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Abstract: This paper focuses on event prediction in an event sequence, where we aim at predicting distant events. We
propose an algorithm that mines episode rules, which are minimal and have a consequent temporally distant
from the antecedent. As traditional algorithms are not able to mine directly rules with such characteristics,
we propose an original way to mine these rules. Our algorithm, which has a complexity similar to that of
state of the art algorithms, determines the consequent of an episode rule at an early stage in the mining

process, it applies a span constraint on the antecedent and a gap constraint between the antecedent and the
consequent. A new confidence measure, the temporal confidence, is proposed, which evaluates the confidence

of a rule in relation to the predefined gap. The algorithm is validated on an event sequence of social networks

messages. We show that minimal rules with a distant consequent are actually formed and that they can be used

to accurately predict distant events.

1 INTRODUCTION rule mining task is usually decomposed into two sub-
problems. The first one is the discovery of frequent

The flow of messages posted in blogs and social net-itemsets or episodes that have a support higher than a
works is an important and valuable source of infor- Predefined threshold. The second one is the genera-
mation that can be analyzed, modeled (through the tion of rules from those frequent itemsets or episodes,
extraction of hidden relationships) and from which in- With the constraint of a minimal confidence thresh-
formation can be predicted, which is the focus of our 0ld (Agrawal et al., 1993). In general, rules are gen-
work. For example, companies may be interested in €rated by considering some items in the itemset (or
the prediction of what will be said about them in so- the lastitems in the episode) as the consequent of the
cial networks. Similarly, this prediction can be a way rule, and the rest of the items as the antecedent. Since

to recommend items. We consider that the sooner anthe second sub-problemis quite straightforward, most
event is predicted, the more useful this prediction is ©f Fhe researche§ focus on the first one: the extraction
for the company or the person concerned, since this Of itemsets or episodes.
allows to have enough time to act before the occur-  Episode and episode rules mining are used in
rence of the event. Predicting distant events is thus many areas, such as telecommunication alarm man-
the focus of our work. agement (Mannila et al., 1997), intrusion detec-
Temporal data mining is related to the mining tion (Luo and Bridges, 2000), discovery of relation
of sequential patterns ordered by a given criterion between financial events (Ng and Fu, 2003), etc.
such as time or position (Laxman and Sastry, 2006).  Our goal is to reliably predict events that will oc-
Episode mining is the appropriate pattern discovery cur after a predetermined temporal distance, in order
task related to the case the data is made up of a sin-to have enough time to act before the occurrence of
gle long sequence. An episode is a temporal patternevents. Therefore, serial episode rules with a conse-
made up of “relatively close” partially ordered items quent distant from the antecedent will be mined. Tra-
(or events), which often appears throughout the se- ditional episode rules mining algorithms form episode
guence or in a part of it (Mannila et al., 1997). When rules with a consequent close to the antecedent. To
the order of items is total, the episode is said to be se-mine rules with a distant consequent, these algorithms
rial. Similarly to the extraction of association rules have to perform a post-processing step: the extracted
from itemsets, episode rules can be extracted fromrules are filtered to keep only rules with a consequent
episodes to predict events (Cho et al., 2011). The that may occur far from the antecedent. This post-
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processing is not only time consuming, but also the 2007) (Huang and Chang, 2008).
time required for mining rules which will be filtered In the frequent itemsets mining task (which in-
out is useless. Thus, we propose a new algorithm for cludes episode mining), it is suggested that anti-
mining serial episode rules, with a consequent tem- monotonicity is a common property that has to be re-
porally distant from the antecedent, to predict dis- spected by any frequency measure (Agrawal et al.,
tant events, and with a small antecedent (in number 1993). Several frequency measures for episode min-
of events and in time), to be able to predict events ing have been proposed. In (Mannila et al., 1997),
as soon as possible. This algorithm has a complexity window-based and minimal occurrence-based fre-
equal to that of traditional algorithms. quency measures have been introduced through both
An example of a required rule is presented be- WinepiandMinepi. Winepievaluates the frequency
low (from a sequence of annotated messages of blogsof an episode as the number of windows of length
about finance issues, where each eventincludes a senw that contain the episodeMinepi evaluates the
timent polarity): R: (interest rate, neutral) (credit, frequency of an episode as the number of minimal
negative) (waiting, neutral)» (concurrence, nega- windows that contain the episode. A minimal win-
tive); the antecedent occurs within 5 days, the gap dow is a window such that no sub-window con-
between the antecedent and the consequentis 15 daydains the episode. The non-overlapped occurrence-
The rest of this paper is organized as follows: sec- based frequency measure is proposed (Laxman et al.,
tion 2 presents related works about episode rules min-2007), where two occurrences of an episode are non-
ing. Our algorithm is introduced in section 3, fol- overlapped if no item of one occurrence appears in
lowed by experimental results in section 4. We con- between items of the other. It is shown that the non-
clude and provide some perspectives in section 5. overlapped occurrence-based algorithms are much
more efficient in terms of space and time needed.
When mining serial episodes, additional constraints
on the episodes may be imposed. Such as the span
2 RELATED WORKS constraint (Achar et al., 2013), that imposes an up-
) _ _ per bound (of distance or time) between the first and
We first start by introducing few concepts. Let last event in the occurrence of an episode. This con-
{i1,i2,....im} be a finite set of itemsl; is the set of  straint has been mainly introduced for complexity rea-
items that occur at a timestanpreferred to as an  sons. Another constraint is the gap constraint (Méger
event An event sequences is an ordergd list of  and Rigotti, 2004), which imposes an upper bound
events,S=< (ty,ly,), (t2, Ity), ... (tn, Iy,) > with ty < between successive events in the occurrence of an
to <... <ty (see Figure 1). Theerial episodeP =< episode. If the extracted serial episodes have to repre-

