
Constructing Empirical Tests of Randomness

Marek Sýs, Petr Švenda, Martin Ukrop and Vashek Matyáš
Masaryk University, Botanicka 68a, Brno, Czech Republic

Keywords: eSTREAM, Genetic Programming, Random Distinguisher, Randomness Statistical Testing, Software Circuit.

Abstract: In this paper we introduce a general framework for automatic construction of empirical tests of randomness.
Our new framework generalises and improves a previous approach (Švenda et al., 2013) and it also provides
a clear statistical interpretation of its results. This new approach was tested on selected stream ciphers from
the eSTREAM competition. Results show that our approach can lay foundations to randomness testing and
it is comparable to the Statistical Test Suite developed by NIST. Additionally, the proposed approach is able
to perform randomness analysis even when presented with sequences shorter by several orders of magnitude
than required by the NIST suite. Although the Dieharder battery still provides a slightly better randomness
analysis, our framework is able to detect non-randomness for stream ciphers with limited number of rounds
(Hermes, Fubuki) where both above-mentioned batteries fail.

1 INTRODUCTION

We usually test randomness using batteries of empir-
icall test of randomness. Problem of the batteries is
that they implement a fixed set of tests and can detect
only limited types of patterns. Batteries detect only
evident trivial defects and there is no problem to find
sequences with some type of pattern (other than the
tested ones) that pass all tests in the test battery. Since
cryptographic functions have a deterministic output, it
is a priori clear that they cannot pass all possible tests
of randomness and there must exist empirical tests of
randomness that reveal sequences as non-random.

In this work we introduce a novel framework for
constructing empirical tests of randomness that can
succeed in finding such a test (at least hypothetically).
Our goal is to find an empirical test of randomness
that indicates a given sequence is either non-random
(with a high probability) or sufficiently random. In
our framework, we iteratively construct randomness
tests that adapt to the processed sequence. The con-
struction is stochastic and uses genetic programming.
Tests are constructed from a predefined pool of oper-
ations (building blocks). Set of operations, together
with a limit for the number of operations, allows us to
control the complexity of tests. The framework theo-
retically allows us to construct an arbitrary (according
to limited resource) randomness test over a set of cho-
sen operations. Therefore it can be viewed as a gen-
eral framework for the test construction and should
(hypothetically) provide a better detection ability than

standard tests. Last but not least, a lower amount of
data extracted from a given function is necessary to
provide a working test.

This paper is organised as follows: Section 2 is
devoted to randomness testing and general descrip-
tion of standard randomness tests. A reader familiar
with these issues can proceed straight to the follow-
ing section. In Section 3 we describe our new ap-
proach and compare it to the previous one. Section
4 describes testing procedures and experiment results
obtained from testing the chosen eSTREAM candi-
dates. Section 5 concludes the paper. The Appendix
describes generalised empirical tests of randomness
and used Goodness-of-Fit tests. The Appendix also
describes settings used in our experiments and testing
of both the model and its implementation.

1.1 Previous Work

Knuth described basic simple tests of randomness in
the second book (Knuth, 1997) of his well-known se-
ries. These tests form the basic randomness testing
procedures and have been implemented (at least some
of them) in all known test batteries. Marsaglia with
Tsang proposed tests (Marsaglia and Tsang, 2002)
that belong to the strongest that have been proposed so
far. These tests were implemented in the Diehard bat-
tery (Marsaglia, 1995). The Diehard battery, as well
as its newer version called Dieharder (Brown, 2004),
is focused on testing sequences of random numbers.
It consists of 20 powerful tests that work with small

229Sýs M., Švenda P., Ukrop M. and Matyáš V..
Constructing Empirical Tests of Randomness.
DOI: 10.5220/0005023902290237
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 229-237
ISBN: 978-989-758-045-1
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



sample sizes padded to 32 bits. The Statistical test
suite developed by NIST (Rukhin, 2010) was pro-
posed for testing and certification of random number
generators used in cryptographic applications. It con-
sists of 15 tests with a small overlap with Diehard.
The Diehard battery along with the NIST STS are the
most popular tools for randomness testing.

In 2007 Lecleuyer and Simard introduced quite
a strong test battery called TestU01 (L’Ecuyer and
Simard, 2007). TestU01 resolves the problems of
Diehard and implements a larger variety of tests than
any other battery. Other test suites exist, yet they are
either commercial (Crypt-X (W. Caelli, 1992)) or pro-
vide only basic testing (ENT (Walke, 1993)). Ear-
lier work (Švenda et al., 2013) comes with the ap-
proach of distinguisher construction that we use as
the grounding concept for our general framework pre-
sented in this paper.

