
Using the Juliet Test Suite to Compare Static Security Scanners

Andreas Wagner1and Johannes Sametinger2
1GAM Project, IT Solutions, Schwertberg, Austria

2Dept. of Information Systems – Software Engineering, Johannes Kepler University Linz, Linz, Austria

Keywords: Juliet Test Suite, Security Scanner, Scanner Comparison, Static Analysis.

Abstract: Security issues arise permanently in different software products. Making software secure is a challenging
endeavour. Static analysis of the source code can help eliminate various security bugs. The better a scanner
is, the more bugs can be found and eliminated. The quality of security scanners can be determined by letting
them scan code with known vulnerabilities. Thus, it is easy to see how much they have (not) found. We
have used the Juliet Test Suite to test various scanners. This test suite contains test cases with a set of securi-
ty bugs that should be found by security scanners. We have automated the process of scanning the test suite
and of comparing the generated results. With one exception, we have only used freely available source code
scanners. These scanners were not primarily targeted at security, yielding disappointing results at first sight.
We will report on the findings, on the barriers for automatic scanning and comparing, as well as on the de-
tailed results.

1 INTRODUCTION

Software is ubiquitous these days. We constantly get
in touch with software in different situations. For
example, we use software for online banking; we use
smartphones, we drive cars, etc. Security of software
is crucial in many, if not most situations. But news
about security problems of software systems contin-
ues to appear in the media. So the question arises:
how can security errors be avoided or at least mini-
mized? Security is complex and difficult to achieve.
It is commonly agreed on that security has to be
designed into software from the very start. Develop-
ers can follow Microsoft’s secure software life-cycle
(Howard, Lippner 2006) or adhere to the security
touch points (McGraw 2009). Source code reviews
depict an important piece of the puzzle in the direc-
tion of secure software. Source code scanners pro-
vide a means to automatically review source code
and to detect problems in the code. These scanners
typically have built-in, but mostly extensible sets of
errors to look for in the code. The better the scanner
and its rule set, the better the results of its scan. We
have used a test suite that contains source code with
security weaknesses to make a point about the quali-
ty of such scanners. We have analyzed several scan-
ners and compared their results with each other.

The paper is structured as follows: Section 2
gives an overview of the Juliet Test Suite. In Section
3, we introduce security scanners. The process
model for the analysis and comparison is shown in
Section 4. Section 5 contains the results of our study.
Related work is discussed in Section 6.

2 JULIET TEST SUITE

The Juliet Test Suite was developed by the Center
for Assured Software (CAS) of the US American
National Security Agency (NSA) (Center for As-
sured Software 2011). Its test cases have been creat-
ed in order to test scanners or other software. There
are two parts of the test suite. One part covers secu-
rity errors for the programming languages C and
C++. The other one covers security errors for the
language Java. Code examples with security vulner-
abilities are given in simple form as well as embed-
ded in variations of different control flow- and data-
flow patterns. The suite contains around 57,000 test
cases in C/C++ and around 24,000 test cases in Java
(Boland, Black 2012). A test suite can only cover a
subset of possible errors. The Juliet Test Suite co-
vers the top 25 security errors defined by
SANS/MITRE (MITRE 2011). MITRE is a non-
profit organization operating research and develop

244 Wagner A. and Sametinger J..
Using the Juliet Test Suite to Compare Static Security Scanners.
DOI: 10.5220/0005032902440252
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 244-252
ISBN: 978-989-758-045-1
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Table 1: Top 10 Security Errors (MITRE 2011).

No Score ID Name

1 93.8
CWE-

89

Improper Neutralization of
Elements used in an SQL
Command (SQL Injection)

2 83.3
CWE-

78

Improper Neutralization of
Special Elements used in an
OS Command
(OS Command Injection)

3 79.0
CWE-

120

Buffer Copy without
Checking Size of Input
(Classic Buffer Overflow)

4 77.7
CWE-

79

Improper Neutralization of
Input During Web Page
Generation
(Cross-site Scripting)

