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Abstract: The High Efficiency Video Coding (HEVC) standard was finalized in early 2013. It provides a far better cod-
ing efficiency than any preceding standard but it also bears a significantly higher complexity. In order to cope
with the high processing demands, the standard includes several parallelization schemes, that make multi-core
encoding and decoding possible. However, the effective realization of these methods is up to the respective
codec developers.
We propose a multi-threaded encoder implementation, based on HEVC’s reference test model HM11, that
makes full use of the Wavefront Parallel Processing (WPP) mechanism and runs on regular consumer hard-
ware. Furthermore, our software produces identical output bitstreams as HM11 and supports all of its features
that are allowable in combination with WPP. Experimental results show that our prototype is up to 5.5 times
faster than HM11 running on a machine with 6 physical processing cores.

1 INTRODUCTION

The Joint Collaborative Team on Video Coding (JCT-
VC), which is a cooperation partnership of the
ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG), has
recently developed the High Efficiency Video Coding
(HEVC) standard. Because of its excellent compres-
sion performance, it is perfectly suited for beyond-
HD video resolutions like 4K or 8K Ultra High Def-
inition (UHD) (Sullivan et al., 2012). However, the
complexity of HEVC is significantly high and a tradi-
tional single-threaded encoder can therefore not pro-
vide real-time performance. For this reason, the
standard describes several high-level parallelization
mechanisms which allow codec developers to lever-
age the potential of multi-core platforms more easily.
In this context, slices, tiles, and Wavefront Parallel
Processing (WPP) are the three key concepts.

Video coding standards are usually defined from
a hypothetical decoder’s point of view and HEVC is
no exception in this regard. Therefore, it is relatively
straightforward to utilize the described parallel pro-
cessing techniques in a software decoder. In (Chi
et al., 2012), for example, the authors provide a com-
prehensive analysis of tiles and WPP and propose a
decoder implementation with real-time performance.

The encoder side, on the other hand, imposes
additional challenges for parallel hardware- and
software-architectures. For example, intra- and inter-
mode decision, as well as numerous cost functions,
are complex modules that need to be made thread-
safe. They also must be specifically optimized and
fine-tuned for parallel execution. Additionally, en-
coding is in general more computationally expensive
than decoding and it is hence more difficult to achieve
real-time speed.

Yanet alpresent a highly-parallel implementation
of Motion Estimation (ME) based on Motion Estima-
tion Regions (MERs) running on a specific 64-core
processor (Yan et al., 2013). In principle, MERs allow
the calculation of ME for multiple Prediction Units
(PUs) within a single Coding Tree Unit (CTU) con-
currently. Yanet al extend the approach with the uti-
lization of a directed acyclic graph which transpar-
ently models the dependencies between neighboring
CTUs in order to enable a significantly higher de-
gree of parallelism than with MERs alone. The re-
sult is an efficient and very fine-grained parallel algo-
rithm, which is particularly well suited for many-core
processors. Such devices are, however, not widely
used in the consumer market. Furthermore, the work
only addresses ME and not the entire encoding loop.
In summary, for software encoders used by regu-
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lar end-users, a more coarse-grained parallel algo-
rithm, which covers the entire encoding loop, would
be preferable.

In contrast, the work proposed by Zhaoet al
is more specifically targeted towards consumer-level
computers (Zhao et al., 2013). They present a par-
allel intra-prediction algorithm based on an open
source implementation of HEVC. The proposed intra-
prediction method is loosely based on the WPP
scheme, while the entropy coding is done in raster
scan order by a separate thread. This leads to high
speedups with minimal coding loss. Unfortunately, a
considerable number of features are missing in their
prototype compared to the HEVC reference software.
Most noticeably, inter-prediction is not supported, nor
some other tools such as Sample Adaptive Offset
(SAO) or non-square PUs, for example.

