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Abstract: The purpose of this paper is to present strategies for the control of movement of rigid bodies via force ac-
tuators, possibly redundant. After a nonlinear feedback linealization of the considered dynamic models and
the application of a suitable controller, an adaptive neural network based control component is incorporated
in order to cope with modeling errors and disturbance rejection. An online sequential quadratic programing
optimization with equality and inequality constraints assures an adequate configuration of actuator forces. Ap-
plication to collaborative work in the transportation of a rigid body using a squadron of scale quad-rotors is
studied.

1 INTRODUCTION ring of the rigid body. The force allocation is formu-
lated as a nonlinear programming problem. Section

In collaborative work between different agents con- 5 presents the quad-rotor simplified modeling accor-
cerning dynamic processes of mechanical nature,ding to a lagrangian formulation. The quad-rotor path
such as the problem of air transport of rigid bodies, error tracking controller is developed along the Sec-
arises the need to allocate adequate efforts to main-tion 6 and the simulations carried out with a platoon
tain a path and pose previously established. In this of quad-rotors are brought in Section 7. Finally the
paper this idea is applied to the collaborative work conclusions are presented in Section 8. We have also
in carrying a rigid load along a given path (Sreenath included a small appendix on the method of feedback
et al., 2013) (Lee et al., 2013), using a squadron of linearization as an introduction to the chosen control
scale quad-rotors. technique.

The hierarchical process of collaborative assign-
ments is shown. First, the problem of tracking a path
and pose is solved for a rigid body, whichis the load 2 R|GID BODY DYNAMICS
to be transported. Secondly, through an allocation
procedure based on nonlinear programming, the ef-£o 1he rigid body subjected to external forces, the

forts to apply at local mooring in the body transport oqiting movement equations can be described deve-
are determined. Finally, the determination of the or- loping the Lagrangian:

bits of transport agents should follow, as well as the

efforts to which they are subjected by the mooring RS R
links with the transported body. Scale quad-rotors are = Emz &+ Em I
capable of aggressive maneouvering, as can be seen V =mgz 1)
in (Huang et al., 2009), (Mellinger et al., 2012). In w=QM)n
this last stage arises the need for adaptive augmenta-
tion, to overcome deficiencies encountered during the Jy =Q(n)"IQn)
modeling process or due to changing environmental Also
conditions.
The structure of this paper is as follows: Sec- 0 —w w )
tion 2 introduces the development of the equationsof ®@= | ®, 0 —w | =RMR'(N) (2)
motion of the rigid body. In Section 3 follows the —Wy O 0

rigid body tracking control formulation. Section 4
focuses the allocation of forces attached to the moo-
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Here m denotes the rigid body mas<, and w are
the position and angular velocity in global inertial co-
ordinates and body coordinates, respectivajyare
the Euler angles pitclp, roll 8 and yawy. R(n) is

the transformation matrix representing the rigid body subspace of its space configuration.

pose andg, S stand for co89),sin(0), etc. The iner-
tia matrix is

Jho Ji2 dis
J=| J2 2 k3 (4)
Jiz 3 I3
The resulting movement equations are
E=mi(fo+f)
(5)

. 10 . p - .
=
n=4J <§E(WTJM)—JM +T>

with fo = (0,0,—mg)" and f, T the external control
forces and torques respectively.

3 RIGID BODY TRACKING
CONTROL

Given a path immersed iR® and named a$t;, n,},
define the tracking error as:

e={egen}
€& =¢& —¢§ (6)
& =Nr—n
Imposing now a stable dynamics for the error,
A € Ea. —
+ +kye: =0

& +kjén +kjen =0
calling {v, vq} pseudo-controls, (5) is reduced to a
double integrator dynamics

=V
N ®
N =Vn
Solving now (7) regardingvg, vy },
Ve = & +kie + ke
=m o+ m1f
Vi = fir +KJén +Kley ©)

10,. . ..
1 T
=J, (E%(ﬂ Jnr])—qu]+r>
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From (9) we obtain the controls that keep path and
pose tracking. These controls are denoteflfas}.