5 76.9
CWE-

306
Missing Authentication for
Critical Function

6 76.8
CWE-

862
Missing Authorization

7 75.0
CWE-

798
Use of Hardcoded Creden-
tials

8 75.0
CWE-

311
Missing Encryption of Sen-
sitive Data

9 74.0
CWE-

434
Unrestricted Upload of File
with Dangerous Type

10 73.8
CWE-

807
Reliance on Untrusted In-
puts in a Security Decision

ment centers funded by the US government. The
SANS Institute is a cooperative research and educa-
tion organization and is a trusted source for comput-
er security training, certification and research
(http://www.sans.org/). CWE is a community-
developed dictionary for software weakness types
(http://cwe.mitre.org/). These types have been used
for the classification of the security errors in the
Juliet test Suite. Each CWE entry describes a class
of security errors. For example, CWE-89 describes
“Improper Neutralization of Special Elements used
in an SQL Command (SQL Injection)”. This hap-
pens to be the top 1 security error according to
SANS/MITRE. Table 1 shows the first 10 of the top
25 security errors by SANS/MITRE (MITRE 2011).

2.1 Structure of the Test Suite

The Juliet Test Suite contains source code files that
are structured in different folders. Each folder covers
one CWE entry. Therefore, there are several source
code files in every folder that contain a collection of
errors for the specific CWE entry. Every source code
file targets one error. In most cases, this error is
located in a function called “Bad-Function”. But

there are also cases, where the error is contained in
some helper functions called “Bad-Helper”. Addi-
tionally, “Class-based” errors arise from class inher-
itance. Besides bad functions, there are also good
functions and good helper functions. These functions
contain nearly the same logic as the bad functions
but without the security errors. The good functions
can be used to prove the quality of security scanners.
They should find the errors in the bad functions and
its helpers but not in the good functions (National
Institute of Standards and Technology 2012). In
version 1.1, the Juliet Test Suite covers 181 different
kinds of flaws, including authentication and access
control, buffer handling, code quality, control-flow
management, encryption and randomness, error
handling, file handling, information leaks, initializa-
tion and shutdown, injection, and pointer and refer-
ence handling (Boland, Black 2012).

2.2 Natural Code vs. Artificial Code

We can distinguish two types of source code, i.e.,
artificial code and natural code. Natural code is used
in real software like, for example, the Apache Web-
server or Microsoft Word. Artificial code has been
generated for some specific purpose, for example, to
test security scanners. The Juliet Test Suite contains
only artificial code, because such code simplifies the
evaluation and the comparison of security scanners.
In order to determine whether an error reported by a
security scanner is correct, it is necessary to know
where exactly there are any security bugs in the
source code. This is a difficult task for natural code,
because the complete source code would have to be
subject of close scrutiny. For artificial code this is a
much easier task, because the code had been gener-
ated and documented with specific errors in mind
anyway.

Any security scanner may not find specific secu-
rity errors in natural code. A manual code review is
necessary to find such problems, provided the avail-
ability of personnel with sufficient security
knowledge. Otherwise, the existence of these securi-
ty errors in the code may remain unknown. In con-
trast, the number of errors in artificial code is
known. Only if the errors in the test suite are known,
we can check whether scanners find all of these. But
even for artificial code, it is hard to determine the
exact source code line of a specific security error.
Different scanners typically report these errors at
different source code lines. Thus, authors of artificial
code have to pay close attention in order to define
the exact locations of any errors they include in their
code. Control flow and data flow can appear in

Using�the�Juliet�Test�Suite�to�Compare�Static�Security�Scanners

245

many different combinations. Natural code does not
contain all of these combinations. With artificial
code, security scanners can be tested whether they
find all these combinations (National Institute of
Standards and Technology 2012). Artificial code has
advantages, but it also has its limitation. Artificial
test cases are typically simpler than what can be
found in natural code. In fact, test cases in the Juliet
Test Suite are much simpler than natural code.
Therefore, security scanners may find something in
these test cases but fail at real programs that are
much more complex. In addition, the frequency of
flaws in the test suite may not reflect the frequency
of the bugs of real programs. Again, a security scan-
ner may find many errors in the test suite but not in
natural code. And, even if less likely, it can also be
just the opposite (National Institute of Standards and
Technology 2012).

3 SECURITY SCANNERS

Source code scanners are programs that analyze the
static source code of other programs to identify
flaws. They typically check the source code, but
some may also scan byte code or binaries. Every
scanner has a built-in set of weaknesses to look for.
Most also have some means of adding custom rules
(Black 2009). The rules can target specific weak-
nesses, e.g., security, but may also check for pro-
gramming style.