The described scenario motivated us to implement
a full-feature encoder based on the HEVC reference
software HM11 (Bossen et al., 2013) that runs on reg-
ular multi-core hardware. Our proposed prototype is
is based on the WPP scheme, which makes it possi-
ble for our software to scale naturally with the num-
ber of available processing cores and with increased
video resolution. On our 6-core test machine, we
achieve speedups of up to 5.5x compared to HM11,
with identical video quality and compression perfor-
mance. Furthermore, all encoder features, tools, and
algorithms are fully supported, with the exception of
those, that are not allowed to be used in combination
with WPP.

The rest of the paper is structured as follows: Sec-
tion 2 outlines the high-level parallelization schemes
of HEVC, Section 3 provides a theoretical analysis of
the speedups achievable with WPP, and Section 4 de-
scribes the implementation of our encoder prototype.
Experimental results can be found in Section 5 and
Section 6 concludes the work.

2 HIGH-LEVEL PARALLELISM
IN HEVC

Every video encoder exploits redundancies and sta-
tistical characteristics in image sequences in order to
compress the data as much as possible. However, this
introduces various dependencies within the bitstream,
between neighboring frames, and between individual
coding blocks. The blocks of a video sequence must
hence be processed in specific sequential order. Typ-
ically, raster scan order is used. In parallel process-
ing environments, some of these dependencies must
be broken in order to enable concurrency, which un-
avoidably reduces the compression performance.

HEVC provides several low- and high-level mech-
anisms for dependency removal (Choi and Jang,
2012), whereby only the latter are of interest for this
work. Namely these are slices, tiles and WPP, which
all subdivide the video frames in certain ways. In
general, every picture is subdivided into CTUs which
have a maximum size of 64x64 luma pixels. They can
be recursively split into square-shaped Coding Units
(CUs), which in turn contain one or more PUs and
Transform Units (TUs) (Kim et al., 2013). It is im-
portant to note that all the high-level parallelization
schemes operate at the CTU level.

2.1 Slices

Each picture comprises one or multiple slices, which
can be decoded independently from one another. The
slices themselves consist of a sequence of CTUs and
may hence not be rectangular in shape. Slices may
have individual headers within the bitstream or, in the
case of dependent slice segments, infer their respec-
tive syntax elements from previous slices.

The main purpose of slices is to deal with network
and transmission problems like packet loss, for exam-
ple. Even though slices can be utilized for parallel
processing, they are usually not the preferable solu-
tion. One reason for this is that it can be difficult
to find a slice configuration that is suitable for both
network packetization and parallel computing at the
same time. Another issue is the relatively high loss in
Rate-Distortion (RD) performance caused by the fact
that slices break spatial as well as statistical depen-
dencies. In case of independent slices, for instance,
it is not possible to perform prediction across slice
boundaries and the entropy contexts are reinitialized
at the beginning of every slice.

2.2 Tiles

In contrast to slices, tiles were specifically designed as
a tool for parallelization. A picture gets logically sub-
divided into rectangular regions containing an integer
number of CTUs which can be coded independently
from one another. To make this possible, prediction
dependencies are broken at tile boundaries. Within
each tile, the CTUs are processed in raster scan order
and the entropy coding state is reset at the start of ev-
ery tile. Slices and tiles may also be combined as long
as certain restrictions are met (Bossen et al., 2013).

Tiles make it possible to leverage different multi-
core architectures effectively, as the picture can be
structured in a way that fits the respective platform
best. The size and position of the tiles may be cho-
sen with respect to the available processing cores and
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their individual computational capabilities. Specific
characteristics of the video footage can also be taken
into account. Areas with a rich amount of detail,
which typically take longer to encode, can be pro-
cessed using smaller tiles in order to achieve good
load balancing, for example. This high degree of flex-
ibility, however, can also be of disadvantage, because
special effort must be made to find an optimal par-
titioning for every hardware platform and video se-
quence. Another issue with tiles is that they can in-
troduce visible artifacts at their boundaries caused by
the broken prediction dependencies. Further informa-
tion about tiles can be found in (Misra et al., 2013).