P1, P2, ..., Pk > on ¥ is an ordered list of events. Its  gent causative chains then such constraints are impor-
support, denoted to asip(P), representsthe number gnt.

of occurrences oP, according to a frequency mea- Traditional episode rules mining algorithms con-
sure.P is said to be a frequent episodesiippP) > struct episode rules with a large antecedent (made up
minsuppwhereminsuppis the predefined minimal  of many events) (Pasquier et al., 1999). Discovering
threshold. Anoccurrence windowof the episode® rules with a small antecedent was introduced for as-

is a segment I, ..., I, > of the sequence, denoted as  gociation rules, called “minimal association rules dis-
OW(S ts,te) which starts at timestamig and ends at  covery” (Rahal et al., 2004). Minimal rules are con-
timestampte, whereP C<l,....,l, >, p1 C I, and  sidered as sufficient (as no new knowledge is given
Pk C - It represents the interval that bounds the py |arger ones). The constraint is that the consequents
episode. LeP,Q be two episodes. Aepisode rule  are fixed in advance by the user. Minimal rules have
R:P — Q means thaQ appears afteP. Thecon- 3150 been studied with the aim to reduce time and
fidenceof this episode rule is the probablhty to find space Comp|exity of the mining task, as well as to
QafterP: conf(P — Q) = suppP.Q)/supP). The  avoid redundancy in the resulting set of rules (Neeraj
rule is said to be confident if its confidence exceeds a gnd Swati, 2012). These works focus on association
predefined thresholehincon f rules; recall we want to form episode rules.

Winepiand Minepi are seminal episode mining Mining episodes in an event sequence is a task
algorithms (Mannila et al., 1997), and are the basis which has received much attention (Gan and Dai,
of many other algorithms. To extract episodes, both 2011). In an event sequence each data element may
algorithms start by extracting 1-tuple episodes (made contain several items (an event). In (Huang and
up of one item), then iteratively seek larger ones by Chang, 2008), an algorithfEmma is presented,

merging items on their right side. This approach is where the event sequence is encoded with frequent
the one used by many other algorithms (Laxman et al.,
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A E | E E approach totally different from traditional ones. We
HABCDFABCFGEF propose an episode rules mining algorithm, where the
1 2 3 456 7 8 9 101112 t prefix (the first event) of a rule is first fixed. Then,

