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Abstract: An idea that has recently appeared in the neural network community is that networks with heterogeneous 
neurons and non-standard neural behaviors can provide computational advantages. A theoretical 
investigation of this idea was given by Kampakis (2013) for spiking neurons. In artificial neural networks 
this idea has been recently researched through Neural Diversity Machines (Maul, 2013). However, this idea 
has not been tested experimentally for spiking neural networks. This paper provides a first experimental 
investigation of whether neurons with non-standard behaviors can provide computational advantages. This 
is done by using a spiking neural network with a biologically realistic neuron model that is tested on a 
supervised learning task. In the first experiment the network is optimized for the supervised learning task by 
adjusting the parameters of the neurons in order to adapt the neural behaviors. In the second experiment, the 
parameter optimization is used in order to improve the network’s performance after the weights have been 
trained. The results confirm that neurons with non-standard behaviors can provide computational 
advantages for a network. Further implications of this study and suggestions for future research are 
discussed.

1 INTRODUCTION 

Spiking neural networks have been called the third 
generation of neural networks (Maass, 1997). They 
have been tested on a variety of machine learning 
tasks such as unsupervised (Bohte, Poutre, & Kok, 
2001; Meftah, Lezoray, & Benyettou, 2010), 
supervised (Ianella & Back, 2001; Bohte, Kok, & 
Poutre, 2002; Ghosh-Dastidar & Adeli, 2009) and 
reinforcement learning (Potjans, et al., 2009).  In 
many studies, the neuron model being used is 
usually an integrate-and-fire neuron or some of its 
variants or generalizations, like the leaky integrate-
and-fire model and the spike response model. This is 
for example the case for the aforementioned studies. 

However, realistic neuron models can exhibit 
different behaviors, which the neural models used in 
these studies cannot replicate. Izhikevich (2004) 
presents 20 different neural behaviors (figure 1) that 
real neurons can exhibit, while also developing a 
model that can support all of these behaviors 
(Izhikevich, 2003). According to this classification, 
integrate-and-fire neurons are fall into the 
“integrator” category. 

 

 

Figure 1: Different neural behaviors exhibited by real 
neurons. Electronic version of the figure and reproduction 
permissions are freely available at www.izhikevich.com. 

Previous researches, such as those mentioned in 
the first paragraph usually just try to optimize the 
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weights of the network, and in some cases, some 
other parameters, such as synaptic delays.  

However, they do not optimize the behaviors of 
each individual neuron. This is, of course, difficult 
to do for a model of limited realism. In fact, the 
integrate-and-fire model, and its variants, offer 
limited flexibility with respect to the set of neural 
behaviors they can exhibit. Therefore, it is difficult 
to obtain computational advantages for specific tasks 
(e.g. supervised learning) by trying to adapt the 
neurons’ behavior.  

However, it could be the case that the flexibility 
of the model could help it adapt better to the task at 
hand. In fact, this model was used by Kampakis 
(2011) in the context of spiking neural network for a 
supervised learning task. That research provided 
some evidence that different neural behaviors, other 
than the ones assumed by the integrate-and-fire 
neuron, could be useful. More specifically, it was 
demonstrated that a spiking neural network could 
learn the XOR logic gate with three neurons by 
using rebound spiking. This is something which 
could not be achieved with simple integrators. 

Kampakis (2013) looked into the issue of the 
computational power of these neurons from a 
theoretical perspective. This study investigated the 
advantages that some specific non-standard 
behaviors can offer. The study focused on 
oscillators, bursting neurons and rebound spiking 
neurons and demonstrated how the use of these 
neurons for some particular tasks can reduce the 
number of synapses or neurons used in a network. 
However, a practical investigation was not pursued 
in that paper. So, it remained unclear how non-
standard behaviors could actually be used in a real 
setting and whether they would be useful. 

Some similar ideas have emerged from other 
researchers as well. Maul (2013) discussed the idea 
of a “Neural Diversity Machine”. A neural diversity 
machine is an artificial neural network whose 
neurons can have different types of weights and 
activation functions. Nodes with different activation 
functions in an artificial neural network can be 
thought as equivalent to neurons with different 
behaviors in a spiking neural network. The 
inspiration behind this idea is similar to the 
inspiration behind the investigation of neurons with 
non-standard behaviors. However, Neural Diversity 
Machines have not been studied in the context of 
more realistic neuron models. 