2.3 Wavefront Parallel Processing

The WPP principle maintains all dependencies with
the exception of the statistical ones and is hence by
far the best method in terms of quality and coding
loss. This is made possible by processing all CTUs
in a natural order so that their interdependencies are
never broken. Figure 1 exemplarily shows how a pic-
ture is processed using four threads. It also illustrates
that every CTU depends on its left, top-left, top, and
top-right neighbor, which is indicated by the grey ar-
rows decorating the rightmost CTU of the second row.
Another important feature of WPP is that the entropy
coder state for every line is inherited with an offset
of two CTUs, as represented by the diagonally down-
wards pointing grey arrows at the left side of the fig-
ure. For example, the Context Adaptive Binary Arith-
metic Coding (CABAC) state is stored after the first
two CTUs of line one have been fully coded and is
then used as the initial entropy coder state for line
two. In summary, this means that the individual lines
of a picture can be processed independently, as long
as an offset of at least two CTUs is kept for every con-
secutive line.

Figure 1: Principle of WPP and CTU Dependencies.

In addition to its negligible coding losses, WPP
has several other benefits compared to slices and tiles.
The main advantage is that the scheme scales natu-
rally with the video resolution and with the number
of available processing units. In the first case, more

independent CTU lines exist, and in the latter case,
more of the available lines can be coded simultane-
ously. Furthermore, the locality of the memory ac-
cesses is largely unaffected, since consecutive CTUs
are processed in raster scan order as usual, which re-
sults in good cache efficiency. It should also be men-
tioned that a WPP-encoded bitstream can easily be
decompressed by a single-threaded decoder. All that
is needed is some additional memory to store the re-
spective CABAC state after the first two CTUs of the
current line, which is then used as the initial state for
the following line.

The positive characteristics of WPP motivated us
to build our prototype based on it. However, tiles are
not supported by our software, because HEVC pro-
hibits the combination of WPP and tiles for the sake
of design simplicity (Sullivan et al., 2012). It should
be noted, though, that our extended HM11 test model
can still be used as a flexible basis for algorithm de-
sign and evaluation, since all its other features are un-
affected by our implementation.

3 THEORETICAL ANALYSIS OF
WPP

Even though WPP is very good in terms of scaling,
the actual amount of parallelism, and hence also the
possible speedups, are not quite obvious. In compari-
son, if four equally sized tiles per picture are used and
four Central Processing Units (CPUs) are available,
the maximum speedup of the CTU-loop is 4x. That is,
assuming every CTU takes roughly the same time to
process. With WPP, however, the picture partitioning
directly depends on the video resolution and there is
no direct correlation between the number of cores and
the maximum concurrency. If four CPUs are used, as
in the above example, the CTU-loop will not automat-
ically be up to 4x faster with WPP. This is because the
prediction-dependencies are being maintained, which
implies that each CTU can only be processed after
its respective left, top-left, top, and top-right neigh-
bors. Therefore, not all of the four available cores
will be busy at any given point in time since they of-
ten have to wait for one another. Simply put, a lower
CTU-line can never overtake a higher one, which lim-
its the amount of concurrency due to the requirement
of frequent synchronization. If, on the other hand,
more CPUs are available, the speedup will automati-
cally scale in respect of the available video resolution.
This would, in turn, not be the case with tiles. For
these reasons, we provide a detailed analysis of what
speedups can theoretically be achieved with WPP in
the upcoming paragraphs.
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The first thing that needs to be addressed is the
ideal number of threads. It is directly related to the
respective video resolution and can be calculated us-
ing the following equation:

Tideal = min

(

ceil

(

XCTUs

2

)

,YCTUs

)

(1)

The functionmin() selects the lower one of the
two input values and the functionceil() rounds the
given value up to the nearest integer. The param-
etersXCTUs and YCTUs represent the width and the
height of the picture measured in CTUs. The value
of XCTUs is divided by 2 because of the offset that
needs to be maintained for every consecutive row.
Therefore, usually the width of the video is the lim-
iting factor for parallelism, except in the case of ul-
tra widescreen formats wherewidth≥ 2×height. It
should further be noted that the validity of this equa-
tion does not depend on the number of pixels in the
horizontal and vertical dimensions of the CTU. For
our experiments we used a CTU-size of 64x64 luma
samples and hence getTideal = 15 for 1920x1080p,
andTideal = 20 for 2560x1600p videos, respectively.