1.2 Previous Approach

In the work (Švenda et al., 2013) the authors looked
for a distinguisher of a bitstream produced by a cryp-
tographic function (stream cipher) and a truly random
bitstream (reference bitstream) produced by a physi-
cal source of randomness (quantum random generator
(Stevanovi, 2007)). The implementation is available
as an open-source project EACirc (Švenda and Ukrop,
2013).

Their distinguisher is constructed as a circuit-like
software from a predefined set of operations. The
circuit-like software is a small program that simu-
lates a standard hardware circuit. It consists of wires
and gates (operations) grouped into layers. The most
important fact is that the functionality of the circuit
(circuit-like software) can be simply changed by re-
placing operations in gates or by redirection of wires.
This property is used for an iterative construction of
distinguishers. The construction is controlled by a ge-
netic algorithm (GA) that uses the success rate (per-
centage of correct answers) of distinguisher as its fit-
ness value.

Using this approach, the authors obtained results
that are somewhat comparable to those obtained by
the NIST STS battery. The main problem of the pre-
vious approach is the interpretation of results. To
evaluate randomness, the authors compare the com-
puted average success rate of circuits with its refer-
ence value obtained by distinguishing two truly ran-
dom bitstreams. When the reference average success
rates are significantly different, it is evident that the
distinguishing really works and circuits can be de-
clared as real distinguishers. For close rates, it is hard
to decide whether a small difference of success rates

was caused by GA and its stochasticity or a weak dis-
tinguisher was found. In the new approach we give
clear statistical interpretation of results and we mag-
nify sensitivity of randomness test.

2 RANDOMNESS TESTING

Empirical tests of randomness fall under the standard
statistical model – statistical hypothesis testing. Tests
formulate a H0 hypothesis “the bitstream is random”
and an alternative hypothesis “the bitstream is not ran-
dom”. Each randomness test is defined by the test
statistic S; which is a real-valued function of a nu-
meric sequence. Tests are evaluated by comparing the
P-value (computed from the test statistic value) with
a chosen significance level a. For the P-value com-
putation, it is necessary to know an exact distribution
of S under hypothesis H0 or at least its close approxi-
mation.

2.1 Standard Tests of Randomness

All standard tests of randomness are defined by the
test statistic S carefully chosen to minimize the prob-
ability (b) of the Type II error (acceptance of H0 for
a non-random bitstream) for a fixed significance level
a (probability of Type I error, rejection of H0 for a
random bitstream).

Note 1. It should be noted that we do not construct
standard empirical tests of randomness since S is con-
structed randomly and Type II error is not minimized.

A P-value is computed from the “observed” test
statistic a value sobs using a theoretical distribution
of test statistic values under the H0 hypothesis. This
reference distribution is determined by mathematical
methods. It represents the distribution of test statis-
tic values for random bitstreams. The significance
level of standard tests is usually set to a = 1%. This
means that standard tests accept the H0 hypothesis if
the P-value is greater than a = 0:01: In such case we
conclude that the examined bitstream is random with
respect to the analysed feature.

Note 2. Besides acceptance (pass) and rejection (fail)
of the H0 hypothesis, Diehard tests can also give a
third result – weak. Diehard tests provide two-tailed
testing with the treshold a = 0:5% for weak data and
0:1% for non-random data (failed).

Each standard test of randomness can be per-
formed using the c2 test (Sheskin, 2003). It suffices
to apply an appropriate categorisation function C to
the analysed bitstream and to compare the obtained
results with the expected results. Standard tests of

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

230



randomness can be implemented using an appropri-
ate categorisation function C in the following steps:

1. Computation of observed frequencies: According
to the purpose of the test, apply the function C
to an adequate blocks of the bitstream B. Based
on the function result, categorise each block and
compute (observed) frequencies for each cate-
gory.

2. Expected frequencies estimation: Estimate exact
probabilities for each category if C would be ap-
plied to blocks of an infinite truly random bit-
stream. Using estimated probabilities, compute
corresponding expected frequencies for a finite
bitstream of a given length (length of B).

3. Evaluation: Use the c2 test to compare observed
and expected frequencies.

More detailed explanation and a general description
of standard tests can be found in Section B of the Ap-
pendix.

Each standard randomness test in the equivalent
c2 form is fully defined by the function C and by this
function is applied to the bitstream. In order to de-
scribe the general test we need to describe the general
function C. In fact, we need to answer the following
questions:

• Can the categorisation function C be described
generally?

• How to apply function C to the bitstream?

To answer these questions, let us have a look at stan-
dard tests. In the BlockFrequency and Monobit tests
different blocks of a fixed length are mapped to dis-
joint categories. In more complicated tests, such as
Rank test, Linear Complexity test or Spectral test, the
function C transforms the bitstream (or its parts) into
other structures (matrix, LFSR, etc.) and after that it
categorises them. Evidently, there is no simple gener-
alisation of the C function functionality. On the other
hand, we can identify several common properties of
functions used in standard tests. All functions C pro-
cess blocks of bits of a fixed length. Moreover, the
number of resulting categories is small and therefore
C can be simulated by a function with a small output.
We have two situations with respect to the input size.
Processed blocks are either quite long (1/100 of the
length of B) or very small (several bits).