the consequent is determined to constrain its distance
from the prefix. Finally, the antecedent is completed.
Before explaining our algorithm, we present new
concepts on which our algorithm relies.
Sub-windows of Win(Sts,w): Let Win(S ts,w)
be a window in the sequence S of lengtlthat starts
atts, with its first element containing the prefix of an
episode rule (the first event) to be built. In order to
mine episode rules with a distant consequent and a
3 THE PROPOSED ALGORITHM minimal antecedent, we propose to split this window
into three sub-windows as follows (see Figure 2):
Wingegin is @ segment ofVin(S;ts,w) of length
Whegin < W, starting atts. Winyegin Can be viewed as
) . an expiry time for the antecedent of an episode rule.
Our goal is to form episode rules that can also be used; represents the span of the antecedent of an episode

to efficiently predict distant events. rule to guarantee that the antecedent occurs within a
To achieve this goal, the episode rules formed getermined time.

have to hold the characteristic that the consequent is Wineng is a segment ofVin(Sts,w) of length

temporally distant from the antecedent. Traditional Wend < W, that ends ats+ w. Wineng represents the
algorithms are not designed to form such rules. Re-ime window of occurrence of the consequent.

call that they first form episodes from left to right by Winbetweenis the remaining sub-window of length
iteratively appending events temporally close to the Whetween in Which neither the antecedent nor the con-
episc_>d(_a being formed_ (the minimal occurrenC(_a), in sequent can appeaVinyeweenguarantees the tem-
the limit of the predefined span. Then, the episode rq| distance between the antecedent and the conse-
rul_e is built by considering the last elemenlt(.s) of the quent of an episode rule. It represents a minimal gap
episode as consequent of the rule. In addition, when heqyeen the antecedent and the consequent to guaran-

forming these episodes, it is impossible to know if (ee that the consequent is far from the antecedent.
the event being appended will be part of the conse-

guent or not, so it is impossible to constrain its dis- Win
tance to other events while forming the episode. The -

only way to mine rules with a consequent distant from — w ‘ ‘

Figure 1: Example of an event sequeige

itemsets then serial episodes are mined. In (Gan
and Dai, 2011), episodes are first extracted, then non-
derivable episodes rules are formed (where no rule
can be derived from another).

3.1 Principle

. . . N ot
the antecedent is to mine all rules and then filter the ts i . _
occurrences that do respect this distance. Due to the Winbegin Winbetween Wirend
limited span, this distance cannot be large.Thus, we Figure 2: Sub-windows diVin(S ts,w).

propose to mine episode rules without any episode

mining phase. To be able to constrain the distance be-3 2 Steps of the Algorithm

tween the antecedent and the consequent, we propose

to determine the consequent early in the mining pro- \ye resent now the different steps of our algorithm.
cess. We think that, by determining the consequent at

an early stage, the occurrence windows of an episode3.2.1 Initialization

rule will be filtered early, thus the search space will

be pruned, and no post-processing is required. Our algorithm starts by an initialization phase, which
We aim also at predicting events early. We assume reads the event sequence to extract all frequent events
that the more the antecedent of a rule is small in num- and their associated occurrence timestamps. An event
ber of events and in time, the earliest it ends, and the represents a 1_tup|e episode and will be denoted as
earliest the consequent can be predicted. Thereforep, Taple 1 presents the list of 1-tuple episodes of the

we propose to extract episode rules that have an addi-sequenc& (Figure 1) and their associated occurrence
tional characteristic: an antecedent as small as possiwindows forminsupp= 2 (see Figure 3 line 2).

ble (in number of events and in time), which we call
“minimal episode rules”. For that, we apply the tradi- 3.2.2 Prefix Identification
tional minimal occurrence-based frequency measure.
The required characteristics force us to propose anEpisode rules are built iteratively by first fixing the
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Table 1: 1-tuple episodes &f rence windows wher® occurs inWinyeginandQ oc-
- - - curs inWineng.
L-tuple episodg _ List of occurrence windows If R:ant— pj is not frequent, we consider that
[1,1],[2,2], [7,7] pj cannot be a consequent afit. This iteration is
[3,3], [8,8] stopped and the rule is discarded. There is no need to

