
Sliding Mode Control of Linear Time-varying Systems
Application to Trajectory Tracking Control of Nonlinear Systems

Yasuhiko Mutoh and Nao Kogure
Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, Japan

Keywords: Sliding Mode Control, Linear Time-varying System, Non-linear System, Tracking Control.

Abstract: This paper concerns with the sliding mode controller design method for linear time-varying systems. For
this purpose, using the time-varying pole placement technique, the state feedback is designed first so that the
time-varying closed loop system is equivalent to the standard linear time invariant system. Then, conventional
sliding mode controller design method is applied to this time invariant system to obtain the control input.
Finally, using the time-varying transformation matrix, this sliding mode control input is put back to the control
input for the original system. In this paper, this controller is applied to the trajectory tracking control problem
for nonlinear systems.

1 INTRODUCTION

This paper concerns with the sliding mode controller
design for linear time varying systems, and then, we
apply this control technique to a trajectory tracking
control of non-linear systems.

The author proposed the simple design method of
the pole placement controller for linear time varying
systems using the concept of the relative degree of
the system (Mutoh,2011) (Mutoh and Kimura,2011).
This pole placement design purpose is to make the
time varying closed loop system equivalent to some
linear time invariant system that has desired eigenval-
ues, by the state feedback. In this paper, we make use
of this technique for designing the sliding mode con-
troller for linear time varying systems. The first step
is to find the state feedback for the linear time varying
system so that the closed loop system is equivalent to
some linear time-invariant standard system. Then, by
using the conventional sliding mode controller design
method, the sliding mode control input for this linear
time invariant system can be obtained (Utkin,1992).
After that, using an equivalent time varying transfor-
mation matrix, this control input can be transformed
into the sliding mode control for the original linear
time varying system. Since, the sliding mode con-
troller is designed for the equivalent time invariant
system, any type of conventional sliding mode con-
troller design method can be applied.

If we need to control nonlinear systems to follow
some particular desired trajectory in wide range, the

most simple idea might be to approximate the nonlin-
ear system along this trajectory using a linear time-
varying system. However, since, controller design
method for linear time-varying system is not neces-
sarily simple, it seems that this approach is not com-
monly used. In this paper, the above time varying slid-
ing mode control technique is applied to the trajectory
tracking control problem of non-linear systems. Some
simulation results will be also shown.

2 PRELIMINARIES

In this section, the basic properties of linear time-
varying systems which we will use later are presented.

Consider the following linear time-varying multi-
input system.

ẋ(t) = A(t)x(t)+B(t)u(t) (1)

Here,x(t) ∈ Rn andu(t) ∈ Rm are the state variable
and the input signal, respectively.A(t) ∈ Rn×n and
B(t) ∈ Rn×m are time varying coefficient matrices,
which are bounded and smooth functions oft.

The matrixB(t) is written as follows, using col-
umn vectorsbi(t) ∈ Rn (i = 1, · · · ,m).

B(t) =
[

b1(t) b2(t) · · · bm(t)
]

(2)

Let bi
k(t) ∈ Rn be defined by the following recur-
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sive equations.
{

b0
k(t) = bk(t)

bi
k(t) = A(t)bi−1

k (t)− ḃi−1
k (t)

(3)

k= 1,2· · ·m, i = 1,2· · ·

Then, the controllability matrix of the system (1) can
be written as follows.

Uc = [b0
1(t) · · ·b

0
m(t)| · · · |b

n−1
1 (t) · · ·bn−1

m (t)] (4)

Theorem 1. The system(1) is completely control-
lable if and only if

rankUc(t) = n ∀t (5)

If the system (1) is completely controllable, we
can define the controllability indices,µ1, µ2,· · · , µm,
which satisfy the following equations,

R(t) : nonsingular
m

∑
i=1

µi = n (6)

where

R(t) =
[

b0
1(t) · · ·b

µ1−1
1 (t)| · · · |b0

m(t) · · ·b
µm−1
m (t)

]

(7)

which is called the truncated controllability matrix.
In this paper, it is assumed that if the system is com-
pletely controllable, its controllability indices satisfy
the inequality,µ1 ≥ µ2 ≥ ·· · ≥ µm, without loss of
generality.