To answer the second question we made an obser-
vation that C is usually applied to consecutive non-
overlapping blocks of the bitstream (original or trans-
formed).

3 NEW APPROACH

Our goal is to construct simple tests of randomness
that indicate a given bitstream to be non-random with
a high confidence (small P-value). We aim to con-
struct randomness tests in their general form (see
Section B of the Appendix) defined by a categori-
sation function C. We assume functions C with a
small input size (up to 1000 bits) that are applied to
non-overlapping blocks of the bitstream. Since tests
can be also viewed as distinguishers from random
bitstreams, we can use an implementation (EACirc
project (Švenda and Ukrop, 2013)) of the previous
approach (Švenda et al., 2013). In fact, we try to im-
prove the previous approach and to give a clear sta-
tistical interpretation of its results. Our new approach
is based on ideas and principles used in standard em-
pirical tests of randomness combined with the distin-
guisher construction.

3.1 Test Construction

In the previous approach, the authors looked for dis-
tinguishers represented by circuit-like software while
in the new approach, we look for distinguishers based
on empirical tests of randomness. For this purpose,
we have slightly modified the previous implementa-
tion. In the new implementation (EACirc2), the cir-
cuit C0 represents a categorisation function C that de-
fines the test of randomness. The new implemen-
tation could be divided into two modules: The first
module, genetic algorithm module (GA), controls the
construction of randomness tests (categorisation func-
tions C). This module was taken from the previous
approach without changes. The new second module,
test of randomness module (TR), undertakes the test-
ing of randomness based on the categorisation func-
tion C represented by the circuit. The GA module
controls the evolution of circuits C0. The TR module
uses circuits C0 (categorisation function) for computa-
tion of fitness values for GA. Both modules work with
circuits C0 with fixed size input (n bits) and output (m
bits).

Test construction is iterative and one iteration can
be described by the following pseudocode:

1. The GA module sends evolved categorisation
functions C (circuits C0) to the TR module.

2. The TR module uses C0 to test randomness of
a given bitstream (its part) and sends computed
P-values back to the GA module.

3. The GA module takes the P-values and uses them
as fitness values for evolving of the next genera-
tion of circuits.

Constructing�Empirical�Tests�of�Randomness

231



The GA controls evolution of functions C in order to
minimize P-values.

3.2 TR Module

In the TR module, the circuit C0 is used for random-
ness testing according to the general testing proce-
dure described more precisely in Section B of the Ap-
pendix. The testing procedure consists of the follow-
ing three steps:

1. computation of observed frequencies,

2. estimation of expected frequencies,

3. evaluation.

In the first step, we apply the circuit C0 to the anal-
ysed bitstream and we obtain observed frequencies (a
histogram of results). In the second step, we com-
pute the exact expected (theoretical) frequencies. The
prediction of exact frequencies is for a general cir-
cuit C0 without uniform distribution of the output a
hard task. Therefore we use an estimation of the ex-
pected frequencies instead. A close estimate of ex-
pected frequencies can be obtained if we apply C0 to
a sufficiently long truly random bitstream generated
by a physical source of randomness. In the third step,
we use one sample Pearson’s c2 test (Sheskin, 2003)
to compare observed and expected frequencies and to
compute the P-value of the test.

We have undertaken basic experiments and re-
alised that for a sufficiently close estimate of expected
frequencies we need to apply C0 to a very long ran-
dom bitstream. However, for practical reasons, C0

is applied only to a short bitstream. To solve prob-
lems occurring from inaccurate approximation of ex-
pected frequencies, obtained and expected frequen-
cies can be compared using a two-sample test. In our
approach, we use the two-sample c2 test from (NIST,
1993) since the distribution of test statistic values for
two-sample c2 tests is also the c2 distribution.

Now we describe the final version of the TR mod-
ule in more detail. Let us assume that circuit C0 has n
bits of input and an m-bit output. In the TR module,
C0 is applied to non-overlapping blocks of the size n.
In the practice, we divide the bitstream B to blocks
Bi, called test vectors of the length of n bits. In fact,
the TR module processes two bitstreams. The first
bitstream (B) is the bitstream we want to test for ran-
domness. The second (reference) bitstream R (pro-
duced by a physical source of randomness) is used
for computation of expected frequencies. For sim-
plicity, we assume bitstreams R;B of the same length.
Thus corresponding sets of test vectors Ri;Bi have the
same size denoted by k. The TR module computes

the P-value for the test vectors R j;B j; j 2 f1; � � � ;kg
as follows:

1. Computation of observed frequencies: The cat-
egorisation function C represented by the circuit
C0 is applied to all test vectors B j; j 2 f1; � � � ;kg.
Frequencies oi for each category (defined by re-
sulting value Oi of C) are computed using oi =
jfB j; j 2 f1; � � � ;kg : C(B j) = Oi;gj.