Figure 2: Amount of Parallelism at Every CTU-Position.

The next thing to consider is the actual amount of
parallelism that can be achieved, or in other words,
how many CTUs are being processed concurrently at
any given point in time. Figure 2 visualizes the de-
gree of concurrency at every CTU-position using a
heatmap. For simplicity, a relatively small resolution
of 1280x720p is assumed. The numbers indicate how
many CTUs can theoretically be processed in parallel
at any position within the frame. This directly trans-
lates to the number of potentially active threads at the
respective positions. It can be seen that the paral-
lelism is low at the beginning of the frame, reaches
its maximum in the middle, and then diminishes to-
wards the end of the frame. Unfortunately, the time
window in whichTideal threads are active, which is 10
in this case, is rather small.

With this information we can calculate the theo-
retical speedup of the CTU-loopSmax, by dividing the
sum of the processing times of all CTUs by the time
it would take to process the entire frame in a single
thread:

Smax=
∑x,y t(CTUx,y)

tCTU ×XCTUs×YCTUs
(2)

The symboltCTU denotes the time it takes to com-
pute one CTU in a single-threaded fashion. We as-
sume here that every CTU takes equally long to pro-
cess. On real hardware, however, this will most
definitely not be the case, since the performance is
typically limited by shared caches, memory trans-
fers, scheduling overhead, and other factors. How-
ever, as we are trying to find the maximum theoreti-
cal speedup, the assumption of an ideal parallel com-
puter with no execution overhead is sufficient. The
functiont(CTUx,y) calculates the multi-threaded pro-
cessing time of a given CTU based on the amount of
parallelism at the respective positionx,y. For exam-
ple, 2 CTUs can be computed concurrently at position
x = 0,y = 2. Therefore, the callt(CTU0,2) returns
tCTU

2 , because it is assumed that it takes just as long to
process 2 CTUs in parallel, as it would take to process
a single one alone.

For 2560x1600p sequences using 6, 12, and
Tideal = 20 threads,Smax results in 5.00x, 8.33x, and
11.36x, respectively. It can be concluded, that the
possible gains with WPP are significant. It also has
to be emphasized that these are theoretical speedups
of the CTU-loop and not of the entire system. Not
all parts of the encoder can be parallelized with WPP.
This is due to the fact that aspects such as the ref-
erence list construction, some image filters, and the
concatenation of the various substreams still need to
be processed sequentially.

4 IMPLEMENTATION

The HM11 encoder software can be configured to
produce a bitstream that can be decoded in a wave-
front like fashion using multiple computational cores
by setting the optionWaveFrontSynchro = true(Kim
et al., 2013). In this mode, the CABAC state present
after the first two CTUs of each line is temporarily
stored and then used as the initial state of the respec-
tive next line. The software also maintains multiple
bitstreams, one per CTU-row, which are concatenated
at the end of each picture to generate the final output
data. However, all this is done in a single thread with-
out any parallelism.
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The implementation we propose is based on the
HM11 software and extends it to a real parallel encod-
ing framework, which scales naturally with the avail-
able CPUs and with higher video resolutions.

4.1 Bitstream Verification

It is well known that parallel computing can be very
error-prone because of issues like data races or dead-
locks. In order to guarantee that our prototype does
not contain any threading-related problems, we first
implemented a component calledBitstreamVerifier. It
allows us to compare the generated output data to a
reference bitstream that was created in advance with
the unmodified HM11 software during runtime. With
this measurement, we were able to detect errors as
soon as they arose during development and could thus
keep the turnaround times reasonably short. TheBit-
streamVerifierwas of course disabled for the final ex-
periment runs, since it unavoidably causes some com-
putational overhead.