3.1 Software Security

Security is about protecting information and infor-
mation systems from unauthorized access and use.
The core goals are to retain confidentiality, integrity
and availability of information. Besides IT security,
other security terms that are often used include net-
work security, computer security, web security,
mobile security, and software security. Software
security is “the idea of engineering software so that
it continues to function correctly under malicious
attack” (McGraw 2004).

Prominent software security bugs include buffer
overflows, SQL injections and cross-site scripting.
There are many examples, where these bugs have
occurred and caused damage. While security bugs
are problems at the implementation level, security
flaws are located at the architecture or design level.
Security flaws are much harder to detect and typical-
ly need more detailed expert knowledge. Security
scanners target security bugs. Thus, they can help to
greatly enhance the security of software, but they are

not capable of finding all security problems that may
exist in the software they are scanning.

3.2 Security Problems

Software security problems have to be uniquely
identified and classified. For example, when differ-
ent scanners use their own classification scheme,
comparison is difficult for customers who use more
than one tool from different vendors. The databases
CVE and CWE have been created for that purpose.
CVE stands for Common Vulnerabilities and Expo-
sures (http://cve.mitre.org/). It provides a standard
for security vulnerability names and is a dictionary
of publicly known information security vulnerabili-
ties and exposures. CWE stands for Common
Weakness Enumeration (http://cwe.mitre.org/). It
provides a unified, measurable set of software
weaknesses for effective discussion, description,
selection, and use of software security tools. Both
CWE and CVE are free for public use. They roughly
contain 1,000 and 60,000 entries, respectively.

If a specific security problem gets known, it is
assigned its own CVE number for identification and
description. The vulnerability relates to a specific
weakness, i.e., to a CWE number. CWE entries are
more abstract than CVE entries and identify a class
of problems. For example if a heap overflow is
found in a software product, this problem gets a
CVE number. The CVE number relates to a CWE
entry that describes buffer overflows in general.
Additionally, security vulnerabilities get scores to
classify the severity of the problems. For that pur-
pose, CVSS is used. CVSS stands for The Common
Vulnerability Scoring System. It is a “vendor agnos-
tic, industry open standard designed to convey vul-
nerability severity and help determine urgency and
priority of response” (http://www.first.org/cvss).

3.3 Selected Scanners

As mentioned above, the Juliet Test Suite contains a
Java and a C/C++ part. Thus, it can be used to either
test Java or C/C++ scanners. A list of security scan-
ners is given in http://samate.nist.gov/index.php/
Source_Code_Security_Analyzers.html. We have
chosen scanners that are available for free, and that
can be started via command line. Free scanners have
been chosen because we had done this project only
for demonstration purposes.

Commercial scanners may hopefully provide bet-
ter results than the scanners we have chosen. How-
ever, they can be used by the same approach that we
will present here. Additionally, we have only chosen

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

246

scanners that can be started via command line. This
requirement was necessary for the automation pro-
cess. However, with some programming or scripting,
tools without a command line interface will be able
to be integrated, too. As a result, we have used the
following source code scanners for our case study:
 PMD (Java) – version 4.0.3

PMD is an open source static analysis tool.
We have used the GDS PMD Secure Coding
Ruleset, a custom set of security rules intend-
ed to identify security violations that map to
the 2010 OWASP Top 10 application security
risks (https://github.com/GDSSecurity/GDS-
PMD-Security-Rules). More information on
PMD can be found at http://pmd.sourceforge.
net.

 FindBugs (Java) – version 2
FindBugs is also an open source static analysis
tool for the Java programming language. It is
interesting that FindBugs processes the com-
piled class files rather than the source code
files. More information can be found at
http://findbugs.sourceforge.net.

 Jlint (Java) – version 3.0
Jlint is an open source static analysis tool like
PMD and FindBugs. It mainly detects incon-
sistent software routines and synchronizations
problems. Version 3.0 has been released in
2011, indicating that its development may
have been discontinued. For more details see
http://jlint.sourceforge.net.

 Cppcheck (C/C++) – version 1.58
Cppcheck is a static analysis scanner for the
programming languages C and C++. It detects
several different security errors, which are de-
scribed on the tool’s website. See
http://cppcheck.sourceforge.net for more in-
formation.

 Visual Studio (C/C++) – version 2010
The VisualStudio Compiler is shipped with
Microsoft Visual Studio, Microsoft’s devel-
opment environment. The compiler has an op-
tion “/analyze” that lets it analyze the source
code for errors. A list of all detected problems
is given in the documentation of the compiler.
See http://msdn.microsoft.com/vstudio for
more information.