[6.6] [Elllg]’l%?’g[]lz 12] complete the antecedent of the rRReas whatever the

[6.6]. [10.10]. [12.12] events that complete the anteceden_t are, t_he_ resulting
6,6], [10,10], [12,12] rule will not be frequent. The algorithm will iterate
on another consequent.Rf: ant — p; is frequent, its
prefix (the first event of the antecedent). The an- confidence is computed. its confidence is computed.
tecedent is denoted ast. In the encoded sequence, We define the confidence of a ruR— Q (see
each 1-tuple episodp is viewed as a prefix of the Equation (1)) as the probability that the consequent
antecedent of an episode rule to be built. Once the occurs inWineng, given thatP appears itWingegin

prefix of an episode rul® is fixed, its occurrence

windows OW(S ts,te) are known. For example, let conf(P— Q) — supRnd(P-Q) (1)
minsupp= 2, A can be considered as a prefix of an SupgP)

episode rule. The list of occurrence windows?of
(11,1],[2,2],[7,7)) (see Table 1).

m
LTmo w >

If the rule R: ant — p; is confident, this rule is
added to the set of rules formed by the algorithm.

3.2.3 Consequent Identification It is minimal and has a consequent far from the an-
tecedent; it fulfills our goal. If the rule is frequent but

A candidate consequent of an antececmm(here’ not Conﬁdent, the antecedent of the rBleant — Pj

ant corresponds to a unique element, the prefix) is iS completed (as in the next subsection).

chosen in the windowd/in(S, ts,w) where:ant C .. For example, letv = 6, Whegin = 2 andweng = 2.

Recall we want to form episode rules with a conse- For the episode rul®k with prefix A.  Peng(A) =
quent as far as possible from the antecedent. Thus, theE,F,EF,A].  We first try to construct the episode
candidate consequents are not searched in the entird®? With the consequentE. Thus, forR: A —
window, they are searched only\ine,q where the ~ E, SUpgR) = 2 andconf(R) = 2/3 = 0.67. For
farthest candidates are. We constriigig(ant), the ~ Mminsupp=2 andminconf= 0.7, Ris frequent but
ordered list of 1-tuple episodes that occur frequently not confident, so its antecedent has to be completed.
in Wineng fromWin(S; ts, w) that containgnt. ]

Let pj € Peng(ant) be a candidate consequent of 3-2.4 Antecedent Completion
ant. The episode rul® : ant — p; is formed and
its support is computed (see Figure 3 line 7). At this In this step, the antecedent, referred taas is iter-
stage, the occurrence windows of the episode Rule atively completed with 1-tuple episodes, placed on its
are filtered to get minimal occurrences as well as to right side in the limit of the predefined sub-window
preserve the anti-monotonicity property. This filter- Winpegin At the first iteration:ant is a unique ele-
ing is done by counting only once the occurrence win- ment (the prefix) (see Figure 3 line 15). Recall that
dows containing the same occurrence of the conse-we aim at forming rules having the last event of the
quentp;. For example, lefvpegin = 2, Wend = 2 and antecedent as far as possible from the consequent, so
w = 6. The episode rul®: A — E has three occur- as close as possible of the prefix. Thus, we construct
rence windows{([1,6],[2,6],(7,12)). In the two first  Phegin(ant), the ordered list of 1-tuple episodes that
occurrence windows, the consequénis a common  occur frequently afteant in the windows that starts
1-tuple episode which occurs at timestatgpThere-  with it: the 1-tuple episodes that occurWiinyegin
fore, we consider only the intervg, 6. However, all Similarly to the consequent identification step, the
occurrence windows are keptin memory, to be used to occurrence windows of the episode rikeare fil-
complete the antecedent. This enables not losing anytered to get minimal occurrences and to preserve the
of the interesting episode rules which could be missed anti-monotonicity property. In addition, we apply the
if we kept only the minimal occurrences in memory. same support, confidence verifications as for the con-