4 FORCE DISTRIBUTION ON
THE TIE POINTS

Consider now a set of poinfs, i = 1,--- ,np given in
rigid body coordinates, just where moorings are an-
chored. Let bes,i=1,---,ny the mooring forces.
The mooring force$; must be contained in a viable
For example,
in case that the clamping is performed by a platoon
of quad-rotors, which is the chosen setup in this pa-
per, these forces should be directed to the upper re-
gion of the geometric space in relation to the horizon-
tal plane. The forces will point to the configuration
platoon. The determination of each mooring force
Fi,i=1,---,nyis focused as follows, whem@A b is

a vector product ané a,b > is a scalar product:

1. A set of equality relationg® concerning the ef-
forts needed to control the rigid body.

Np

f=3F
E._ i=
= o

ok
Z(R(ﬂ)pi)/\ﬁ

(10)
T=

2. The following relationship guarantees a conical
opening concerning the mooring forces. It is es-
tablished as a condition of no intersection between
the sphergP — Py| = r and the line

P=M+A£TO<A<m (11)
I
such thaPy = rpe3
gll =< R(N)pi —ro&s,F >2
< IRP(RMp —rossP—13)  (12)

’i:]_’...7np

wherees = (0,0,1)". Alsor,, r are parameters
governing the cone aperture (see figure 1).
3. The constraints
g=<F,ee>>0{i=1,...,n,} (13)
are needed for aperture regularization.
4. The objective function to be minimized is

Np
F=> Rl
2,

(14)
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The nonlinear optimization problem can be for- tia matrix is given by

mulated as: @ 39 g9
Minimize F (X) such that (15) Jg= ( J& J]tf 3113 )
- 2
X € {65(X) N gh(X) NGh(X)} VAN (19)
The process of minimization is fast and efficient Jng = Q(ng) "J4Q(nq)

using a minimization method such as the Sequen- _ L i _ L
tial Quadratic Programming Method (Nocedal and Here Jy, is the inertia maitrix regarding the inertial
Wright, 1999). The initial point at each sample time is T@me. The movement equations are:

the solution previously found at the previous sample -

time. &q= —my*(fo—F +R(Ng) fo)

Once determined the forces, the cabled ties are 50 = 3-1(nq) 10 ( Ty )
propagated in the corresponding direction to a desired Mg = nq (Nq 20nq Mg na"Na (19)
lengthl;, at which point the respective quad-rotor will .
absorb the effort. Thus, the position reference trajec- —JngNg + R(ﬂq)an}
tory of the quad-rotors is obtained by: with

i R 0 0
E?:R(H>Pi+5+'i|f:|v':1»--'»% (16) o= 0 |. fo=[ O (20)
B u —Myg

andtn, = (Tyq, Te,: Tg,) DEING the moments regarding
the body frame. Those moments can be modeled in a
first degree of approximation, and in the local frame
without considering rotor dynamics, as:

4
u= fi
2"

fi = Bocf (21)
y Tyy = (Do/Bo)(f2+ fa— f1— f3)
Figure 1: Auxiliary sphere in the definition of feasible dift To, = | (fa— f2)
ing forces. d
T(pq = |(f3 — fl)
where fj are the lifting forces in each rotoky;
5 QUAD-ROTOR; SIMPLIFIED the corresponding angular velocitidsthe diagonal
MODELING AND distance between axes of the respective rotors, and

Do, By are drag and thrust factors, respectively. The

LAGRANGIAN FORMULATION relationship betweefify, Tn,} and rotations; is:

The generalized coordinates for a quad-rotorcpse _ -~ -~

(Eq,Nq) Where&q = (xq,Yq,Z), denote the position w = 4B,Dol (Dol = 2DoTg, — BolTy)

of the center of mass concerning the inertial frame 1

andng = (W, 8q, @) are the three Euler angles (yaw, W5 = 4B,Dol (Dolu — 2DoTg, + Bol Tyq)

pitch and roll) representing the quad-rotor pose. The 1 (22)
total quad-rotor kinetic energy is given By and the Wi = B0 (Dolu + 2DgT g, — Bol Ty, )
potential energy is given By, with the corresponding o=