We have used these scanners because they were
freely available. The only exception is Microsoft
Visual Studio Compiler, for which a license had
been available. It is important to note that all these
scanners are not dedicated security scanners. They
detect non-security issues like bad programming
habits or violation of programming guidelines. Secu-

rity is not their primary target. Naturally, the Juliet
Test Suite is best suited to compare dedicated securi-
ty scanners. Our goal was to demonstrate the useful-
ness of the test suite for that purpose, and also to
provide a methodology for an automatic assessment
of such scanners.

4 APPROACH

In order to compare different scanners, we have to
simply let them scan the test suite and then compare
their results. As simple as it sounds, this can be a
tedious and cumbersome process for several reasons.

4.1 Error Types

First of all, different security scanners report differ-
ent error types, making it hard to compare the re-
sults. For example, one tool may report an SQL
injection as an error with type “SQL Injection”.
Another tool may report an error of “type=2”. There-
fore, we have a transformation tool that transforms
the scanner results into a uniform format that can
later be used for comparison. For that purpose, we
have mapped the scanner specific error types to
CWE numbers that already are used in the test suite.
The transformation is split into two steps. First, all
the scanner result files are converted to CVS files.
For that purpose, a tool called Metric Output Trans-
former (MOT) is used. This tool is part of a research
project called Software Project Quality Reporter
(SPQR) (Ploesch et al. 2008). Every line in the CVS
files represents one detected error. Each line con-
tains several columns with the name of the scanner,
an abbreviation of the error set by the transformer,
the path to the file with the error, and the line num-
ber where the error was detected. The line ends with
the scanner’s error message. Listing 1 shows one
such line, i.e., the description of one error. Due to
space limitations, each column entry is presented in
a separate line or two with a comment on the right
side.

In the second step, output in the CVS files is
used in combination with CWE mapping files. CWE
mapping files map scanner-specific results to CWE
numbers. Listing 2 shows a small part of the CWE
mapping file for the scanner Jlint. As can be seen,
CWE mapping files contain tags for the scanner
codes. These codes are assigned to CWE numbers.
Multiple CWE numbers can be assigned to a single
scanner code, be-cause scanner results are some-
times more abstract than its CWE numbers. For

Using�the�Juliet�Test�Suite�to�Compare�Static�Security�Scanners

247

example, a scanner result with code “CPSR” can
either be of type CWE 570 or CWE 571.

JLint name of scanner

CCNP abbreviation of error

CWE113_HTTP_Response_Splitting file
__connect_tcp_addCookieServlet_15.java

148 line number

Switch case constant 6 can't be error message
produced by switch expression

Listing 1: SPQR output

4.2 Error locations

Another problem for comparison is the fact that
security errors are indeed documented in the test
suite, but their exact location, i.e., the specific source
code line, is not always known. We have therefore
developed a small utility program that identifies the
appropriate lines in the source code files. For some
of the test suite’s source code files, we have been
able to find additional descriptions that specify the
line of the error in an XML file. These additional
files had been used whenever they were available.
See http://samate.nist.gov for more information.
Without these files we were only able to define a
range of lines in the source code in which the error
was located. With the additional files we were able
to determine the exact location where the error oc-
curred. These files have lead to roughly 2,800 (out
of 24,000) exactly located errors in the Java version
of the test suite and about 23,000 (out of 57,000)
errors in the C/C++ version.

4.3 Automated analysis and
comparison

For automated comparison, we have developed a
simple utility program that is used to start the securi-
ty scanners and to compare their results. The process
is structured into four steps:

1. We scan the Juliet Test Suite and locate the
lines of errors as a reference. This needs to be
done only once.

2. We start the security scanners to analyze the
test suite. The scanners report their results in
specific formats.

3. We convert the result files of the scanners in-
to a uniform format (as shown in Listing 1)
for comparison.

4. We compare the results and generate a report
that shows the results in human readable
form.

<mappings scanner="JLINT">
 <scannerCode name="AWSMCD"
 desc="* invocation of synchronized method
*">
 <cwe id="833" />
 </scannerCode>
 <scannerCode name="AWWID"
 desc="Method wait\(\) can be invoked with
monitor of other object locked">
 <cwe id="833" />
 </scannerCode>
 ...
 <scannerCode name="CPSR"
 desc="Comparison always produces same re‐
sult">
 <cwe id="570" />
 <cwe id="571" />
 </scannerCode>
</mappings>

Listing 2: CWE mapping file.