Next, we compute the support of the correspond- sequent identification.
ing episode rules (see Figure 3 line 7). To speed up the episode rules mining process we

We define the support of a rule — Q, referred use a heuristic. We propose to order the list of candi-
to assuppnd(P.Q), as the number of minimal occur-  datesh,.gin(ant) in descending order of the number of
rence windows computed above. It is different from Winyegin in which the candidates appear. We assume
the traditionalsupP.Q) as it considers only occur-  that this number is highly correlated with the support
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of the corresponding episode rules. So, in the traver-1/2 = 0.5. Forminconf = 0.5, Ris temporally con-
sal of this list, when we observe that candidates tend fident and is a rule formed by our algorithm.

to form infrequent episode rules (several consecutive

1-tuple episodes lead to infrequent episode rules), we — Algorithm 1: Episode rules mining

stop the traversal. We consider that the remaining
candidates in this list will lead to infrequent episode
rules. This heuristic is used to reduce the number of
iterations. Although this heuristic may discard inter-
esting rules, it allows to reduce the iterations thus to
increase the size of the span of the riiéiif).

For example, letninsupp= 2 andminconf=0.7,
forR: A— E, Bhegin(A) = [B,C, A]. The antecedent of

input : §: event sequence, minsupp, minconf,

mmcanfh W, Whegins Whetween» Wend

output: ER : List of episode rules

1 Procedure Episode rules mining

[ S O S}

extract frequent 1-tuple episodes;
foreach p; € I-tuple episodes do
ant < p; ;

Construct ordered lists

Tend (ant)a ?begin(am) H

R is completed wittB and forms the episode ruke:
A,B— E. Thus,supfR) = 2 andconf(R) =2/2=
1. The episode rule R is now confident, the phase of 7
completing its antecedent is stopped. 8

| Consequent (ant, Pepg(ant), Byegin(ant))

Procedure Consequent (ant, Pong (ant), Ppegin (ant))
foreach p; € Pppq(ant) do

9 if ant — p; is frequent then
10 if ant — p; is confident then
11 if ant — p; is temporally confident
then

| Addant = pjto ER

3.3 Temporal Confidence

Wingetweenh@s been introduced so as to guarantee that 12
the consequent of an episode rule occur§\iimeng,
after aWpegin+ Woetweentemporal distance from the
prefix of the episode rule. However, given an occur-
rence of the antecedent, the consequent may also oc
cur closer to the antecedent, in the wind®inpetween
which should affect the confidence of the rule. This 4
information may be important in some applications. 1
In the example of social networks, the prediction ofa 1*
negative event allows the company to act so as to pre-
vent its occurrence. So, it is important to mine rules
with a consequent that never occursWhinyetween n
Indeed, predicting a consequent at a given distance, 22
which may appear closer is useless, even danger- #
ous. Consequently, we have to take into consideration L. =
the occurrence of the consequenMifinggiween We
introduce a new measure, the temporal confidence,
which represents the probability that the consequent
occurs inWinghg and only in it. For an episode rule
R: P — Q, this measure takes into account the sup- 4 EXPERIMENTAL RESULTS
port of P.Q whenQ occurs only inWingnhg (and not in
Winpetweed, denoted asuppng(P.Q). The temporal
confidence is defined as follows:

sup Qnd(PQ) (2)
suppP.Q)

conf(R) =1 if for each occurrence of the consequent

of R in Wineng, No occurrence of the consequent is 4.1 Dataset

found inWinyetween The temporal confidence of rules

from the previous section is computed and the rules The dataset we use is made up of ®2 messages

with a temporal confidence abow@nconf are kept.  extracted from blogs about finance. Messages are an-

For example, letv = 6, Whegin = 2 andWend = 2, the notated using th@emig software. Each message is

temporal confidence of the frequent confident eplsode represented by its Corresponding set of annotations

rule R: A — E depends on the occurrences®fin  (items). For example, the messag#ot only my
WinpetweerWhich is equal to 1K appears in the times-

tamptip in Winpetweed. Thus,conf(R: A— E) =

13 else
14 | Antecedent (ant,pj, Poeyin(ant))