Definition 1. Consider the following output equation
for the system (1),

y(t) =C(t)x(t) (8)

Here, y(t) ∈ Rm is some output signal and C(t) ∈
Rm×n is a time varying coefficient matrices. Let p be
a differential operator. System(1)(8) has the vector
relative degree,r1, r2, · · · , rm from u to y, if there ex-
ist some matrixD(t) ∈ Rm×n and some nonsingular
matrix Λ(t) ∈ Rm×m, such that






pr1

. . .
prm






y(t) = D(t)x(t)+Λ(t)u(t). (9)

It should be noted thatpr i can be replaced by arbitrary
monic polynomial ofp of degreer i . ∇

3 STANDARD TIME INVARIANT
SYSTEM

To design the sliding mode controller for the system
(1), we first design the state feedback with a new input

vector v(t) ∈ Rm, so that the closed loop system is
equivalent to the linear time invariant standard form.

Suppose that the system (1) is completely control-
lable. Then, ifC̃(t) ∈ Rm×n is defined by

C̃(t) =W(t)R−1(t) (10)

where
{

W(t) = diag(w1(t),w2(t), · · · ,wm(t))
wi(t) = [0, · · · ,0,λi(t)] ∈ R1×µi (i = 1, · · · ,m)

λi(t) 6= 0

(11)

and also if a new output signal ˜y(t)∈ Rm is defined by

ỹ(t) = C̃(t)x(t) (12)

then, the vector relative degree fromu(t) to ỹ(t) is
µ1,µ2, · · · ,µm (Mutoh and Kimura,2011).

Let ỹ(t) andC̃(t) be

ỹ(t) =







ỹ1(t)
...

ỹm(t)






, C̃(t) =







c̃1(t)
...

c̃m(t)






. (13)

By differentiatingỹ(t) successively, we have

ỹi(t) = c̃0
i (t)x(t)

˙̃yi(t) = c̃1
i (t)x(t)

¨̃yi(t) = c̃2
i (t)x(t)

...

ỹ(µi)
i (t) = c̃µi

i (t)x(t)+ c̃µi−1
i (t)B(t)u(t)

= c̃µi
i (t)x(t)+λi(t)ui(t)

+ γi(i+1)ui+1 · · ·+ γim(t)um(t)

i = 1, · · · ,m (14)

Here, c̃ j
i (t) and γi j (t) are obtained by the following

recursive equation from̃C(t).
{

c̃0
i (t) = c̃i(t)

c̃ j+1
i (t) = c̃ j

i (t)A(t)+ ˙̃c j
i (t)

(15)

i = 1,2· · ·m, j = 1,2· · ·

and

γi j (t) = cµi−1
i (t)b j(t). (16)

Hence, from (14), we have






pµ1

. . .
pµm






ỹ(t) = D(t)x(t)+Λ(t)u(t)

(17)
where,

D(t) =











c̃µ1
1 (t)

c̃µ2
2 (t)

...
c̃µm

m (t)











,Λ(t) =









Λ1(t)
Λ2(t)

...
Λm(t)









(18)
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and

Λi(t) = [0, · · · ,0,λi(t),γi(i+1)(t), · · · ,γi j (t)] (19)

Thus, by the state feedback

u(t) = Λ−1(t)(−D(t)x(t)+ v(t)) (20)

with the new input signalv(t) ∈ Rm, the closed loop
system becomes







pµ1

. . .
pµm






ỹ(t) = v(t). (21)

This system has the following state realization.

ω̇(t) = A∗ω(t)+B∗v(t)

=







A∗
1 0

...
0 A∗

m






ω(t)

+







b∗1 · · · 0
...

0 · · · b∗m






v(t) (22)

whereω(t) ∈ Rn, A∗ ∈ Rn×n, B∗ ∈ Rn×m, and

A∗
i =













0 1 0
...

