technique using a statistics program, 
SPSS as follows: C1=1.3, C2=0.01, C3=7.058, 
C4=0.04, C5=-5, C6=4. Strength of soils K are also 
given: 50 (sand), 80 (gravel) and 200 (grass), 
respectively.  

 
(a)  Sand                      (b) Gravel                   (c) Grass 

Figure 2: Wheel-soil interaction experiments using a testbed 
on three types of soil. 

 

Figure 3: Traction-slip curve on soil types; sand, gravel 
and grass. 

Using the given Brixius constants and soil strengths, 
graphs of relation between wheel traction and slip 
were drawn about the four types of soil from (6), as 
shown in Figure 3. Actually, a curve in between 
grass and gravel was not acquired from the indoor 
experiments. When watching the gap between the 
curves, it is possible to expect that there exists 
another soil type which is harder than gravel or 
softer than grass. The expected soil type (EST) 
seems to have soil strength of K=120. On all the 
curves, wheel traction is changed by increasing 
wheel slip. And wheel traction indicates that it has 
the maximum value at peak points on the curves 
having a particular slip ratio. In this paper, the point 
is named optimal slip ratio for maximum traction, ST. 
And ST points can be calculated by partially 

differentiating the traction-slip equation (6) with 
respect to slip ratio S. Therefore the optimal slip 
model for maximum traction and also the  maximum 
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traction coefficient model are defined as functions of 
soil strength K by (7) and (8), respectively.    

In another case, Brixius equations can be 
employed for analysis of wheel tractive efficiency of 
(9). Equation (9) represents the degree of generated 
drawbar pull FDP when gross traction FGT acts on 
wheels. From Brixius equation (3) and (5), the 
curves of tractive efficiency are described as shown 
in Figure 4. All tractive efficiency on soil types 
increases rapidly until reaching peak points near 0.1 
of the slip ratio and decreases dramatically after that. 
In this paper, the slip ratio is called optimal slip ratio 
for TE, SE and it means that wheeled robots can 
minimize energy consumption if the robots keep 
wheel slip at SE while moving on rough terrains.  
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Figure 4: Tractive efficiency on soil types; sand, gravel 
and grass. 

To derive an optimal slip model for maximum TE, it 
is possible to partially differentiate the TE equation 
(9) with respect to slip ratio S. However, there is 
complexity for partial differentiation of (9) where 
the nonlinear equation (3) and (5) are included. For 
simplification, the SE model is derived as a linear 
equation of soil strength K from real peak points on 
each curve on the basis that the points of maximum 
TE move on the curves at near 0.1 of slip ratios. 
Derived SE model is as follows:  
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As an example, Figure 5 describes optimal values; 
maximum traction coefficient μT, optimal slip ratio for 
traction ST and for TE SE calculated from the optimal 
control parameter (OCP) models based on the soil strength 
K=120. Derived OCP models include a wide range of soil 
types from a hard surface like asphalt through a loose 
surface like sand. Once soil strength K is estimated in the 
range from zero to infinity, optimal control parameters are 
determined and used to optimally adjust wheel rotations 
according to the control purpose.   

 

Figure 5: OCP curves depending on soil strength K. 

3 PROPRIOCEPTIVE 
ESTIMATION 
OF SOIL STRENGTH 

In this section, a method for estimation of soil 
strength K was suggested. Soil strength K can be 
simply determined through observing actual traction 
coefficient μ and slip ratio S on the traction-slip 
curve as shown in Figure 3. The estimator of the 
actual traction coefficient is developed based on 
wheeled robot dynamic models. Actual slip ratios of 
wheels can be calculated by (1). Acquired real 
information of the traction coefficient and the slip 
ratio are employed to estimate soil strength K on the 
traction-slip curve in Figure 3 by a numerical 
method. 

3.1 Estimation of Real Traction 
Coefficient 

The real traction coefficient estimator developed in 
this paper, which does not cause a huge 
computational burden or require derivations of 
sensor signals, is based on a Kalman filter using 
wheeled robot dynamics shown in Figure 6. The 
motion equation of the robot on the XR-YR-ZR robot 
coordinates described in Figure 6 is  

Rzxxxxz MFFcFFdI ,)()(
2143

  (11)

 

Figure 6: Four-wheel drive, differentially steered robot. 

where  is the yaw rate; Iz represents the moment of 

inertia of the robot, a and b are the distances from 
the center of mass of the robot to the rear axle and 
the front axle, respectively. And Mz,R is the 
resistance moment about ZR-axis and it is defined as: 
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where μy,R is the lateral motion resistance coefficient 
on YR-axis and Fz is the normal forces on wheels. 
The subscript i indicates that 1 is the left-rear wheel, 
2 is the left-front wheel, 3 is the right-front wheel 
and 4 is the right-rear wheel. 