15 Procedure Antecedent (ant, pj, Ppegin (ant))
foreach p; € By, (ant) do
if ant, py — pj is frequent then
if ant, p — p; is confident then
if ant, p;, — p; is temporally
confident then
| Addant,p; — pjto ER

else

L

Figure 3: Episode rules mining algorithm.

ant < ant, pi > ;
Antecedent (ant, pj, Phegin(ant))

In this section, we evaluate our algorithm through
the study of the characteristics of the episode rules
formed, as well as its performance in a prediction

conf(P—Q) = oy

http:/www.temis.com
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Table 2: 1-tuple episodes : length and support. which, in these experiments, is at le@stiween= 10.
1-tuple episode support This may explain the low number of rules. A thor-
- \ ) ) .
length (#items) number(%o) min[max| mearmedian ough stud_y shows that their average confidence in
creases wittminsupp

1 498(764) | 30 |797(149.7 89.5

2 147(225) | 30 |376| 71.5| 55 . :

3 7(1) 32|54 | 4424 26 4.2.3 Making Vary mincon f

bank propose the best, but also online banks, so howWe make varyminconffrom 0.1 to 05. Figure 5
to optimize my savings? accounts in other banks? life presents the number of episode rules according to the
insurance? i need more infois annotated with the  value ofminconf(minsupp= 20, w = 40 Whpegin =
following items : {(online banks, negative), (savings, 20, Whetween= 10 andweng = 10)). The number of
neutral), (life insurance, neutral ), (needs, neuttal) rules is particularly high wittminconf= 0.2. This is
where each item is associated with an opinion degree.explained by the way our rules are formed. When the
In this dataset, messages are annotated wBh 4 confidence of a rule does not exceathconf, its an-
items on average, ranging from 1 to 50 and the me- tecedent is extended. Given an antecedebtevents
dian is 4. There are about@00 distinct annotations  in Fhegin(ant) (up to 652) are appended to it, resulting
(items), with an average frequency of.881,981 of in a large number of candidate rules. Some of them
these items have a frequency equal to 1. These itemsare confident, which explains the increase of the num-
will be automatically filtered out in the initialization  ber of rules. Whemincon fexceeds 0.2, the number

phase of our algorithm. of rules decreases.
Table 3 presents the length of the antecedent of
4.2 Characteristics of the Resulting the rules (in number of events), accordingrimcon f

The maximum length of an antecedent is three. Thus,
our algorithm, forms rules with a small antecedent,
which was one of its goals. The average length of the
antecedent increases witlincon f whenmincon f=
. ] 0.1, most of the rules have an antecedent of length
In this phase, frequent 1-tuple episodes are extracted) \whereas wheminconf= 0.3, most of the rules
(1-tuple episode is made up of one or more items). have an antecedent of length 2. This was expected,
We fixminsupfor these 1-tuple episodes to 30. This 55 minimal antecedents are searched. Indeed, when a
phase results in 652 frequent 1-tuple episodes. Ta-frequent rule has a confidence belminconf, its an-
ble 2 shows that the 1-tuple episodes are made up oftecedent is extended, till it is confident or not frequent.
one to three items only. 1-tuple episodes are mainly 5q, the higheminconf, the larger the antecedents. A
made up of one item (76% of them), which also have thorough study shows that the average length of oc-
a high support (on average 149.7). currence windows of the antecedents is 8 timestamps
In order to study the episode rules formed, we (for antecedents of length 2 and 3), which is smaller
make varyminsupp minconfandWpetweenON€ at @ than the span of the antecedentdgin). We conclude
time, while fixing others. that our algorithm succeeds in forming rules with a
distant consequent, a small antecedent (in length and
time) and a relatively high confidence.