...
...

... 1
0 0 . . . 0













∈ Rµi×µi

(i = 1, . . . ,m) (23)

b∗i =









0
...
0
1









∈ Rµi .

The system (22)(23) is called the linear time invariant
standard form. This new state variableω(t) ∈ Rn is
defined by

ω(t) =





























ỹ1(t)
...

ỹ(µ1−1)
1 (t)

...
ỹm(t)

...

ỹ(µm−1)
m (t)





























. (24)

From (14), the original state variablex(t) and ω(t)
satisfy the relation

ω(t) = T(t)x(t) (25)

where the transformation matrix,T(t), is defined by

T(t) =





























c̃0
1(t)
...

c̃µ1−1
1 (t)

...
c̃0

m(t)
...

c̃µm−1
m (t)





























. (26)

4 SLIDING MODE CONTROLLER
DESIGN

4.1 Controller for Linear Time-varying
Systems

In this section, the sliding mode controller design
for the linear time varying system (1) is presented.
For this purpose, we first design the sliding mode
control inputv(t) for the linear time invariant sys-
tem (22)(23), and then, transformv(t) into the sliding
mode control input for the original system (1), using
the relation (25)(26).

If we write ω(t) andv(t) as

ω(t) =







ω1(t)
...

ωm(t)






, ωi(t) ∈ Rµi

v(t) =







v1(t)
...

vm(t)






(27)

(i = 1, · · · ,m)

the system (22)(23) is presented as followingm sub-
systems.

ω̇i(t) =









0 1 · · · 0
... · · ·

. . .
...

0 · · · 0 1
0 · · · · · · 0









ωi(t)+









0
...
0
1









vi(t)

(i = 1, · · · ,m) (28)

Since the system (28) is the standard form, the design
procedure of the ordinary sliding mode controller is
very simple stated as follows. First, divideωi(t) into
two part.

ωi(t) =

[

ωi(t)
ωµi

i (t)

]

(29)
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whereωi(t) ∈ Rµi−1 andωµi
i (t) ∈ R. Then, the sliding

surface is defined by

Siωi(t) = siωi(t)+ωµi
i (t) = 0 (30)

where

Si = [si ,1] ∈ R1×µi , si ∈ R1×(µi−1)

(i = 1, · · · ,m). (31)

From (28),(29) and (30), the dynamics on thei-th slid-
ing surface becomes

ω̇i(t) =













0 1 0 · · · 0
0 0 1 · · · 0
... · · · · · ·

. ..
...

0 · · · · · · 0 1
−si













ωi(t). (32)

From the above, if the desired stable characteristic
polynomial of thei-th sliding dynamics is chosen as

αi(p) = pµi−1+αi
µi−2pµi−2+ · · ·+αi

0 (33)

then, thei-th sliding surface is

Siωi(t) = [ αi
0, · · · ,α

i
µi−2, 1 ]ωi(t) = 0. (34)

Since, thei-th subsystem is

ω̇i(t) = A∗
i ωi(t)+b∗i vi(t) (35)

it is well known that thei-th sliding control inputvi(t)
can be defined by

vi(t) =−(Sib
∗
i )

−1{SiA
∗
i ωi(t)+qi sgn(σi)+ ki fi(σi)}

(36)
where

σi = Siωi(t) (37)
and qi > 0 andki > 0 are constant parameters and
fi(σi) is a function such thatσi fi(σi)> 0. In fact, it is
readily shown that, using (36), we have the following
Lyapunov function.

V =
1
2

m

∑
i=1

σ2
i > 0, V̇ =

m

∑
i=1

σiσ̇i < 0 (38)

Using (23),vi(t) in (36) becomes

vi(t) = −{[0, αi
0, · · · ,α

i
µi−2]ωi(t)

+qi sgn(σi)+ ki fi(σi)}. (39)

Hence, from (25)(26), the sliding mode control input
u(t) for the original system becomes as follows.

u(t) = Λ−1(t)(−D(t)x(t)+ v(t)) (40)

here

v(t) =







v1(t)
...

vm(t)







vi(t) = −{[0 s]Ti(t)x(t)+qi sgn(σi)+ ki fi(σi)}

σi = SiTi(t)x(t)

(i = 1, · · · ,m) (41)

where

Ti(t) =







c̃0
i (t)
...

c̃µi−1
i (t)






. (42)

From the above, the design procedure of the slid-
ing mode controller for the system (1) is summarized
as the following steps.