There is further justification in the literature to 
support this idea. First of all, neural diversity exists 
in the brain (Moore, et al., 2010) and it has also been 
suggested that it can be computationally relevant for 

neural processing (Klausberger & Somogyi, 2008). 
Secondly, there is evidence that artificial neural 
networks whose neurons use different activation 
functions can have more power (Maul, 2013). 
Finally, Buzsaki et al. (2004) have shown that 
biological neuronal diversification leads, both to a 
reduction of the number of neurons used by a 
network and to their wiring length. 

The idea behind neural diversification is also 
justified from the perspective of inductive bias. This 
was something that was discussed by Kampakis 
(2013) through the theory of “rational neural 
processing”. Diverse neural behaviors possess 
different inductive biases. This can make some 
neural behaviors more suitable for some tasks. 
Research conducted by Maul (2013) and Cohen and 
Intrator (2002) has proven that this can be true for 
artificial neural networks, as well. 

However, while it became clear in theory 
(Kampakis, 2013) that neural diversity provides 
greater flexibility in spiking neurons, which can lead 
to improved performance, no practical evidence of 
that has been provided yet. 

The goal of the research outlined in this paper is 
to provide this practical evidence. The experiments 
use a spiking neural network in order to test whether 
diverse neural behaviors can be computationally 
relevant. The network is trained on a supervised 
learning task by optimizing the parameters that 
control the neurons’ behavior. Experiment 1 
compares a network with optimized neuron 
parameters against an unoptimized network. 
Experiment 2 combines the parameter optimization 
with weight training in order to identify whether 
parameter optimization can provide any 
improvements in performance beyond weight 
optimization. 

The purpose of this paper is to provide some first 
experimental evidence that neural diversity can be 
computationally relevant for spiking neural 
networks, while also connecting this evidence with 
some of the recent research in the field. 

2 METHODS AND MODELS 

2.1 Neuron Model 

This research used the Izhikevich neuron model. The 
neuron model of Izhikevich (2003) is described by 
the following set of equations: 

ᇱݒ ൌ ଶݒ0.04  ݒ5  140 െ ݑ  (1) ܫ

ᇱݑ ൌ ܽሺܾݒ െ ሻ (2)ݑ
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The following condition ensures that the membrane 
voltage is reset after a spike: 

ݒ	݂݅  30	ܸ݉, ݄݊݁ݐ ቄ
ݒ ← ܿ

ݑ ← ݑ  ݀ (3)

The letters a, b, and d are dimensioneless 
parameters of the model. I is the input, v is the 
voltage of the neuron’s membrane, and u is the 
recovery variable. The parameter c is voltage in mV. 

Wang (2009) proposed an improvement over the 
original model, which prohibits the membrane 
voltage from reaching unrealistically high values. 
This improvement was implemented in this research 
as well. So, the condition from 3 changed to: 

ݒ	݂݅  30	ܸ݉, 	݄݊݁ݐ ቄ
ݒ ← ܿ

ݑ ← ݑ  ݀ 

ݒ	݂݅  ݒ	݄݊݁ݐ	30 ൌ 30 
ݒ	݂݅ ൌ ݒ	݄݊݁ݐ	30 ൌ ܿ 

(4)

2.2 Neural Architecture 

The neural architecture used in this paper is the same 
one as the one used by Kampakis (2011) for the iris 
classification task and it is shown in figure 2.  

 

Figure 2: Architecture of the network used for the 
supervised learning task as it was presented in (Kampakis, 
2011). 

A short description of the architecture is 
provided here in order to help in understanding the 
paper. 

The architecture consists of two layers. The first 
layer consists of pairs of receptive fields with 
Izhikevich neurons. The receptive fields are 
comprised of Gaussian radial basis functions (hence 
the name “Gauss field” in figure 2). The centers of 
the receptive fields are uncovered by k-means 
clustering. 

The receptive fields receive the input in the form of 
a real number. The output of each radial basis 
function is fed into its respective input neuron. The 
output of the receptive field becomes the variable ܫ 
in equation 1. 

The input layer is fully connected to the output 
layer. The output is encoded by using a “winner-
takes-all” strategy where the first output neuron to 
fire signifies the classification result. 

2.3 Supervised Learning Task and 
Dataset 

The chosen supervised learning task is the correct 
classification of the iris flowers in Fisher’s iris 
dataset (Fisher, 1936). There are three iris types: Iris 
setosa, Iris virginica and Iris versicolor. Each type is 
represented in the dataset by 50 instances, for a total 
of 150 instances.  

Each instance contains four attributes: sepal 
length, sepal width, petal length and petal width. 
Only sepal lengh and sepal width were used, like in 
(Kampakis, 2011) because the rest of the attributes 
are noisy. 