Rules

4.2.1 Initialization Phase

4.2.2 Making Vary minsupp

In Figure 4, we make varyinsuppfrom 10 to 35

to study the number of rules. Other parameters re- Table 3: Antecedent length when making varincon t

main fixed: minconf= 0.4, w = 40 (with Whegin = . %Rules
20, Whetween= 10 andweng = 10). As expectegd, the minconf| #Rules ant 1] ant 2[ant 3
smaller minsupp the higher the number of rules. 0.1 |16,850|57.2|42.84 0
When minsuppis fixed to 10, the number of rules 0.2 |31,972| 42]95.6| 0.2
is high (about 16). Recall that the number of 1- 03 | 507210997516
tuple episodes is only 652. However, the number 8'3 231 0(')8 i%g 8(')3

of rules is dramatically decreased whernsup pis
increased: only 200 whenminsupp= 15 and 250
whenminsupp= 20. These low values are due to the 4.2.4 Making Vary Woetween

small average frequency of 1-tuple episodes (about

88). In addition, these rules represent a temporal de-We now focus on the number of rules formed, accord-
pendence between the antecedent and the consequeittg to Whetween(W andWaegin remain fixed), presented

10
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Figure 4: number of rules (#pvs. minsupp Figure 6: number of rules (Bpvs. Whetween

10t Influence of minconf{: In this section we study

: the temporal confidence of the resulting rules. Table 4
3t | presents the evolution of the temporal confidence ac-
cording to Whetween We remark that the smaller
Wpetween the higher the temporal confidence: the con-
sequent does rarely occur between the antecedent and
the consequent when the gap between them is small,
which was expected. WheRyetween= 30, the aver-
age temporal confidence igg) which is quite high. A
o ‘ ‘ ! > | thorough study shows that among 210° rules (see
01 02 03 04 05 Figure 6), about 40 ones have a temporal confidence

equal to 1 (the consequent never occun/iMyetween

and 1,400 rules have a temporal confidence higher
than 0.9 (the consequent appear®iimyepweenin l€SS
S ) ) than 10% of the cases). This shows that in this dataset
in Figure 6 whereminsupp= 20 andminconf= 0.4. there is a strong temporal dependence between events,
Two values ofw are studiedw = 40 (with Whegin = and that some events are interdependent at a distance
20) andw = 100 (mpegin= 20). Notice that the cases ¢ 3.
Whetween= O represent similar cases than state of the 5o, when exploiting the temporal confidence as a

number of rules. Two reasons may explain this de-

crease. First, whewpetweeninCreasesweng (the win-
dow in which the consequent is searched) decreases,
as well as the number of consequents studied. Sec-WoetweedMin-con|maxcont|meaneon {|medianeon

#Rules

minconf

Figure 5: number of rules (fvs. minconf

Table 4:Wpetweenvs. Temporal confidencedn £).

ond, the largempetween the more distant the conse- 70 0 0.5 0.2 0.2
guent, thus the lower the probability of having a de- 50 0.2 0.9 0.4 0.4
pendence between the antecedent and the consequent. 38 8-3 1 8-8 8-8

However, even with a large value @fetween SOMeE
rules are formed: 210 rules wh&petween= 70. We
conclude that there is actually a temporal dependence4.3  Performance

between messages in blogs. When the minimal dis-

tance between the antecedent and the consequence is this section we focus on the accuracy of the rules
50, more than 140k confident rules are formed: there formed when they are used to predict events, and we
is a strong dependence between messages with sucperform a comparison of the rules with those of a tra-
a distance. For example, wh&n= 100 an episode ditional algorithm.

rule: (price, positive), (information, positive} (buy, We evaluate the accuracy of our algorithm with
positive) means that when someone talks about the the traditional recall and precision measures. The
price of an article then asks for information, he/she episode rules are trained on the first 75% messages
will buy this article after some time. Thus, we have and are tested on the 25% of messages left. Fig-
time to recommend him similar articles or to propose ure 7 presents the resulting precision and recall at
to him a credit to buy it. 20. We fixminsupp= 20, minconf= 0.4, w = 100

11
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andWpegin = 20. We make varyvpetweenfrom 10 to algorithm.