[Design procedure]

STEP 1. Using the controllability matrix,Uc(t) in
(4), check the controllability of the system (1). If
the system is controllable, calculate the controlla-
bility indicesµ1, · · · ,µm and the truncated control-
lability matrix R(t) in (7).

STEP 2. From (10)(11), calculatẽC(t).

STEP 3. Using the recursive equation (15), ob-
tain c̃ j

i (t) and, using (16), calculateγi j (t) (i =
1, · · · ,m j = i +1, · · · ,m). Then, using (18)(19),
defineD(t) andΛ(t).

STEP 4. Using (26) (or (42)), calculateT(t) (or
Ti(t)).

STEP 5. Define the desired stable characteristic
polynomial (33). Then, define

Si = [si ,1]

si = [ αi
0, · · · ,α

i
µi−2 ] (43)

(i = 1, · · · ,m)

STEP 6. The sliding mode control input is obtained
by (40)(41) and (42).

4.2 Trajectory Tracking Controller for
Nonlinear Systems

In this paper, sliding mode controller for linear time-
varying systems is concerned so far. However, in
practice, we can hardly find any system that can be
modeled by a linear time-varying system. And, the
most of practical systems are nonlinear systems. So,
one of the most important application of the control
problem for linear time-varying systems is a control
design problem of linear time varying approximate
model around some particular trajectory of nonlinear
systems.

Consider the following non-linear system.

ẋ(t) = f (x(t),u(t)) (44)

Here,x(t) ∈ Rn andu(t) ∈ Rm are the state variable
and the input signal. Letx∗(t) and u∗(t) be some
particular desired trajectory and the desired input for
x∗(t).
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The problem is to design a controller to track this
desired trajectoryx∗(t) stably around it. This can be
done by stabilizing this trajectory in the neighborhood
of x∗(t) andu∗(t). Let ∆x(t) and∆u(t) be defined by

{

∆x(t) = x(t)− x∗(t)
∆u(t) = u(t)−u∗(t).

Then, we have a linear time-varying approximation
aroundx∗(t) andu∗(t) as follows.

∆ẋ(t) = A(t)∆x(t)+B(t)∆u(t) (45)
{

A(t) = ∂
∂x f (x∗(t),u∗(t))

B(t) = ∂
∂u f (x∗(t),u∗(t))

(46)

Then, using time-varying sliding mode control tech-
nique, error equation can be stabilized around the de-
sired trajectoryx∗(t) andu∗(t).

5 NUMERICAL EXAMPLE

Consider the following nonlinear system with two in-
put.

x1(t) = x2(t)

x2(t) = 0.5(1− x2
1(t))x2(t)− x1(t)x3(t)+u1(t)

x3(t) = x2
1(t)− x3(t)+u1(t)+u2(t) (47)

Let the desired trajectoryx∗(t) for this system be

ẋ∗1(t) = cost

ẋ∗2(t) = −sint

ẋ∗3(t) = 1. (48)

Then, the desired inputu∗(t) for x∗(t) is obtained as
follows.

u∗1(t) = 0.5sint(1− cos2 t)

u∗2(t) = −cos2 t +1−u∗1(t) (49)

A linear time-varying approximation of the system
(47) aroundx∗(t) andu∗(t) becomes as follows.

d
dt





∆x1(t)
∆x2(t)
∆x3(t)



= A(t)





∆x1(t)
∆x2(t)
∆x3(t)





+B(t)

[

∆u1(t)
∆u2(t)

]

(50)

where

A(t) =





0 1 0
cost sint −1 0.5sin2 t −cost

2cost 0 −1





(51)

B(t) =





0 0
1 0
1 1



 . (52)

The sliding mode control input to stabilize the sys-
tem (50) can be obtained according to the following
steps.