4.2 Thread Pool

In order to make our prototype scalable and flexible,
we implemented a thread pool system that can man-
age an arbitrary amount of worker threads. Typically,
the degree of parallelism is set according to the num-
ber of available processing cores, but any other num-
ber of threads can also be used. The individual CTU-
lines are kept in an ordered task-queue which is pro-
tected against race conditions using mutual exclusion.
The worker threads autonomously grab the CTU-lines
out of the list and process all their CTUs accordingly.
In case there are more CTU-lines than threads, which
is typical, each worker might process multiple lines.
The thread pool management system itself waits until
all threads have finished their work, which means the
entire CTU-loop is finished.

4.3 Entropy Contexts

To make parallel encoding possible, each line needs
its own entropy coder context to work with. Conse-
quently, instead of using one temporary state to re-
alize the probability synchronization, as described at
the very beginning this section, the individual con-
texts must be used. This means, the state after the sec-
ond CTU of linen is directly loaded into the CABAC
state of linen+1. After that, linen+1 can be pro-
cessed by its associated worker thread. Fortunately,
the HM11 software is already prepared to work with
multiple entropy coder contexts, thus we could mod-
ify the source code to fit our needs, accordingly.

4.4 Synchronization

When the rows are actually processed in parallel, the
offset of 2 CTUs, relative to the respective next row,
must be maintained all the time. This allows the intra-
and inter-prediction routines to fully exploit all spatial
correlations because the required neighboring blocks
are guaranteed to be available. We utilize semaphores
to implement the synchronization implicitly. Every
line has its own semaphore, which is calculated after
every finished CTU in the following way:

SC =











XCTUs, if PCTUs= XCTUs

SC+1, if PCTUs≥ 2
0, otherwise

(3)

Here,SC refers to the semaphore’s counter,XCTUs
is the width of the picture measured in CTUs, and
PCTUs is the number of CTUs that have already been
processed in the given row. The respective subsequent
row synchronizes with the semaphore and decrements
its counter by 1, if possible. This ensures that the
mandatory offset of 2 CTUs is kept all the time. The
only exception is the first case in the above equation,
which happens when the line is completely finished
and the offset is no longer required. For example, with
a CTU-line length of 6, each semaphore would count
[0, 0, 1, 2, 3, 4, 6]. During processing, however, the
counters are decremented by the respective blocked
threads as soon as possible, which is why their values
typically toggle between 0 and 1.

4.5 Thread-safe Data Structures and
Algorithms

The source code of the HEVC test model was not
designed to be executed concurrently, which means
that its classes and functions are not thread-safe by
default. The easiest way to make existing single-
threaded code executable in parallel is to add vari-
ous synchronization points, which ensure a valid or-
der of execution and data accesses and thereby elim-
inate the possibility of race conditions. However, it
is well known that mutual exclusion can easily be-
come a severe bottleneck in any parallel program. We
therefore decided to use lock-free programming tech-
niques to ensure thread-safety and to achieve optimal
performance at the same time.

In order to avoid synchronization completely, we
duplicate all needed encoder modules for every CTU-
line, so that they can work totally independent from
one another. It is generally known that data races
can only occur if multiple threads operate on the
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same data. If several threads write into the same
segment of memory concurrently, the result is non-
deterministic. Take, for example, HEVC’s Motion
Vector (MV) refinement algorithms. An Interpolation
Filter (IF) is utilized to generate the needed subpix-
els for the respective fractional MVs. The resultant
subpixel-blocks are stored in a number of temporary
buffers and serve as a basis for the cost estimation.
In a multi-threaded environment, these buffers must
be duplicated, so that every thread can work on its
own individual area of memory independently. Oth-
erwise, the threads would randomly overwrite each
other’s data, which would ultimately lead to race con-
ditions and therefore false results.