Details including the configuration of the indi-
vidual scanners can be found at https://github.com/
devandi/AnalyzeTool.

4.4 Scanner Results

When scanners analyze the test suite, they report
found errors, cf. step 2. These errors do not always
match the errors that in fact are in the test suite, cf.
step1. We get a false positive when a scanner reports
a problem when in fact there is none. A false nega-
tive occurs when a scanner does not report a prob-
lem that in fact is existent. Scanners may also report
a wrong location for a problem. Thus, we distinguish
the following types of reported errors:
 True positive.

The scanner reports an existing error.
 False positive.

The scanner reports a non-existing error.
 Wrong positive.

The scanner reports a specific error at the lo-
cation of an error with a different type.

 True negative.
The scanner does not report an error where in
fact there is none.

 False negative.
There is an error in the source code, but the
scanner does not find and report it.

In fact, wrong positives are a combination of a
false positive and a false negative. We consider them
separately, because the reported errors may come
close to the real errors. Of course, false positives and
false negatives are the most important categories

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

248

when evaluating a scanner. True positive means that
a scanner did report an existing error. Security errors
are typically spread over several lines. The question
is whether a scanner reports the right location. We
distinguish the following cases:
 True positive+: Correct location

The scanner has reported an error at the same
source code line where this error had been
documented, assuming that we know the exact
location of the error.

 True positive: Unspecified location
The scanner has correctly reported a specific
error. The exaction location is unknown in the
source code or has not been specified. We typ-
ically know a line range it the error is con-
tained in a (bad) function.

 True positive–: Incorrect location
The scanner has correctly reported an error,
but given a wrong location, which is close
enough to be counted as a true positive.

In the Juliet test suite, we have errors where we
know either the exact source code line or a range of
source code lines, i.e., we have a list of True posi-
tive+ and True positive. A scanner should report as
many True positives as possible. It is better to have a
report of an error with an incorrect location than no
report of that error at all, i.e., a True positive- re-
ported by a scanner is much better than a True nega-
tive. We can only count a true positive as a true
positive+, when we ourselves know the exact loca-
tion in the test suite.

4.5 Security Model

We have used a security model in which CWE en-
tries were combined to more abstract categories. For
example, a category “Buffer Overflow” represents
different CWE entries that describe types of buffer
overflows. We have used these categories according
to (Center for Assured Software 2011), to generate a
security model as part of a more general software
quality model (Ploesch et al. 2008). This security
model helps to interpret the scanner results. For
example, with the model we can determine a scan-
ner’s weak-ness or strength in one or more areas.
This information can be used to choose a particular
scanner for a software project. Thus, if a scanner is
weak in identifying authentication problems but is
strong in other areas, this scanner can be used for
projects that do not have to deal with authentication.
Alternatively, an additional scanner can be used with
strong authentication results. In general, the security
model helps to analyze found errors in more detail.
Another advantage of having a security model is to

provide a connection between generic descriptions
of software security attributes and specific software
analysis approaches (Wagner et al. 2012). This al-
lows us to automatically detect security differences
between different systems or subsystems as well as
security improvements over time in a software sys-
tem.

5 RESULTS

The Juliet Test Suite consists of a Java and a C/C++
test suite. We will start with Java. Subsequently the
results for C/C++ will be presented. Finally, an
overall discussion of the findings will follow.

5.1 Java

In the Java test suite we had far more true positives
with unspecified location (True Positive) than such
with a conclusive location (True Positive+), which
were determined with the additional ‘SAMATE’
files. Consequently, the scanners can only deliver a
few conclusive locations. Figure 1 contrasts the
percentage of errors with a conclusive location, i.e.,
True Positives+, to errors with an unspecified loca-
tion, i.e., True Positives. Figure 2 shows the distribu-
tion of the test cases by the security model. We can
see that the numbers of test cases are not balanced
for every category. As a result, scanners, which find
many issues in categories with many test cases, are
better in this comparison than other scanners. Ap-
parently, the category “Buffer overflow” has no test
cases at all. This should not come as a surprise as the
Java Runtime Environment prevents buffer over-
flows in Java programs. Figure 3 shows an over-
view of all errors that were detected by the different
scanners. The entry Juliet on top shows the actual
number of documented errors in the test suite. We
can see that for a small percentage the exact location
of the error is known, but for most errors this is not
the case. Apparently, FindBugs has detected the
most errors, followed by Jlint and PMD. However,
PMD has found more exact locations than Jlint and
FindBugs. As Fig. 3 shows, the numbers of True
Positives+, True Positives, True Positives- and
Wrong Positives are higher than the numbers of Jlint
and FindBugs. Thus, it can be said that PMD has
found the most accurate errors regarding to the test
suite. A deeper analysis of the results has shown that
the GDS rule set used within PMD were responsible
for the results of PMD. Without them, PMD would
not have found any errors in the test suite. Neverthe-
less, the overall results were poor. The scanners