70. First of all, mention that two precision and re- Here an example of an episode rule extracted by
call values with two different values ofipetweenare both our algorithm \{petween= 0) and by Minepi:

not directly comparable as they are not computed on (credit, positive), (consultant, positive} (loan sub-

the same data (the windowsingg, 0n which they scription, positive)

are computed vary in size). Both precision and re- Here is a rule that has not been extracted by our
call curves decrease agerweenincreases. This was  algorithm, as it does not satisfy the desired character-
expected as the number of rules decreases. Wheristics of episode rule (minimal anteceden(@onsul-
Wpetween= 70 (&andweng = 10), both precision and re-  tant, neutral), (interest rate, positive) (request in-

call values are quite low. This was expected as the terest rate 0, positive), where the antecedent occurs in
rules aim at predicting events distant to at least 70, in 5 timetstamps and consequent occurs inffigimes-

an occurrence window of lengthe,¢=10. The prior tamp This rule is useful in traditional cases of event
probability of predicting events accurately is low. Let prediction (prediction of close events). However, it
us now considewyetween= 30, as in the previous sec- does not fit our objective of early prediction of dis-
tion. We can see that both precision and recall valuestant events, as the antecedent is so long both in time
are quite high. When an event is predicted, in 37% of and in number and the consequent is too close to the
the cases, it actually occurs and events that occur inantecedent.

the sequence are predicted by our rules in 70% of the  Concerning the running time, our algorithm runs

cases. 5 times faster thaMine piwhenw = 100, and 4 times
faster wherw = 40. This decrease is due to two fac-

0.8 tors. The first one is related to the consequent, which

- is fixed at an early stage of the algorithm and which

§ 061 | allows to filter infrequent rules early in the process.

I o4l | The second one is due to the fact that our algorithm

2 : mines rules with a minimal antecedent, which avoids

g 02l | some iterations once a confident rule is found.

S —e— precision@20

o= recall@20

10 20 30 40 50 60 70 5 CONCLUSION

Whetween

Figure 7: precision, recall v8Vpetween

In this paper, we propose an algorithm that mines
episode rules, in order to predict distant events. To
Comparison with Minepi: Contrary to tradi- achieve our goal, the algorithm mines serial episode
tional algorithms, our algorifhm forces a minimum 'ules with distant consequent. We determine several
gap of lengthWhenweenbetween the antecedent and the characteristics of the episode rules formed_: minimal
consequent of an episode rule. Our algorithm can be antecedent, and a consequent temporally distant from
compared to traditional algorithms WheBeqweer— 0. the antece_dent. A new confidence measure, the tem-
Since we apply the minimal occurrence-based fre- poral confidence, is proposed to evaluate the confi-

quency, we choose to compare it to the well-known dence on distant consequents. Our algorithm is eval-
Minepi,(ManniIa et al., 1997). Fominsupp= 20 uated on an event sequence of annotated social net-

minconf= 0.4, w = 40, Minepi forms more than V\(orks_ messages. W_e show that our algorithm is effi-
136,000 episode rules, whereas our algorithm (when cientin extracting ep|spd_e rulgs with the desired char-
Whetween— 0) extracts about 4000 episode rules acter_lstlcs and in predicting dlgtant events. .
(70% less). This decrease is due to two reasons. First, _>I"ce we use data from social networks, we aim to
the constraint about the position of consequent of the use multi-thread sequences. This means that we con-
episode rules from our algorithm (in this case the dis- struct a sequence for _each thread of messages. user
tance between the antecedent and the consequent igiessages thread, topic messages thread and discus-
at least 20, even ifVenween— 0), Makes the num- sion thread_, etc. and the algorithm is run on each one.
ber of rules resulting from our algorithm lower (also Using mu_lt|-thread sequences allows to build more Q|-
their support is lower). Second, our algorithm aims VErse episode rules which are all together more sig-
at forming minimal rules, thus few rules with a large mﬁcant. The presence of arule in several threads wil
antecedent are formed. We remark that 25% of the INcréase its confidence.

rules extracted byinepi have an antecedent larger

or equal to 3, whereas this rate is onlg% for our
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