lagrangianLq = Tq — Vq (Avila-Vilchis et al., 2003) wﬁ (Dolu + 2DoTg, + Bol Ty,

(Koo et al., 2001), with ~ 4BoDol

1 e 1
Tog==MEq &g+ =i J
9= 5MaSq a7 5% “a% a7y 6 QUAD-ROTOR ERROR

Vq:mquq. TRACKING CONTROLLER
wgq = Q(Ng)Nq

Here my denotes the mass of the quad-rotor and Each quad-rotor will assume the controller role at
R(ng), Q(ng) are defined in (3). The quad-rotor iner- each mooring link. Each quad-rotor must provide
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enough effort to counterbalance the mooring fdfge
while maintaining the required path defined through
(16). Ideally the link to establish will real} = &
whereEir are the reference position of the center of
gravity of thei-th quadrotor and are given by (16)
(theoretical anchor point). Instead we will impose a
stable error dynamics criteria such as

g +Kg€ +Kpe =0 {Kg>0,Kp>=0}  (23)

in which _ o o
e':(e'z,e'q):Pr'—P('] (24)
with i O
Pq = (Eqv r]q)

the reference and actual trajectories ofithie quadro-
tor. Establishing now

& =&+ myY(fo— )+ my 'R0y,
= kpgep ~kae&

7| -1 1 6 'iT I

& =" —Jna liﬂ (nq ‘]n'qnq) (26)
—Jnaf'thrR(flh)Tiq}
= —kpn€ — kané,

with (v, vi,) the pseudo-control components daqg,

Kpn . Kae» Kan positive matrices. Herg is the mooring
force attached to thieth quad-rotor. The expression
for & is obtained substituting (19) in (23). From

&+myt(fo—R)+my'RNp) fy=vy  (27)

with f{ = u'ez and solving for{u', 6}, ¢} the system
of equations

RNo)fh = @' =my(vi —&)+FR—fo  (28)

we obtain

L) 8= arctan<\ [l + i, <D;>

@, = arctan(—®}, —®\)
o = |||

(29)

wheren}, is the needed attitude. Calling now as atti-
tude correction

0
An' = ( 6l -6}, ) (30)
@ -
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and including the attitude correction in the attitude er-
ror dynamics, results in

Vi = —Kpn (€ — An') — kgné, (31)
which defines the control law:

s o 10 /. i
TIZ\]ir]I_——- r]IT\]ir]I
Ng 9 Zanlq( q “Ng q) (32)

+Jniq (r]'r + kpr](eiq _Ar]i) + kdrlelﬂ)

This control will stabilize theP! trajectory tracking
with a bounded error. In figure 2 the structure of the
controller is shown, consisting of two proportional-
derivative terms, namelyD;, PD, where§, S, re-
present the operations described in equations (27)
and (32) respectivelyQR represents the plant (quad-
rotor) andC the generator of trajectory commands.

6.1 Adaptive Augmentation

In order to cancel the presence of unmodeled dynam-
ics, two corrective components are added to the con-
trol loops presented in figure 2, which are generated
by the single hidden layer neural network adaptive el-
ement defined by SHL-NN £NNg, NN, ). In what
follows the control of each quadrotor is analyzed and
the superindex for thei-th quad-rotor is omitted for
the sake of clarity. Also thg subindex is omited in
&q. Na.

! LgtA = (A, Ay) be the vector of modeling errors.
Equations (26) can be written as:

& = ér - (E +0¢)
& = fir — (i +n)
By adding to the control effort the adaptive terms

Vas, Van the following representation of the error dy-
namics is obtained:

€ + Kpe€r + Kyl +Var — Dy =0
€1 +Kpn€n + Kan€n +Van — Ly =0
which can also be written as

%(2)_<—?<p —:<d >(2)+B(V3_A>

(35)

(33)

(34)

with
_( ke O _( ke O
Kp_(oo kpn)’Kd_(O kzr])
Va
B:(')’Va:(vai)’A:(A’E‘)(se)

and withe = (e, &y). Here againQ, | are suitable
null and identity matrices respectively. If the SHL-
NN output signalv, perfectly cancels), then we
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Figure 2: Augmented Linear Controller with an Adaptive SN\

have asymptotically stable error dynamieghas the  whereW*, V* are the optimum values that best ap-
structure proximateA. The error dynamics is

va= (WO OMTTVR M) BT e_pern (WG T - WSV TE +e) (42)

Weight propagation foW¢ 1,V(s ) is done accor-

ding to the adaptation laws Defining nowW =W —W*,V =V —V* and using

_ the Taylor series expansion afwith respect td/ in
W= —[(6=aV,"a)r " +k|efW]rw the neighborhood of *, which is the optimum value,