Using�the�Juliet�Test�Suite�to�Compare�Static�Security�Scanners

249

have detected only less than half of the errors of the
test suite. The figures do not explicitly show the
false negatives of the scanners. They can be deter-
mined by comparing a scanner’s true positives to the
test-suite’s true positives.

5.2 C/C++

In the C/C++ version there were more errors with a
conclusive location (True Positives+) than in the
Java version but more than 60 % had an unspecified
location (True Positives). Figure 4 shows the distri-
bution of the True Positives+ and the True Positives
of the C/C++ version. Figure 5 shows the distribu-
tion of the test cases by the security model. As we
can see the number of test cases per category is not
balanced either. The category Buffer Handling has
the most test cases because problems in this area are
common security issues in C/C++ programs. Figure
6 shows an overview of all detected errors by the
tested scanners. The Visual Studio Compiler found
far the most errors. But most of them were not cov-
ered by the test suite and were non-security issues. A
deeper analysis of the results had shown that the
scanner had found many issues where a function was
used to allocate memory in the test cases, which
should not be used. As such functions were used
many times within the test cases, this has lead to the
high number of found errors. Despite that, the Mi-
crosoft Scanner found more errors than Cppcheck.
However, very few errors were found in the test
suite. It should be mentioned that this scanner had
the longest run time. We have not taken exact run-
time measurements, but most of the scanners took
approximately one hour to scan the test suite. The
Visual Studio Compiler took about 11 hours. We
had used a virtual machine on Windows 7, 32-bit
with one CPU on an Intel i5-2500 @ 3.3 GHz with 2
GB assigned main memory.

5.3 Discussion

The results of the analysis may lead to the conclu-
sion that such security scanners should not be used
or that they are of only little value. We have to keep
in mind that these scanners are not dedicated securi-
ty scanners. Also, the example of PMD shows that if
special rule sets for security are used, then the re-
sults improve considerably. Furthermore, these
scanners are not a replacement to security reviews
from security experts. The scanners cost less and are
much quicker than such reviews. Moreover, the
scanners can be integrated in an automated build
process for software development. The Microsoft

Visual Studio Compiler can be used in a way that
the source code is analyzed every time the file gets
compiled during development. Even though the
results are behind expectations, every found and
corrected error reduces the attack surface of the
software under construction. For example, a third-
party source code analyzer could easily have found
Apple's recent 'goto fail' bug in its encryption library
(McCullagh 2014). In the results, we have seen
large number of false positives, i.e., scanners report
errors that are not documented in the test suite. In
fact, the scanners often did not report real false posi-
tives, but rather they reported issues that were not
unusual in artificial code like ‘Local declaration
hides declaration of same name in outer scope’.
Such issues are not documented in the test-suite,
because the focus is on security. Therefore, many of
these false positives are only false positives in rela-
tion to the documented security issues of the test-
suite.

6 RELATED WORK

Rutar et al. have tested several source code scanners
including PMD and FindBugs (Rutar et. al 2004).
For that purpose, they wrote a meta program to
automatically start the scanners. For their study, they
used open source programs containing natural code.
Therefore, they additionally had to perform security
reviews to determine errors in the tested programs.

Due to the effort it takes, they were only able to
review part of the scanned software. The reviewed
parts were then used to extrapolate an overall result.
The findings showed that scanners found different
results that did not overlap.

The Center for Assured Software also performed
a study in which they tested different security source
code scanners (Center for Assured Software 2001).
For their analysis they also used the Juliet Test
Suite. The names of the used security scanners were
not published. For the comparison they also trans-
formed the scanner specific results into a uniform
format. Furthermore, they generated some key fig-
ures, which were used to compare the scanners.
They used “weakness classes” to classify the differ-
ent errors. These weakness classes have been used as
the foundation for the security model in our ap-
proach.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

250

Figure 1: Percentage of Java errors with conclusive loca-
tion.