Theentropy coderand theCU encoder, which it-
self contains modules forsearch, prediction, quan-
tization, transform and RD cost computation, are
the subsystems that need to be copied. To do this,
we employ a deep-copy mechanism with subsequent
cross-reference reconstruction. Deep-copy essen-
tially means that not only the instance of a class is
cloned, but all its respective member objects as well.
Accordingly, new memory needs to be allocated for
every class member and their data must be copied
respectively. The results are completely indepen-
dent new objects with no shared members, buffers,
or pointers. This circumstance makes it obvious why
the mentioned cross-reference reconstruction is nec-
essary. Some of the new objects need to associate
each other so that they can properly work together.
The CU encoderneeds to know itssearchmodule,
for example. Therefore, all needed aggregations and
references between the newly cloned objects need to
be set correctly.

The following steps are performed to deep-copy
the individual components and their sub-modules be-
fore the worker threads can start:

1. Create byte-identical copies of the class instances.

2. Re-allocate memory for all the temporary member
data structures and sub-modules they have.

3. Copy the contents of the respective sub-modules.

4. Eventually invoke the objects’ initialization func-
tions with proper parameters.

5. Set all cross-references between the new objects.

6. Associate the objects with their respective entropy
coders, CABAC states, and bitstreams.

Figure 3 shows the differences between a single-
threaded encoder (a) and our parallel framework (b).
As explained earlier, the subsystems and their respec-
tive memory buffers are duplicated for every thread.

Each thread thus has its own dedicated class instances
and memory areas to operate on. Therefore, the
threads can work independently from one another.
They only need to be synchronized in order to stay
within the limitations of the WPP scheme as de-
scribed in Section 4.4. It is also worth noting that
the WPP substreams do not need to be duplicated as
the original HM11 software already has multiple in-
stances of them.

(a) Regular Encoder.

(b) Parallel Encoder.

Figure 3: Comparison of a Regular Single-Threaded HM11
Encoder and the Proposed Parallel Architecture.
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5 EXPERIMENTAL RESULTS

We used the following development environment for
the experiment runs: Intel Core i7-3930K CPU@3.20
GHz, 32 GB of Random Access Memory (RAM),
and Windows 7 Professional 64-Bit operating system.
The Core i7-3930K CPU has 6 physical cores and
features Hyper-Threading (HT) technology, which
means it has two Architectural States (AS) per core.
This makes 12 logical cores available to the operating
system and also increases the processor’s execution
resource utilization due to faster context switches.

On this platform, we encoded four HEVC test
sequences:Kimono1(1), ParkScene(2), PeopleOn-
Street(3), andTraffic (4). (1) and (2) have a reso-
lution of 1920x1080p and (3) and (4) of 2560x1600p.
All videos use a color sub-sampling of 4:2:0. Accord-
ing to the common test conditions (Bossen, 2013), we
used the profilesrandom access(ra), intra (in), and
low delay(ld), with Quantization Parameters (QPs)
22, 27, 33, and 37. The number of worker threads
was set to 6, 8, 10, 12, andTideal, as identified
in Section 3, was 15 for 1080p and 20 for 1600p
videos. Using more threads is unreasonable, because
the amount of parallelism would remain the same. For
all multi-threaded test runs we setWaveFrontSynchro
= true and the output of the unmodified HM11 en-
coder serves as basis for comparison.

Table 1: RD Performance of WPP.

Cfg. Seq.
BD-PSNR

Y, U, V [dB]
BD-Rate

Y, U, V [%]

(ra)

(1) -0,037, -0,022, -0,021 1.2, 1.4, 1.1
(2) -0.021, -0.016, -0.022 0.6, 0.8, 1.1
(3) -0.024, -0.024, -0.015 0.5, 1.0, 0.7
(4) -0.023, -0.014, -0.015 0.7, 0.7, 0.8

(in)

(1) -0.011, -0.005, -0.005 0.3, 0.2, 0.2
(2) -0.003, -0.008, -0.007 0.1, 0.3, 0.3
(3) -0.007, -0.003, -0.001 0.1, 0.1, 0.0
(4) -0.002, -0.006, -0.008 0.0, 0.2, 0.2

(ld)

(1) -0.036, -0.027, -0.035 1.1, 1.6, 1.9
(2) -0.028, -0.025, -0.012 0.9, 1.3, 0.7
(3) -0.023, -0.040, -0.035 0.5, 1.7, 1.8
(4) -0.026, -0.039, -0.025 0.8, 2.3, 1.5