2. Expected frequencies estimation: Expected fre-
quencies are computed by the same way from the
test vectors Ri of the truly random bitstream, i.e.,
ei = jfR j; j 2 f1; � � � ;kg : C(R j) = Oigj:

3. Evaluation: Two-sample c2 test is used to com-
pute the test statistic value defined as

sobs =
2m

å
i=1

(oi� ei)
2

oi + ei
:

3.3 GA Module

As was stated before, we used GA module from previ-
ous EACirc project (Švenda and Ukrop, 2013). In this
section we describe GA on general level only. More
details about GA module can be found in (Švenda
et al., 2013).

The GA module controls the evolution of circuits
C0 based on fitness values (P-values) computed in
the TR module. In the GA module, test vectors are
changed in order to prevent overlearning of circuits
to a specific bitstream. The evolution consists of two
phases: learning and testing. These two phases peri-
odically alternate during the evolution. In the learn-
ing phase, test vectors are fixed and circuits are eval-
uated according to them. In the testing phase, the
test vectors are changed and the TR module computes
P-values from these new test vectors. The learning
phase lasts for a fixed number of iterations (genera-
tions). The testing phase lasts a single iteration. This
iteration starts a new learning phase with new test vec-
tors.

More precisely, let f (frequency of changing test
vectors) denotes the number of generations in each
learning phase, then test vectors are changed in each
l f -th iteration (population of circuits) for some inte-
ger l. Thus learning phases start in l f -th iteration and
end in the ((l + 1) f � 1)-th iteration. Testing phases
are performed in the iterations i f for some integer i.

3.4 Results and their Interpretation

Results of our approach consist of series of P-values
computed during the whole evolution (e.g., 30000
generations). The interpretation of computed

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

232



P-values is based on the fact that for a true H0 hypoth-
esis P-values are uniformly distributed in the interval
[0;1]: This is, in fact, true for all statistical tests as
well as for the tests of randomness.

Of course, the basic criterion of statistical test-
ing must be fulfilled: “Analysed data must be taken
from a random sample.” In our case, this criterion
can be interpreted as independence between the cir-
cuits (statistical tests) and test vectors. Since circuits
are evolved according to test vectors, test vectors are
independent from circuits only in the testing phases,
where test vectors just changed. For clear interpre-
tation we can use only one P-value computed in the
testing phase. The reason is that circuits are partially
correlated and thus P-values computed from a given
set of test vectors are also correlated. Let Pi denotes
set of all P-values computed in i-th generation. Dur-
ing the evolution sets P1;P2; � � � ;P30000 of P-values
are computed. Let P denotes the set of P-values P =
fP1;P2; � � � ;P30000= f g; where each P-value Pi 2 Pi f is
taken from different testing phase (iteration i f ). In
the case of a true H0 hypothesis each Pi is taken from
uniformly distributed set Pi f on the interval [0;1]: In
such case all P-values in the set P are also uniformly
distributed on the interval [0;1]:

For testing uniformity of P-values, we use the
Kolmogorov-Smirnov (KS) test described in Section
A of the Appendix. Of course, KS computes its own
P-value that can be compared to the significance level
(chosen as a = 5%) to evaluate the KS test. Since
P-values computed by the KS test could be smaller
than a even for uniformly distributed P-values, we
prefer to repeat the whole process several (r) times.
For a proper and clear statistical interpretation we
test whether 5% of P-values computed by the KS
test from different sets P are smaller than the cho-
sen significance level a = 5%. In practice, we do
not compute the P-value of the KS test, but use an-
other approach. We compare the KS statistic value
with the critical statistic value D = 1:36p

t computed for
a = 5% (see Section A.3 of the Appendix) and for the
set P = fP1; � � � ;Ptg where t > 35.

4 EXPERIMENTS

In this section we describe settings and results of per-
formed experiments. We used our approach for ran-
domness testing of bitstreams produced by selected
stream ciphers from the eSTREAM project. Truly
random data used for test vectors were produced by
the Quantum Random Bit Generator Service (Ste-
vanovi, 2007). We did all experiments with the new
open-source implementation of EACirc2 project that

can be found with previous EACirc and other testing
tools and under following link (Švenda and Ukrop,
2013).