STEP 1. The controllability matrix,Uc(t), of the sys-
tem (50)-(52) is

Uc(t) =





0 0 1
1 0 0.5sin2 t − cost
1 1 −1

0 · · ·
−cost · · ·
−1 · · ·



 . (53)

This implies that the system (50)-(52) is control-
lable, and the controllability indices areµ1 = 2
andµ2 = 1.

STEP 2. From STEP 1, the truncated controllability
matrix,R(t), becomes

R(t) =





0 1 0
1 1

2(sin2 t −2cost) 0
1 −1 1



 .(54)

And from (10)(11), we have

C̃(t) = W(t)R−1(t)

=

[

0 1 0
0 0 1

]





−0.5sin2 t + cost 1 0
1 0 0

1+0.5sin2 t − cost −1 1





=

[

1 0 0
1+0.5sin2 t − cost −1 1

]

(55)

where we chooseλ1(t) = λ2(t) = 1.

STEP 3. From (15) and (16), we have following
c̃k

i (t) andγi j (t).

c̃1
1(t) =

[

0 1 0
]

c̃2
1(t) =

[

cost sint −1

0.5sin2 t −cost
]

c̃1
2(t) =

[

sint +2cost +1

1− cost cost −1
]

γ12(t) = 0

And, from these equations,D(t) andΛ(t) are cal-
culated as follows.

D(t) =

[

cost sint −1
sint +2cost +1

0.5sin2 t −cost
1− cost cost −1

]

(56)

Λ(t) =

[

λ1 γ12
0 λ2

]

=

[

1 0
0 1

]
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STEP 4. Using (26), the state transformation matrix,
T(t), is

T(t) =

[

T1(t)
T2(t)

]

. (57)

where

T1(t) =

[

1 0 0
0 1 0

]

. (58)

T2(t) =
[

1+0.5sin2 t − cost −1 1
]

.

(59)

STEP 5. From (33) and the fact thatµ1 = 2, µ2 = 1,
we choose

α1(p) = p+1. (60)

In this case, there is notα2(p), becauseω2(t) is a
scalar. From this, we define

S1 = [ 1 1 ], S2 = [ 1 ]. (61)

STEP 6. From the above and (40)(41), the sliding
mode control input is obtained as follows.

u1(t) = (1− sint cost)∆x1(t)−0.5sin2 t∆x2(t)

+cost∆x3(t)− sgn(σ1) (62)

u2(t) = −(sint +2cost +1)∆x1(t)

+(cost −1)∆x2(t)+ (1− cost)∆x3(t)

−sgn(σ2) (63)

whereσ1 andσ2 are defined by

σ1 = ∆x1(t)+∆x2(t)

σ2 = (1+0.5sin2 t − cost)∆x1(t)

−∆x2(t)+∆x3(t). (64)

andq1 = q2 = 1, k1 = k2 = 0.
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Fig.1 shows that the response of∆x(t) which con-
verges to the origin. This implies that the statex(t)
converges to the desired trajectoryx∗(t).The value of
σ2

1 + σ2
2 is plotted in Fig.2. It decreases monotoni-

cally to 0. Fig.3 and 4 show the control inputu(t) and
state responsex(t). According to these graphs, the
time varying sliding mode controller works well for
the trajectory tracking control for non-linear systems.
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6 CONCLUSIONS

In this paper, the design procedure of sliding mode
controller for linear time-varying system is presented.
For this purpose, the time-varying pole placement
feedback is used so that the closed loop system is
equivalent to some linear time invariant system. Then,
the conventional design method of the sliding mode
control can be applied to this time invariant system.
And, finally by the time-varying transformation ma-
trix, this control input is transformed into the sliding
mode control input for the original system. It was
shown that this controller has a good availability for
the trajectory tracking control problem of nonlinear
systems.
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