The motion equation for the wheel is as follows: 
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where T is the wheel torque, Iω is the moment of 
inertial of a wheel, Fx and Fx,R are the longitudinal 
traction and the motion resistance on XR-axis, which 
can be obtained as follows:  
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where μ is the longitudinal traction coefficient on 
wheels and μx,R is the motion resistance coefficient 
on XR-axis. In (11)-(14), the normal force Fz is 
calculated by 3-dimentioanl normal force dynamics 
defined as: 
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where m is the robot mass; h is the height from the 
surface to the center of mass of the robot; c and d are 
the distances from the center of mass of the robot to 

the left wheels and the right wheels; xV , yV and zV

are the acceleration; gx, gy and gz are the gravity 
force on the XR-YR-ZR robot coordinates, 
respectively. The gravity force is defined by (20) 
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where Rx and Ry are the rotation matrices about XG 
and YG-axis, GG is the gravity force vector on the 
global coordinate system. From (16)-(19), the 
equations are transformed into a form of a matrix as 
follows:  
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The normal forces are calculated by (25) defined as: 

        BAFz
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From (11)-(15), the states for the Kalman filter are 
defined as follows: 
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The measurements are 
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Equations (11)-(15) and (26)-(29) are integrated to 
build the following state-space system with process 
noise w(t) and measurement noise v(t) as follows: 
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where A(t), B(t) and H(t) are defined in (30)-(32), 

and their Iiⅹk and Oiⅹk denote an iⅹk identity matrix 
and a zero matrix, respectively. Equation (33) is 
discretized using zero-order hold for being 
applicable to the discrete-time Kalman filter as 
follows: 
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The algorithm of the discrete-time Kalman filter is  
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where Wk and Vk represent the covariance matrices 
of w(t)  and v(t). The estimator includes the motion 
equations for the wheeled robot, but the traction 
coefficients μi are considered to be unknown 
parameters to be estimated. And also, the 
longitudinal motion resistance coefficients μx,Ri are 
included in the estimator in order to observe the 
change of surface shapes and of soil types. 

3.2 Estimation of Soil Strength 
by Numerical Method 

From derived actual traction coefficient and slip 
ratio, soil strength K is simply estimated by a 
numerical method. The numerical update rule of soil 
strength K is defined as: 

Enn KK 1  (36)

where Kn+1 is the updated value of soil strength; Kn 
is the previous value of soil strength, λ is the 
learning rate selected in the range between 1 and 0, 
ηE is the learning weight defined as: 

aa

e

a

ref
E S

E

SS



  (37)

Soil�Strength-based�Estimation�of�Optimal�Control�Parameters�for�Wheeled�Robots�on�Rough�Terrain

69



where μref is the reference value derived by the  
estimator of real traction coefficient, μe is the 
arbitrary value from (40) based on the traction-slip 
curve in (6), Sa is the actual slip ratio of a robot and 
E is the error model by (38). The reference value μref 

is integrated to consider actual tractive coefficient μ 
with actual motion resistance μx,R related to the 
change of a surface shape and a soil type in (39). 
The arbitrary value μe is calculated from the derived 
traction-slip model by entering previous soil strength 
Kn and actual slip ratio Sa as shown in (40). As initial 
soil strength K0 is selected as 250, the algorithm is 
iteratively worked until the error E becomes under 
0.1.  
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4 EXPERIMENTAL 
VERIFICATION IN OUTDOOR 
ENVIRONMENTS 

For verifying the proposed algorithm, a wheeled 
robot was employed on five types of terrains; a 
sandy slope (15 degrees), a rough sandy soil, a 
gravel surface, a firm soil and a grassy surface as 
shown in Figure 7. The robot size is 50cm long, 
40cm wide and 30cm high. The weight of the robot 
is 160N and it can move at max speed 2m/s. To 
implement the proposed algorithm, it is most 
important to estimate slip ratio between the linear 

velocity of the robot and the circumference velocity 
of the wheels.  In this paper, additional wheel with 
an encoder was used to measure the forward velocity 
of the body. And the circumference velocity of the 
wheels was acquired from the motor encoder of 
wheels. Also, the 3-axis accelerations, the 3-axis 
angles (roll, pitch and yaw) and angular rates on the 
XR-YR-ZR robot coordinates are measured by IMU. 

At first, the performance of the suggested 
algorithm was confirmed through the driving 
experiment at robot speed 0.5 m/s on the sandy slope 
in Figure 7 (a) containing the information of a 
surface shape. Figure 8 shows estimated normal 
forces of each wheel. The subscripts of Fz mean that 
rf is the right-front wheel, rr is the right-rear wheel, 
lr is the left-rear wheel and lf is the left-front wheel, 
respectively.  