For expermiments we used following parameters
of GA module:

1. circuit resources:

• input length n = 128 bits, output length = 8 bits,
• number of layers = 4, maximum number of

connectors to gate = 4,
• set of operations = Byte XOR, AND, NOR,

NAND, NOT;

2. GA setting:

• population size = 1, crossover probability = 0,
mutation probability = 0.05,

• number of generations gen = 30000, frequency
of changing test vectors f = 100, number of test
vectors k = 500,

• fitness value = P-value of the test C0 applied to
test vectors.

Most of the parameter values were taken from
the previous work (Švenda et al., 2013) in order to
compare our new approach with the previous one. It
should be noted that results strongly depend on the
character of examined data and therefore it is quite
difficult to find an optimal setting. However, sensitiv-
ity of the tests is given by resources of the circuits.
In general, the more resources (larger input/output
length, more layers, etc.) means better results. On
the other hand, it also means more time needed for
execution. Parameters such as output length, set of
operations and fitness function were changed to im-
prove the detecting ability of tests and to get results in
reasonable time. More details about the settings can
be found in Section C of the Appendix.

Before testing stream ciphers, we performed ex-
periments that confirmed correctness of the statisti-
cal model and its implementation. More details about
the implementation and model testing can be found
in Section D of the Appendix. We tested a reference
situation – randomness testing of a random bitstream.
The model expects that a set of 300 (gen= f ) P-values
is uniformly distributed on the interval [0;1] for each
run of the algorithm. We performed 1000 runs, 49
out of which failed the KS test for uniformity. This is
in a good agreement with the statistical model since
4:9%(=49/1000) is almost identical to expected value
a = 5% of the KS test.

After testing the model and its implementation we
used our approach for randomness analysis of bit-
streams produced by stream ciphers Grain, Decim,
Fubuki, Hermes, LEX, Salsa20, TSC9 and Hermes
with a limited number of rounds. Results of our

Constructing�Empirical�Tests�of�Randomness

233



approach (EACirc2) are summarised in tables to-
gether with results of previous approach (EACirc),
Dieharder battery (version 3.31.1) and NIST STS
(version 2.1). Results of the Dieharder battery, NIST
STS and previous approach are taken from (Švenda
et al., 2013).

Each cell in the Dieharder battery or NIST STS
column represents the number of tests that de-
tected non-randomness in the given bitstream. Since
Dieharder tests provides three levels of evaluation
(pass, weak, fail, see NOTE 2 in section 2.1), val-
ues 1, 0.5, 0 respectively, were assigned to these lev-
els and sum over all tests was taken. There were 20
tests from the Dieharder battery and 162 tests (tests
with different parameters (Švenda et al., 2013)) from
NIST STS with chosen significance level a = 1% for
both batteries. Cells in the EACirc column represent
average success rates (percentage) of constructed dis-
tinguishers with 52% as the reference value obtained
when distinguishing between two random bitstreams.
Cells in the EACirc2 column represent percentage of
runs for which the set of the P-values failed the KS
test for uniformity with the significance level a = 5%
as the reference value (theoretical and practical). Note
that values in different columns are not directly com-
parable and must be compared to different reference
values. These reference values (0, 0, 52, 5) of par-
ticular (Dieharder, NIST, EACirc, EACirc2) columns
are obtained from tests performed over the random
sequence. We will get values (20,162,100,100) in the
case of a ‘totally’ non-random sequence.

Table 1: Results for Grain.

Rounds Dieharder NIST EACirc EACirc2
1 20.0 162 100 100
2 20.0 162 100 100
3 0.5 2 52 4

Table 2: Results for Decim.

Rounds Dieharder NIST EACirc EACirc2
1 20 162 100 100
2 19.5 162 54 100
3 19 162 53 100
4 16.5 83 52 100
5 15.5 83 52 92
6 1 4 52 5

Table 3: Results for FUBUKI.

Rounds Dieharder NIST EACirc EACirc2
1 0 0 52 7
2 0 0 52 5

Results in the EACirc2 column that were obtained
from 100 runs (repetitions r = 100 of whole test-
ing process) shows that our approach is significantly

Table 4: Results for Hermes.

Rounds Dieharder NIST EACirc EACirc2
1 0 0 52 3
2 0 0 52 9

Table 5: Results for LEX.

Rounds Dieharder NIST EACirc EACirc2
1 20 162 100 100
2 16 161 100 100
3 19.5 161 100 98
4 0 0 52 8

Table 6: Results for Salsa20.

Rounds Dieharder NIST EACirc EACirc2
1 14.5 161 87 100
2 14.5 161 87 100
3 0 0 52 4

Table 7: Results for TSC.