Table 1 summarizes the RD performance results.
We calculated the differences in Peak Signal-to-
Noise Ratio (PSNR) and bitrate over the four dif-
ferent QPs using the Bjøntegaard Delta (BD) met-
ric (Bjøntegaard, 2001). The BD-metric is a well-
known method to determine the average PSNR and
bitrate differences between two RD-plots. We com-
puted the respective average differences between the
output of our prototype and the output of HM11 with
WPP disabled, using the four QPs listed above. Con-
sequently, the results presented in Table 1 show one

BD-PSNR and one BD-Rate value for every color
channel, instead of listing the data for all used QPs
individually. This is mainly for better clarity and read-
ability. It is clearly obvious that the losses caused by
WPP are negligible, because only the statistical de-
pendencies are affected by it, while the temporal and
spatial ones remain intact. We would like to empha-
size once again that our prototype produces identi-
cal bitstreams as the HM11 encoder with the setting
WaveFrontSynchro = true, so these results are easily
reproducible.

The most important aspect of our implementation
are of course the speedupsS, which we calculated by
dividing the time HM11 needed to process the respec-
tive sequence,tHM11, by the time it took using our
prototype,tWPP.

S=
tHM11

tWPP
(4)

The complete data set of all test runs can be found
in Table 2. In addition, the average speedups over the
utilized QPs are visualized as diagrams in Figure 4.
We computed the average speedupsSAVG as

SAVG=
SQP22+SQP27+SQP32+SQP37

4
, (5)

where each parameterSQPn represents the speedup of
a single experiment run as listed in Table 2. For ex-
ample, the average speedup the experimentCfg. (ra),
Seq. (1), QPs{22, 27, 32, 37}, 6 Threads, was com-
puted asSAVG= 4.04+3.99+4.03+3.99

4 = 4.01.
It is clearly noticeable that the speedups we

achieved are significant among all configurations.
They range roughly between 4.5x and 5.5x with the
maximum number of threads used. As the analy-
sis in Section 3 suggests, the gains are bigger for
higher resolutions, because more CTU-lines are avail-
able for concurrent processing. However, the char-
acteristics of the speedup-curves are very interesting,
considering that video encoding is in general an ex-
tremely compute-bound application, with a typically
very high processor utilization. It would seem that
HT is not of much benefit in this context, but our re-
sults show otherwise. The performance jump from 6
to 12 threads is very high, even though our CPU only
has 6 physical cores. The fast context switches due to
HT technology can help here, because of the variable
completion times and the significant overhead caused
by memory transfers. Since two AS are available per
processing core, each one of them can simultaneously
manage two threads. Therefore, if two threads reside
on the same core and one of them is finished early,
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Table 2: Speedups of WPP.

Cfg. Seq. QP
HM11
Time[s]

Speedups for N Threads
6, 8, 10, 12, ideal (15 or 20)

(ra)

(1)

22 12866 4.04, 4.51, 4.62, 4.75, 4.75
27 10950 3.99, 4.48, 4.61, 4.77, 4.80
32 9741 4.03, 4.43, 4.62, 4.79, 4.84
37 8921 3.99, 4.42, 4.62, 4.80, 4.84

(2)

22 11925 3.90, 4.30, 4.43, 4.56, 4.58
27 9977 3.92, 4.36, 4.46, 4.62, 4.61
32 8882 3.98, 4.39, 4.48, 4.66, 4.66
37 8255 3.95, 4.43, 4.56, 4.73, 4.72

(3)

22 20177 4.17, 4.77, 5.02, 5.29, 5.39
27 17001 4.17, 4.82, 5.03, 5.33, 5.42
32 14861 4.20, 4.81, 5.02, 5.32, 5.40
37 13393 4.22, 4.84, 5.03, 5.33, 5.40

(4)