2.4 Neural Parameter Optimization 
through Genetic Algorithms 

The parameters of the network were optimized 
through the use of a genetic algorithm. Parameter 
search is a standard use of genetic algorithms 
(Rawlins, 1991). For example, recently, Wu, Tzeng 
and Lin (2009) used a genetic algorithm for 
parameter optimization in a support vector 
regression task. Tutkun (2009) used a real-valued 
genetic algorithm for parameter search in 
mathematical models. Optimization through genetic 
algorithms has also been used successfully for 
optimizing the parameters of neuron models to 
experimental data (Taylor & Enoka, 2004; Achard & 
Schutter, 2006; Keren, Peled, & Korngreen A., 
2006).  

There are other choices for optimizing neuron 
model parameters. A comprehensive review is 
provided by Van Geit et al. (2008). Some other 
choices besides meta-heuristic optimization include 
hand tuning, brute force and gradient descent 
methods. In practice, hand tuning is infeasible for 
this case, due to the large number of tests required 
for our purpose. Brute force is infeasible as well, due 
to the large computational demands required.  

Gradient descent methods would require us to 
specify a differentiable error function. However, in 
practice, this seemed to be very difficult. On the 
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other hand, genetic algorithms make no assumptions 
about the problem, and provide a very nice balance 
between exploitation of found solutions and 
exploration of new ones.  

3 EXPERIMENTAL SETUP 

3.1 Experiments 

This study consisted of two experiments. For the 
first experiment, two networks are created. The 
networks’ weights are initialized by assigning a 
random set of weights sampled from the standard 
normal distribution.  

Then, one network is trained by using a genetic 
algorithm in order to affect the parameters of each 
neuron in the network individually. Affecting the 
parameters changes the behavior and the response of 
the neurons. The experimental hypothesis was 
whether this can lead to improvements of accuracy, 
therefore demonstrating that diverse neural 
behaviors can be computationally relevant. 

The objective function being optimized was the 
training accuracy on the supervised learning task. 
The training and testing is done by using 10-fold 
cross-validation. The training accuracy is recorded 
as the percentage of correct classifications across the 
data that were used for training, and the testing 
accuracy is recorded as the percentage of correct 
classifications for the fold that was not used in the 
training. 

In order to identify whether affecting the 
parameters of the neurons can lead to improvements 
over the accuracy, the network was tested for 25 
rounds of 10-fold cross validation against the 
network with random (unoptimized) weights. 

In the second experiment the network is trained 
through a two-step optimization procedure. The 
network’s weights are first trained using a genetic 
algorithm. Then, the neurons’ parameters are 
optimized by using the genetic algorithm from the 
first experiment in order to improve the accuracy 
even further. The second experiment is used in order 
to examine whether parameter optimization can 
offer advantages in addition to standard training over 
the weights of the network.  

It could be the case that any potential 
improvements in accuracy in the first experiment 
might not be significant when compared to standard 
training that optimizes the weights only. Therefore, 
this experiment was devised in order to explore 
whether parameter optimization can be 
computationally relevant when used in conjunction 

with standard weight training, or whether any 
advantages vanish. For that case, as for the first 
experiment, the procedure was repeated for 25 
rounds of 10-fold cross validation and the objective 
function was the training accuracy. 

For the second experiment the weights are 
optimized through the use of a genetic algorithm. 
The genetic algorithm used for optimizing the 
weights had the exact same configuration as the one 
in (Kampakis, 2011): two populations that ranged 
from 50–100 members each, with crossover ratio 0.6 
and 1 elite. The algorithm terminated after 150 
generations had passed. 

3.2 Parameter Optimization 

After the weight optimization, a genetic algorithm is 
used in both experiments in order to optimize over 
the parameters of every neuron in the network, 
without affecting the weights. 

The algorithm optimizes all the parameters of 
each neuron (a, b, c and d). The size of each 
individual in the population was 36 (this is equal to 
the sum of the number of neurons times 4). The 
manipulation of these parameters allows the neurons 
to exhibit many different behaviors, which were 
shown in figure 1.  

The tweaking of these parameters not only 
affects the general behavior, but can also affect 
details within each behavior, such as the frequency 
of bursting, or the threshold of a neuron (Izhikevich 
E. M., 2006). 

The genetic algorithms were executed by using 
the genetic algorithm toolbox of Matlab version 
2011Rb. The default settings were used except for 
the following parameters: The population was set to 
75 and the crossover rate was changed from the 
default of 0.8 to 0.6. This allowed a greater 
exploration of the parameter space, which seemed to 
improve the results in the pilot runs. The number of 
generations was set to 50. The upper and lower 
bounds of the variables were set to the interval [-
100; 100]. The type of mutation was Gaussian and 
the selection method was stochastic uniform. 