Rounds Dieharder NIST EACirc EACirc2
1-8 20 162 100 100
9 19 161 100 100
10 18 149 100 8
11 10 5 52 6
12 4 0 52 13
13 0 0 52 5

better than the previous approach EACirc (Švenda
et al., 2013). While the Dieharder battery is still a
slightly better tool for randomness testing compared
to our approach, we achieve results comparable to
those of NIST STS. Results of testing FUBUKI with
1 round, Hermes with 2 rounds, LEX with 4 rounds
and TSC with 12 rounds indicate that EACirc2 detects
non-randomness in some cases where NIST STS and
Dieharder batteries, and previous approach (EACirc),
fail. We tested the above-mentioned ciphers again
with an additionally increased number of runs (r =
1000) in order to confirm previous results. We ob-
tained results: 6:4% for FUBUKI, 6:4% for Hermes,
5:9% for LEX and 4:3% for TSC. Results confirm
that our approach clearly detected non-randomness
for Hermes with 2 rounds and FUBUKI with 1 round.

5 CONCLUSION

We have proposed a general design for the construc-
tion of empirical tests of randomness. Our new ap-
proach is based on work (Švenda et al., 2013) and
improves it in two ways. It gives a clear statistical in-
terpretation of its results and improves efficiency and
success rate of the distinguisher (test of randomness)

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

234



construction. We have tested our approach on sev-
eral stream ciphers (with a reduced number of rounds)
taken from the eSTREAM competition. Obtained
results imply that our approach provides a signifi-
cantly stronger randomness analysis than the previ-
ous one. Moreover, we have been able to detect non-
randomness in some bitstreams (Hermes reduced to 2
rounds, FUBUKI reduced to 1 round) that fully pass
standard batteries Dieharder and NIST STS. While
the Dieharder battery is still a slightly better tool for
randomness testing than our approach, we achieve re-
sults comparable to those of the NIST STS battery.
Our future work will cover randomness testing of eS-
TREAM ciphers and SHA-3 candidates with various
settings of our approach.

ACKNOWLEDGEMENT

The first author was supported by the Min-
istry of Education, Youth, and Sport project
CZ.1.07/2.3.00/30.0037 – Employment of Best
Young Scientists for International Cooperation Em-
powerment. Other authors were supported by the
Czech Science Foundation, project GAP202/11/0422.

REFERENCES

Brown, R. G. (2004). Dieharder: A random number test
suite, version 3.31.1.

Knuth, D. E. (1997). The Art of Computer Program-
ming, Volume 2 (3rd Ed.): Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

L’Ecuyer, P. and Simard, R. (2007). TestU01: A C library
for empirical testing of random number generators.
ACM Trans. Math. Softw., 33(4).

Marsaglia, G. (1995). The marsaglia random number
CDROM including the diehard battery of tests of ran-
domness. http://www.stat.fsu.edu/pub/diehard/.

Marsaglia, G. and Tsang, W. W. (2002). Some difficult-to-
pass tests of randomness. Journal of Statistical Soft-
ware, 7(3):1–9.

NIST (1993). Two-sample c2 test. http://www.itl.nist.gov/
div898/software/dataplot/refman1/auxillar/chi2samp
.htm.

Rukhin, A. (2010). A statistical test suite for the valida-
tion of random number generators and pseudo ran-
dom number generators for cryptographic applica-
tions, version STS-2.1. NIST Special Publication 800-
22rev1a.

Sheskin, D. J. (2003). Handbook of parametric and non-
parametric statistical procedures. crc Press.

Stevanovi, R. (2007). Quantum random bit generator ser-
vice. http://random.irb.hr/.

Švenda, P. and Ukrop, M. (2013). EACirc project,
https://github.com/petrs/eacirc.

Švenda, P., Ukrop, M., and Matyáš, V. (2013). Towards
cryptographic function distinguishers with evolution-
ary circuits. In SECRYPT, pages 135–146. SciTePress.

W. Caelli, e. a. (1992). CryptX package docu-
mentation. Technical report, Information Se-
curity Research Centre and School of Math-
ematics, Queensland University of Technology.
http://www.isrc.qut.edu.au/resource/cryptx/.

Walke, J. (1993). Ent - a pseudorandom number sequence
test program. http://www.fourmilab.ch/random/.

Zhang and Jin. Incomplete gamma function.
http://www.crbond.com/math.htm.

APPENDIX

A Goodness-of-Fit Tests

The family of Goodness-of-Fit tests can be formally
divided into two main classes. According to the num-
ber of analysed samples we talk about one-sample
tests or two-sample tests. The one sample Goodness-
of-Fit test measures how well a given sample fits a
statistical model (expected distribution). The two-
sample test analyses whether two samples came from
the same distribution. Two of the most frequently
used statistical tests are Pearson’s c2 test (Sheskin,
2003) and Kolmogorov-Smirnov (KS) test (Sheskin,
2003).