. _ (38) we obtain
Vi = —Tyfalr "W o) +x [lef Vi

: KT T T N7 T o
withr = (e"PB) T, andi = {&, n}. The representation e=AetB (W (0-0oVia+W oV q+w)
of 6(V; @) asa, as well as that o, is done for the _ (43)
sake of clarity.ly, = 0, [y = O are definite positive Wit
matrices and > 0 is a real constant, beirgthe ex-
tended input vector, that is; = (1,q) whereq is the
input vector.

w=g—W*" (0* — 0+0’\7Tq_) +WTa'vV g (44)

Substituting now (38) and (43) in the expressiotVof
6.2 Obtaining the Adaptation Laws we have

VI s T 5T
Let us consider the Lyapunov function V= _ie Qe+e PBW—k eljtr (Z Z) (45)

V(eV,W)= :_ZL (eTPe where v o i
3 5 N 1) z_<0 W>,z_z—z* (46)
+r (W) +1r (VT ) )
. ~ ~ N ~012 .
whereP solves the equation Using t(Z'2) < ||Z]|z*|| - ||2||" and following
(Kannan and Johnson, 2002) there eaishy, C3,K >
ATP+PA+Q=0, A= < ° Ld ) (40)  |IPBilcs such that
—Kp —
. 1 2 5112
with —Q andP definite positive. In orderto obtainthe ¥V =~ 5Amin(Q)[[€" — (k — [IPBj[c3) [[€] 12]]
adgptatlon equations (38) we must fc_>||ow the stepsre- +agllel|+ay el HZH
quired to proof that, on the error orbits, the condition (47)
V <0 is satisfied as explained in (Kannan and John- ) aq++/22+ 4ag(K—||PB| ca)
son, 2002). The following steps are given in order and, withZm = - re i >,
to show the parameters regarding an adequate tuning 7
of the controller. The details of the proof of conver- lef > 8+ a14m =V<0 (48)
gence follow the above mentioned reference. Let us FAmin(Q)
consider Thus for convenient initial conditions, the tracking e-
e=Vvi-A=W'g(V*'q —A (41) rror eis ultimately uniformly bounded.
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7 SIMULATION RESULTS

In this section we perform the simulation of a ty-pical )

maneuver, in which a rigid body is transported in an
upward helical path, using four identical quad-rotors

on the task. During transport the body and the quad-

rotors suffer the action of an intense wind gust along
thex,y,z axes modeled by

t—ty) 2
fx = pxexp <0X)
X
t—t,\?
fy = pyexp e (49)
t—t,\2
f, = p.exp (02>)
z

where py = py = p; = 2,tx = 25ty = 35t, =
40,0x = Oy = 0, = 2. The main parametric va-
lues in this simulation arem = 3,J; = 1, )3 =
2,J3 = 4, the mooring points in body coordi-
nates p1 = (2,1,02)", p, = (2,~1,0.2)", p3 =
(-2,-1,02)T, ps = (-2,1,0.2) " and the mooring
ropes withl; =1, = I3 =14 = 20. For the restric-
tion spherea = 3.5, r, = 4. The path and rigid body
pose of the load g.c. along the trip are givenRyy=
(psin(Qt), pcogQt), Vet +ho) " andP, = (0,0,Qt) "
with Q = 0.1,V = 0.1. For each quad-rotor the main
data is:mg = 2,3} = 0.5,J3 = 0.5, 33 = 0.2, kp,
16, kgy = 4, kpy = 120 kg, = 12, Y, = Yo, = W
Wy =2, Kg =Kn =4.

8.6
84r

82l

8.0
\/

N\

20

781

761

30 40 50 60

72F
Figure 3: Module forces$F;| in the four ropes during the

maneuver, including simultaneous wind gusts along the
{x,y,z} axes.

8 CONCLUSIONS

The method presented provides guidelines for the

transport of rigid loads through the collaborative ef-

fort between agents. Within this approach can also ad-
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Figure 4: Evolution of a transport maneuver.

1.0

0.5

oo

-0.5

20 30 40 50 60

-1.0

Figure 5: Evolution of\; weights in a typical maneuver.