The optimization stopped as soon as the genetic 
algorithm reached the upper limit of generations. 
The parameters of the neurons and the architecture 
were the same as the ones used by Kampakis (2011). 

4 RESULTS 

Table 1 presents the results of the first experiment. 
The first and the third columns present the results for 
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the optimized network. The third and fourth columns 
present the results from the unoptimized network. 
The first row presents the mean across all runs.  

Table 1: Results of the optimization procedure and the 
unoptimized neural network. 

 
Training 
accuracy 

Test 
accuracy 

Random 
Training  

Random 
Test 

Mean 67.8 60.5% 52.3% 52.28% 
Std 15.2% 3.6% 11.8% 10.9% 
Max 98.5% 97.0% 88.9% 28.4% 
Min 55.2% 46.7% 22.2% 7.8% 

Table 2 demonstrates the results of the second 
experiment. The table shows the comparison 
between simple weight training (first two columns) 
and the two-step optimization procedure (last two 
columns). A Wilcoxon signed rank test for the null 
hypothesis that the medians of the two populations 
are unequal has a p-value of 0.0252. 

Table 2: Comparison between weight training and the two 
step optimization procedure. 

 
Weight 
(train) 

Weight  
(test) 

Two-step 
(train) 

Two-step 
(test) 

Mean 97.0% 96% 97.7% 97.3% 

Std 1.2% 1.9% 0.6% 2.3% 

Table 3 shows a comparison with other algorithms 
published in the literature. The comparisons include 
SpikeProp (Bohte, et al., 2002), SWAT (Wade, et 
al., 2008) and MuSpiNN (Ghosh-Dastidar & Adeli, 
2009). The reported scores are all mean averages of 
the accuracy for the iris classification task. 

Table 3: Comparison with other algorithms. 

Algorithm Neurons 
Training 
accuracy 

Test 
accuracy 

SpikeProp 63 97.4% 96.1% 
SWAT 208 97.3% 94.7% 
MuSpiNN 17 Not reported 94.5% 
Two-step 9 97.7% 97.3% 

5 DISCUSSION 

From the first experiment it is clear that the 
parameter optimization leads to improvements in 
performance over a randomly initialized network. 
The difference between the trained network in both 
the training accuracy and the test accuracy and the 
random network is quite prominent. The optimized 
network manages to generalize, obtaining a 
performance that is clearly better than what would 

be expected at random. 
From the comparison between simple weight 

training and the two-step optimization procedure it 
seems that the parameter optimization can lead to 
further improvements in the accuracy after the 
network’s weights have been trained. Furthermore, 
the two-step optimization’s accuracy is comparable 
to other results reported in the literature, but it uses 
fewer neurons. 

Therefore, it seems that optimizing the neural 
behavior of each neuron individually can provide 
improvements in accuracy that might not be 
achievable by using weight optimization alone.  

6 CONCLUSIONS 

This paper provided evidence that parameter 
optimization for a biologically plausible neuron 
model is a feasible strategy to improve the 
performance of a supervised learning task. This was 
done in alignment with recent research that has 
promoted the idea that neural networks (biological, 
spiking and artificial) with heterogeneous neurons 
and non-standard behaviors might possess increased 
computational power. This study provided additional 
evidence for this idea by showing that it holds true 
for spiking neural networks, as well.  

This study provides evidence that biologically 
simple neuron models, such as the integrate-and-fire 
model, might offer limited computational 
capabilities compared to more biologically realistic 
neuron models. Furthermore, the study provided 
evidence that biologically realistic features in neuron 
models can be computationally relevant and that 
they might provide feasible targets for an 
optimization procedure when considering specific 
tasks, such as supervised learning. 

A question worth investigating is whether 
additional improvements in performance could be 
gained by adding more components that are 
biologically relevant. A possible choice, for 
example, could be to implement more realistic 
synaptic dynamics. Furthermore, future research 
could try to test other coding schemes for this 
network and indicate whether different coding 
schemes could provide advantages for different 
tasks. 

Also, many other issues remain open, such as, 
how to connect the results for the spiking neural 
networks with artificial neural networks and 
biological networks. Some further issues include the 
creation of a mathematical theory that can link these 
different results in neural networks and, also, an 
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investigation of how these results could be applied 
in a real setting. Finally, future research could focus 
on developing a training algorithm that takes into 
account neural diversity.  
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