A.1 c2 Test

The c2 test is typically used for testing whether
the observed frequency distribution fits the theoret-
ical distribution. This test is applied to categorised
(binned) data and test statistics depended on the data
categorisation. In the test we assume that observa-
tions of some events fall into k mutually exclusive
categories. The one sample c2 test statistic is defined
as

c
2 =

k

å
i=1

(oi� ei)
2

ei
;

where oi denotes the frequency in the i-th cathegory.
The P-value of the test is computed using the refer-
ence c2 distribution that is determined by the degree
of freedom (k�1).

Note 3. In practice, P-value is computed from c2 test
statistic by the gamma function and the incomplete
gamma function. We tested several open-source im-
plementations of the incomplete gamma function, but
most of them are inaccurate for extremal arguments

Constructing�Empirical�Tests�of�Randomness

235



(close to zero, greater than 200). We use the im-
plementation of the incomplete gamma function from
(Zhang and Jin, ) that produces correct values for ar-
bitrary arguments.

The c2 test uses distribution with k categories that
closely approximates binary distributed variable (k =
2) or multinomially distributed variable (k > 2). For
a sufficient approximation of a multinomial variable,
frequency in each category should be greater than 5,
i.e., ei � 5 for all i 2 f1; � � � ;kg:

A.2 Two-sample c2 Test

In our approach we use a two-sample c2 test (NIST,
1993) that compares the distributions of two sam-
ples since expected frequencies ei can not be approxi-
mated closely. The test statistic for the two-sample c2

test changes to c2 = å
k
i=1

(oi�ei)
2

ei+oi
. The reference dis-

tribution is also the c2 distribution with d�1 degrees
of freedom. In the two-sample c2 test, d represents
the number of non-empty categories (oi + ei > 0).
Moreover, for a correct analysis using the two-sample
c2 test, it is required that the sum oi + ei should be at
least 5. Thus only categories with oi +ei � 5 are used
for computation of the test statistic value.

A.3 Kolmogorov-Smirnov Test

The one sample Kolmogorov-Smirnov (KS) (Sheskin,
2003) test is a more universal Goodness-of-Fit test
than the c2 test since it can be used also for test-
ing continuous distributions. The KS test compares
an empirical distribution of the sample with the ref-
erence distribution using the cumulative distribution
functions (CDF). Let F̄(x) denotes an empirical CDF,
then F̄(x) is defined as F̄(x) = Pr(X < x) . The KS
test statistic D is defined by D= supx2RjF̄(x)�F(x)j;
where F(x) denotes the expected value of the cumu-
lative distribution. We use the KS test for testing the
uniformity of P-values (Pi , i 2 f1;2; � � � ; tg) on the
interval [0;1]. In a such discrete case the CDF has the
form

F̄(t) =
#i : Pi < x

t
:

For sorted P-values P1 � P2 � �� � � Pt we can write
Ft(x) = i iff Pi � x and Pi+1 > x: Reference CDF is
defined on the interval of our interest as F(x) = x:
The KS test statistic D can be computed as D =
maxt�1

i=1(max(j it � Pij; j i+1
t � Pij)): For our computa-

tions we use the critical value Da of the significance
level a = 0:05 that can be computed as D0:05 = 1:36p

t
for t > 35:

B General Description of Standard
Tests

For better understanding of general tests, we first de-
scribe a standard test of randomness. In the standard
tests, statistic S is applied to the bitstream to obtain
the test statistic value sobs: This value is used for com-
putation of the corresponding P-value. To clarify the
testing procedure, let us take the simplest randomness
test, the Monobit test from NIST STS (Rukhin, 2010).
Example 1. The Monobit test looks for irregularities
in the proportion of counts of ones and zeros in a se-
quence. The Monobit test is defined by the test statis-
tic S = Snp

n . The value Sn is computed as an absolute
value of difference of count of ones and zeros in the
bitstream of the length n. The value Sn is computed as
Sn = jån

i=1 eij ; for ei 2 f1;�1g (zero bits converted
to �1). The reference distribution (under H0 hypoth-
esis) of the test statistic (for large n) is half normal.
The test uses er f c() function for computation of the
P-value from normal distributed sobsp

2
.

Let us assume a bitstream e = 1011010101 with
the length n = 10: Using the previous expressions,
we can compute Sn = 2 and the statistic test value
sobs = 2p

10
: To compute the P-value we apply the

er f c() function to sobsp
2

and we finally get

P� value = er f c
�

2p
10

�
= 0:52708926:

Evaluation of the H0 hypothesis from the previ-
ous example can be also done using other appropri-
ate statistical tests. The Monobit test of randomness
checks whether the frequencies oi of zeros (o0) and
ones (o1) in a sequence fit to the expected theoretical
frequencies ei. We can therefore use any one sample
Goodness-of-Fit test such as the c2 test or the KS test.

The Monobit test for the bitstream of the length n
can be evaluated by the c2 test as follows:
1. Computation of observed frequencies: take each

bit of the analysed bitstream, categorise it accord-
ing to its value (0 or 1) and compute the frequency
for each category (o0 = 4;o1 = 6).