Figure 6: Evolution of\, weights in a typical maneuver.

dressed the problem of failures with consequent redis-
tribution of loads among agents. Substituting stable
dynamic error cancelation instead of equality holo-
nomic links, can be an effective simplification pro-
cedure, according to the simulation results.
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APPENDIX

Approximate System Linearization

One common method for controlling nonlinear dy-

namical systems is based on approximate feedback

linearization (Isidori, 1995), which depends on the

relative degree of each controlled variable. For new-
tonian systems like the quad-rotor in a simplified ap-
proach, the regulated variables of interest, here repre-
sented as the vectqr have relative degree two

4= f(a,q,u) (50)

The control variables are represented by the vactor
A pseudo controV is defined such that the dynamic
relation between it and the system state is lirgan”
wherev = f(q,q,u). Since the functiorf (q,q,u) is
not exactly known, an approximation= f(q,q,u) is
used which is invertible regarding resulting in

4=v+A4A(q,qu) (51)
where the modeling error is represented by
A(qa qv U) = f(q7 Qa U) - f\(qv qv U)
So the effective actuator can be calculated as
0= f"*a.q.v) (53)

Supposing in (51) thak(qg,d,u) = 0 we can proceed

in the stabilization problem, choosing a linear con-
troller, a PD for instance, that will locally solve the
regulation problem. A single hidden layer (SHL) neu-
ral network with conveniently adapted weights will be
responsible for modeling error cancelation. Including
a command path generat®r the former linear con-
troller can be augmented through the architecture de-
picted in figure 7.

(52)

Gr

Figure 7: NN augmented adaptive control architecture.

The pseudo control signal in (51) is the sum of
three components

V=0 +Vpp—Va (54)

where ¢; is generated byC, vpp is generated by
the PD controller and, is generated by the adap-
tive element introduced to compensate for the model
inversion error. The tracking error is computed as
e=[or — 9,0 — g" and the PD controller can be re-
presented by

Vpp = [ Kp Ky ] e (55)
so the tracking error dynamics is given by
é=Ae+B(va—4) (56)
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with

o |
—Kp —Kg

SERARS(

wherel andO are a suitable identity and null matrices
respectively.

| e

Adaptive Element

The adaptive element is implemented by a SHL-NN

with conveniently tuned weighig W such that
va=W'a(V'q) (58)

with g = [v,q]. Given a sufficient number of hidden

layer neurons and appropriate inputs, it should be pos-

sible to train a SHL-NN (Hornik et al., 1989) on line
to cancel the effect ah. The weight matrices are

Voi Vo2 Vo,n,
Vi1 Va2 Vin,
V = . . .
Vni1 Vm,2 Viny,ny
(59)
Wo1 Wop2 Wo,ng
W11 W2 W1 ng
W = .
Wnp 1 Wny,2 Wiy ng

Here ni,nz,n3 are the number of inputs, hid-
den layer nodes and outputs. Alsa(§)
(1,0(81),---,0(&n,)) " The scalar functiow is the

sigmoidal activation functiom(€) = 1/(1+ e %).

Contractibility

The transformation, =W ' a(V T q) must be contrac-
tive regarding/a. Note thatA depends ong through
v, whereas/, has to be designed to caneel Hence
the existence and uniqueness of a fixed point solution
for va = A(Q,9,va) must be assumed. A sufficient
condition is to ascertain that the mep— A(q,q,Va)
is a contraction over the entire input domain of inter-
est, or||0A/dva,|| < 1. This condition is equivalent to
(Kim, 2003) (Johnson, 2000) (Kannan and Johnson,
2002) .
1|of of
2|ou| = |au
Consider the system (50), the inverse law="
f~1(g,q,v) and the contractibility property, as well
as the adaptation laws

0< < o

(60)
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W= ((6— VTG +k ||e|\W) Mw

: (61)
V=—ry (arw'a)+ke|v)
. 00(2) . . :
whereo’(2) = 3 _is the Jacobian matrix and
=7

r = e PB. Also P - 0 is the unique positive definite
solution for the Lyapunov equatigxl P4+PA+Q=0

for any convenien - 0. A andB are defined in
(57). Given (61) withl'yw > 0,y = 0 andk > 0,
according to (Nardi, 2000), (Shin, 2005) the tracking
errore uniform boundedness is assured.