In Figure 8, after 2 seconds, the robot is faced 
with an uphill slope, and thereby the normal forces 
on the front wheels decrease and the normal forces 
on the rear wheels increase. And from about 7 to 10 
seconds, the robot moves on a downhill sandy slope. 
By the effect of the slope, the wheel slip data display 
different tendencies on wheels each other. In Figure 
9, from about 2 to 7 seconds, the front wheel slips 
occur more than the rear wheel slips since the front 
wheels lose the normal forces by the change of 
surface shape. From Figure 8 and 9, it can be 
confirmed how the changes of surface shapes 
influence the robot dynamic states. 

Figure 10 and 11 show the estimated traction 
coefficients with or without compensating the 
motion resistance regarding the surface shapes on 
the sandy slope. Figure 10 represents values of a 
combined model between the traction coefficient μ 

and the motion resistance coefficient μx,R. Figure 11 
indicates only the traction coefficient μ. From the 
results  of  the  estimated  actual  traction  coefficient 
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(a) Sandy Slope (15°)  

          
(b) Rough Sandy Soil                       (c) Gravel Surface 

             
(d) Firm Soil                             (e) Grassy Surface 

Figure 7: Experimental terrain types. 

 

Figure 8: Estimated normal forces on the sandy slope. 

 

Figure 9: Estimated slip ratios on the sandy slope. 

and actual slip ratio, soil strength K on the sandy 
slope was estimated by the numerical method as 
shown in Figure 12 and 13. The convergence time 
was average 0.01 seconds every samples. Figure 12 
displays the flow of soil strength K in the vicinity of 
the desired area of soil strength of sand in contrast 
with Figure 13. In Figure 13, the estimated soil 
strength is gradually decreasing during the whole 
time.  From these results in Figure 12 and Figure 13, 
it can be verified that the suggested algorithm 
improves the performance of soil identification. 
Figure 14 describes the results of estimating optimal 
control parameters from the estimated soil strength 

on the sandy slope. Actually, the pre-experimental 

data were placed on about K=50, μT=0.4, ST=0.26 
and SE=0.12. In Figure 14, it is considered that the 
outdoor experimental sandy surface had more 
moisture, in that time, than the indoor experimental 
sand surface though the estimated optimal control 
parameters indicates slightly higher values than the 
pre-experimental data.  

 

Figure 10: Estimated traction coefficient μ with 
compensating motion resistance on the sandy slope. 

 
Figure 11: Estimated traction coefficient μ without 
compensating motion resistance on the sandy slope. 

 
Figure 12: Estimated soil strength K with compensating 
motion resistance on the sandy slope. 

 
Figure 13: Estimated soil strength K without compensating 
motion resistance on the sandy slope. 

 
Figure 14: Estimated optimal control parameters on the 
sandy slope. 
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As other driving experiments at robot speed 1 
m/s on the four types of soil in Figure 7 (b)–(e), 
Figure 15 describes the results of estimating soil 
strength K depending on soil types. From 0 to 1 
second, there are error values by the initial 
measurement errors of wheel slip since the slip ratio 
is very sensitive when the robot moves at low speed.  

 

Figure 15: Estimated soil strength K on (a) firm soil (b) 
grassy surface (c) gravel surface (d) rough sandy soil. 

 

Figure 16: Estimated maximum traction coefficient μT on 
(a) firm soil (b) grassy surface (c) gravel surface (d) rough 
sandy soil. 

 

Figure 17: Estimated optimal slip ratio for traction ST on (a) 
firm soil (b) grassy surface (c) gravel surface (d) rough 
sandy soil. 

 

Figure 18: Estimated optimal slip ratio for energy SE on (a) 
firm soil (b) grassy surface (c) gravel surface (d) rough 
sandy soil. 

5 CONCLUSION 

This paper proposed an algorithm for acquiring 
optimal control parameters, such as maximum 
traction coefficient and optimal slip ratio to 
maximize traction or minimize energy consumption, 
based on estimating strength of soils. In this paper 
the optimal models for wheel traction and slip were 
derived through indoor experiments using a testbed 
for analysis of wheel-terrain interactions on three 
types of soil; grass, gravel and sand. For estimating 
soil strength, actual traction coefficient, including 
information of motion resistance, was observed by 
the DKF-based state estimator related to wheeled 
robot dynamics. The actual traction coefficient and 
slip ratio on wheels were employed to estimate soil 
strength by the numerical method on the basis on 
derived optimal models. The proposed algorithm 
was verified through real driving experiments of the 
wheeled robot on various types of soil. From the 
evaluation of the estimation results, it could confirm 
that the suggested algorithm has enough 
performance to identify soil types on rough terrains. 
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