2. Expected frequencies estimation: estimate proba-
bilities of bits for a truly random infinite bitstream
(p0 = p1 = 0:5 for zeros and ones) and use them to
compute the expected frequencies for a bitstream
of the given length (e0 = e1 = 5).

3. Evaluation: compare observed and expected fre-
quencies by the c2 test with 1 degree of freedom
(P-value = 0.52708926).

In fact, these steps can be generalized for all other
empirical tests of randomness.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

236



The categorisation function corresponds to the
purpose of the test and can be deduced directly from
its test statistic. In the case of the Monobit test, the
categorisation function was applied to individual bits,
but in general it can process parts of the examined
bitstream or its transformed equivalent. In general,
we also assume that the number of categories is arbi-
trary (not only two), and so is the related degree of
freedom.

C Parameters and Settings

Size of the population was changed to one, since
only one P-value can be taken for the correct statis-
tical interpretation (see Section 3.4). This compen-
sates for the fact that the whole process must be re-
peated several times (for the correct interpretation of
results). The fitness value of the GA was changed to
the P-value since the P-value clearly represents the
most relevant value of the testing procedure.

Note 4. It is possible to use two-sample c2 test statis-
tic as the fitness value but it does not reflect degrees
of freedom.

Since the population consists of only one circuit,
the crossover probability is automatically set to zero.
To choose appropriate circuit settings, a deeper ana-
lysis of the evolution is needed. Let us consider a
fixed setting of the circuit parameters (number of lay-
ers, number of gates in the layer, . . . ). Since the cir-
cuit resources are limited, they should be used ef-
fectively. This means that the pool of available op-
erations should consist of complex operations. The
reason for that is that complex operations constructed
from trivial ones consume a lot of available resources.
On the other hand, too many defined operations sig-
nificantly enlarge the space where GA works and
could mislead the evolution process. Therefore the set
of operations should consist of complex but meaning-
ful operations. In the case of stream cipher, operations
used in the cipher design can be considered meaning-
ful. Therefore we use only simple Byte “boolean”
operations like AND, OR, NOR, NOT, etc.

The main problem of the previous approach is that
the output from the last layer of the circuit is inter-
preted as a single bit. Clearly, this leads to a loss
of distinguishing ability of circuits, since results of
many gates are often discarded. To avoid this, more
bits from the last layer should be used for the interpre-
tation. This perfectly fits to our framework since the
categorisation function of the test can work with arbi-
trary many categories. It can be expected that we get
the most sensitive test of randomness if all categories
are defined by single output value of the circuit, i.e.,
if C with 2m categories is represented by a circuit C0

with m output bits. Unfortunately, application of the
c2 test (Section A of this Appendix) requires that the
frequency in each category should be at least 5. This
means that for C0 with 8 output bits there should be
either more test vectors (more than used k = 1000) or
the number of categories should be smaller. We have
reduced the number of categories. For 1000 test vec-
tors, it must be smaller than 200. In such case each
category could be defined by 7 bits of a circuit output
byte. Of course, the GA does not fill the categories
evenly and therefore we need to use less categories.
For our experiments we have chosen 8 categories de-
fined by the last 3 bits of all 8 output bits.

D Implementation and Model Testing

In this part we describe tests that confirm correct-
ness of the statistical model and correctness of its
implementation. We want to confirm that P-values
computed by two-sample c2 (from category frequen-
cies) are distributed uniformly on the interval [0;1].
Besides the statistical model we also need to check
our implementation of statistical tests (two-sample c2

test, KS test).
Firstly, we have tested the implementation of the

KS test. We analysed 107 sets P of t = 300 uniformly
distributed randomly generated real numbers from the
interval [0;1]. Using the KS test we have obtained
the total of 497496 test statistics values that were lo-
cated in the critical region defined by a = 0:05. This
value represents 4:97% of all tested sets and is in good
agreement with the expected 5% value.

Secondly, to check the c2 test implementation we
simulate the circuit generation process. We generated
300 pairs of number samples Si;1;Si;2; i2 f1; � � � ;300g
from the set f0; � � � ;7g: For each i; both sets Si;1;Si;2
were randomly generated according to the given ran-
dom distribution. We applied the two-sample c2 test
to compare samples Si;1;Si;2 for each i2 f1; � � � ;300g:
We obtained the set P of 300 P-values Pi: This set was
tested by KS test for uniformity on the [0;1]. We re-
peated the whole process 104 times (runs) and realised
that 5:1% of KS test statistic values were located in
the 5% critical region. This observation is also in a
good agreement with the model. All performed tests
indicate that the statistical model, our implementa-
tions of the KS test and the two-sample c2 test are
correct.

Constructing�Empirical�Tests�of�Randomness

237