22 13430 4.22, 4.75, 5.01, 5.29, 5.35
27 11291 4.25, 4.80, 5.04, 5.32, 5.43
32 10185 4.22, 4.80, 5.02, 5.29, 5.42
37 9608 4.18, 4.80, 5.02, 5.28, 5.43

(in)

(1)

22 3216 3.75, 4.16, 4.37, 4.53, 4.58
27 2659 3.74, 4.10, 4.30, 4.48, 4.51
32 2405 3.68, 4.06, 4.27, 4.47, 4.51
37 2274 3.69, 4.11, 4.32, 4.51, 4.55

(2)

22 3910 3.69, 4.13, 4.32, 4.48, 4.54
27 3213 3.72, 4.12, 4.30, 4.48, 4.53
32 2750 3.68, 4.12, 4.30, 4.49, 4.53
37 2432 3.69, 4.09, 4.28, 4.47, 4.53

(3)

22 4548 3.84, 4.36, 4.58, 4.89, 5.10
27 3866 3.78, 4.33, 4.56, 4.84, 5.07
32 3409 3.80, 4.29, 4.53, 4.83, 5.02
37 3091 3.82, 4.29, 4.51, 4.82, 4.99

(4)

22 4465 3.86, 4.40, 4.68, 4.99, 4.98
27 3789 3.83, 4.39, 4.65, 4.97, 4.97
32 3350 3.82, 4.37, 4.62, 4.96, 4.97
37 3045 3.81, 4.28, 4.60, 4.93, 4.96

(ld)

(1)

22 19489 4.14, 4.59, 4.70, 4.80, 4.83
27 16811 4.09, 4.59, 4.72, 4.83, 4.84
32 14901 4.13, 4.59, 4.72, 4.86, 4.88
37 13447 4.09, 4.59, 4.73, 4.86, 4.89

(2)

22 18421 4.01, 4.45, 4.56, 4.69, 4.73
27 15242 3.99, 4.41, 4.52, 4.67, 4.70
32 13346 4.00, 4.42, 4.54, 4.70, 4.70
37 12193 4.06, 4.45, 4.60, 4.75, 4.75

(3)

22 28965 4.22, 4.85, 5.08, 5.34, 5.45
27 24653 4.24, 4.88, 5.10, 5.37, 5.45
32 21938 4.24, 4.86, 5.10, 5.38, 5.46
37 20050 4.26, 4.86, 5.12, 5.40, 5.50

(4)

22 19973 4.20, 4.83, 5.14, 5.39, 5.41
27 16724 4.30, 4.84, 5.13, 5.40, 5.47
32 14935 4.31, 4.84, 5.11, 5.37, 5.47
37 13829 4.23, 4.84, 5.07, 5.33, 5.45

or has to wait for a memory transfer, the other thread
can immediately take over and do its work. The usu-
ally large overhead caused by context switches is thus
severely reduced. The small improvements on the
graphs between 12 andTideal threads suggest that the
described conditions still hold true, even with slower
context switches. The switches are overall slower in
this case, because, more often than before, the exe-
cution contexts of some threads need to be temporar-

Figure 4: Average Speedups of WPP for the Profiles (ran-
dom access), (intra), and (low delay).

ily stored in and eventually be reconstructed from the
RAM. Finally, it can be seen that intra configurations
benefit less from WPP overall. This is due to the fact
that if only intra-prediction is used, the CTU-loop is
less complex and contributes a considerably smaller
proportion to the total processing time. Thus smaller
overall time savings are achieved.
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6 CONCLUSION

In this paper, we present a multi-threaded full-
feature High Efficiency Video Coding (HEVC) en-
coder based on Wavefront Parallel Processing (WPP),
which runs on regular consumer hardware. In ad-
dition, we provide a detailed theoretical analysis of
the WPP scheme, showing its potential for signifi-
cant speedups, and outline some implementation de-
tails of our parallel encoder framework. Experimental
results show that our software gives speedups of up to
5.5 times on a 6-core CPU. It is noted that the pro-
posed framework is fully compliant with the standard
reference test model, as it produces identical output
bitstreams and maintains the same full encoding fea-
tures.
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