Figure 2: Java test case distribution.

Figure 3: Java scanner results.

Figure 4: Percentage of C/C++ errors with conclusive
location.

Figure 5: C/C++ test case distribution.

Figure 6: C/C++ scanner results.

Using�the�Juliet�Test�Suite�to�Compare�Static�Security�Scanners

251

A student project had been performed at CERN,
the European Organization for Nuclear Research
(Hofer 2010). Different scanners for several pro-
gramming languages like Java, Python and C/C++
were analyzed. The goal of the analysis was to make
recommendations for scanner usage and to increase
software security considerations at CERN. But locat-
ing the errors in software was only one of five clas-
ses, which were used for the classification of the
scanners. They also used classes like installation and
configuration to evaluate the scanners. The problem
was that they did not analyze how accurate the scan-
ners found some errors. It was only measured how
much errors where found but not whether found
errors were correct.

7 CONCLUSIONS

We have tested static source code analyzers with the
Juliet test suite that contains security bugs in Java
and C/C++ code. We have used scanners that were
not primarily targeted at security, because dedicated
security scanners require expensive licenses. The
general results of the scanners were disappointing
with the exception of the open source static analysis
tool PMD that we had used with secure coding rules.
We draw the following conclusions from our simple
test. First, static source code analysis is a simple and
efficient means to detect bugs in general and securi-
ty bugs in particular. Second, it is advisable to use
more than one tool and, thus, combine the strengths
of different analyzers, And third, dedicated test
suites like the Juliet Test Suite provide a powerful
means of revealing the security coverage of static
scanners, which in turn enables us to pick the right
set of scanners for improved software coding. We
have also shown that scanner results can be used to
assess the security quality of software systems.
Scanner results can automatically be used to gener-
ate a security model and, for example, indicate secu-
rity improvements or degradation over time.

REFERENCES

Black, P.E., 2009. Static Analyzers in Software Engineer-
ing. CROSSTALK–The Journal of Defense Software
Engineering.
https://buildsecurityin.us-cert.gov/resources/crosstalk-
series/static-analyzers-in-software-engineering

Boland, T., Black, P.E., 2012. Juliet 1.1 C/C++ and Java
Test Suite, Computer, vol. 45, no. 10, pp. 88-90, DOI:
10.1109/MC.2012.345

Center for Assured Software, 2011. CAS Static Analysis
Tool Study – Methodology, December 2011.
http://samate.nist.gov/docs/CAS%202011%20Static%
20Analysis%20Tool%20Study%20Methodology.pdf

Hofer T., 2010. Evaluating Static Source Code Analysis
Tools, Master Thesis, InfoScience 2010.
http://infoscience.epfl.ch/ record/153107

Howard M., Lipner S., 2006. The Security Development
Life-Cycle, Microsoft Press.

McCullagh D., 2014. Klocwork: Our source code analyzer
caught Apple's 'gotofail' bug, c|net February 28.
http://news.cnet.com/8301-1009_3-57619754-
83/klocwork-our-source-code-analyzer-caught-apples-
gotofail-bug/

McGraw G., 2004. Software Security, IEEE Security &
Privacy, vol. 2, no. 2, pp. 80-83.
doi:10.1109/MSECP.2004.1281254

McGraw G., 2009. Software Security: Building Security
In, 5th edition, Addison-Wesley.

MITRE 2011. CWE/SANS Top 25 Most Dangerous Soft-
ware Errors, Version 1.0.3.
http://cwe.mitre.org/top25/

National Institute of Standards and Technology 2012.
SAMATE Reference Dataset.
http://samate.nist.gov/SRD/testsuite.php.

Plösch, R., et al., 2008. Tool Support for a Method to
Evaluate Internal Software Product Quality by Static
Code Analysis, Software Quality Professional Jour-
nal, American Society for Quality, Volume 10, Issue 4.

Rutar, N., Almazan, C.B., Foster, J.S., 2004. A Compari-
son of Bug Finding Tools for Java, IEEE, ISBN 0–
7695–2215–7, 245–256.

Wagner, S., et al., 2012. The Quamoco Product Quality
Modelling and Assessment Approach, Proceedings of
34th International Conference on Software Engineer-
ing (ICSE 2012), Zurich.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

252

