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Abstract: The goal of this paper is to develop a new method of decentralized control tuning. This method is based on 
Nyquist-Arrays and independently designs monovariable controllers for each loop of the plant while 
ensuring the robust stability of the multivariable system. It works on the optimization of a frequency 
criterion using the controller’s design parameters. PID controllers have been chosen in this study because of 
their good performances for most applications. Finally, the proposed method allows to achieve good 
performances and the stability is ensured thanks to the analysis of Gershgorin and Ostrowski bands. 

1 INTRODUCTION 

The design of the control of a multivariable process 
can be achieved with two strategies. The centralized 
strategy consists in designing one full MIMO 
(Multiple Inputs Multiple Outputs) controller for the 
whole system. The different techniques of this 
strategy (Skogestad and Postlethwaite, 1996), 
including state-feedback, model predictive control, 
H-infinity loop-shaping… are usually efficient and 
achieve good performances. However, these 
methods need a precise enough model, and the 
obtained controllers are usually of high-order. The 
decentralized strategy consists in dividing the 
MIMO process into a combination of several SISO 
(Single Input Single Output) processes and to design 
mono-loop controllers in order to control the MIMO 
process (Albertos and Sala, 2004).  

Compared to the centralized strategy, the 
decentralized one provides flexibility and needs 
fewer parameters to tune, while it is easier to 
implement and increases the loop failure tolerance of 
closed loop systems. Because of these benefits, 
decentralized controllers have been widely used and 
different types of methods have been developed as 
described in (Huang et al., 2003).  

Independent design method (Skogestad and 
Morari, 1989) is chosen in this paper, which means 
that each loop is designed independently from the 

others. The Nyquist array techniques have shown 
themselves to be well-suited for practical design of 
controllers for multivariable interacting processes 
(Garcia, Karimi and Longchamp, 2005), (Chen and 
Seborg, 2002). 

This paper proposes a new method based on 
Nyquist-Arrays. The goal is to design SISO 
controllers for any multivariable process (unstable 
poles, unstable zeros, dead time) with medium 
interactions. Two alternatives are under discussion, 
the first one uses Gershgorin bands whereas the 
second one uses Ostrowski bands. The study is 
limited to PID controllers but it can easily be 
generalized. 

This paper is organized as follows: Section 2 
surveys theoretical preliminaries about the Nyquist-
array methods. Section 3 presents the design of the 
control laws and Section 4 exposes simulation 
results that demonstrate the efficiency of this 
method. Conclusions are presented in Section 5. 

2 NYQUIST-ARRAY METHODS 

The proposed method is based on the Nyquist-array 
methods (Leigh, 1982), (Rosenbrock, 1969), in 
which the design of the controller is divided into two 
steps. The first one consists in reducing the 
interactions in the system so that each control loop 
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can be closed separately and independently from the 
remaining loops. In the second step, controllers of 
the different loops are designed.  

This paper focuses on the design of the 
controllers but a short summary of the general 
methods is recalled. 

2.1 Diagonal Dominance 

The design of the control laws often requires the 
diagonal dominance of the system. A p×p matrix Z 
is called row (respectively column) diagonally 
dominant if it satisfies (1) (respectively (2)): 
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If the frequency response matrix of a MIMO 
system is row (respectively column) diagonal 
dominant for the whole frequency domain, it means 
that each output is mainly determined by its 
corresponding input (respectively each input 
determines mainly its corresponding output). 
Furthermore, it is clear that a higher degree of 
diagonal dominance yields a smaller difference 
between the MIMO performance and the 
performance of the SISO designs. 

2.2 Principe of Nyquist-Array Methods 

Nyquist-array methods are divided into two classes: 
the Direct Nyquist-Array (DNA) and the Inverse 
Nyquist-Array (INA). Both methods have identical 
design objectives and the method proposed here can 
be applied both with DNA and INA.  

Consider a MIMO plant G. The open-loop 
transfer matrix Q described in (3) is used in DNA 
whereas the inverse of the open-loop is considered 
in INA. The structure of the control laws is 
described by (4). 

)()()( sKsGsQ   (3)
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Ka is a constant matrix that permutes rows or 
columns to reorder the outputs or inputs. It can be 
used to avoid unstable off-diagonal elements. Kb is 
used to achieve diagonal dominance. An overview 
of the methods to find these matrices is found in 
(Vaes, 2005) and (Maciejowski, 1989). Kc is a 
diagonal matrix composed of separate SISO 
controllers for each loop. 

In DNA, the diagonal matrix Kc post-multiplies 

the plant Gd as in (5). The effect of each element is 
to multiply each column of Gd by the same transfer 
function. Hence, column dominance of Gd is 
preserved.  

However, in the INA, Kc
-1 pre-multiplies the 

inverse of the plant and row dominance of the 
inverse is conserved. 

)()()( sKsGsQ cd  (5)

)()()( sKKsGsG bad   (6)

This paper focuses on the design of the diagonal 
controller Kc only. Therefore, Gd is considered as 
being column diagonally dominant when working 
with DNA and Gd

-1 is considered as being row 
diagonally dominant when working with INA in the 
following. 

2.2.1 Direct Nyquist-Array Method 

Closed-loop stability of a SISO system is obviously 
analyzed with the Nyquist stability theorem. The 
Generalized Nyquist theorem extends it to MIMO 
systems (Macfarlane and Postlethwaite, 1977): 
Considering an open loop transfer matrix Q 
presenting npol unstable poles, defining the 
characteristic loci as the images of the Nyquist 
contour by the eigenvalues of Q, the Generalized 
Nyquist theorem states that the closed loop is stable 
if and only if the sum of the anticlockwise 
encirclements around the critical point of the 
characteristic loci of the open-loop transfer equals 
npol.  

The characteristic loci can be approached by the 
diagonal elements of Q thanks to Gershgorin’s 
theorem:  

The eigenvalues of a complex p×p matrix Z lie in 
the union of the p circles, each with center Zii and 
radius Rr or Rc defined in (1) and (2). When this 
theorem is applied to the gain matrix Q(jω), a circle 
is obtained around each diagonal element of the loop 
gain at each frequency ω. The bands obtained by 
taking these circles together over the frequency 
domain are called Gershgorin bands.  

Using Gershgorin's theorem, it can be claimed 
that the eigenvalues of a gain matrix Q over all 
frequencies are trapped into these Gershgorin’s 
bands. Based on the generalized Nyquist theorem, it 
can be concluded that if all Gershgorin bands 
exclude the critical point, then closed-loop stability 
can be assessed by counting the number of 
encirclements of the critical point by the Gershgorin 
bands. 

The open-loop matrix in (5) can be written: 
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The width of the ith column Gershgorin band is: 
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It is clear that the width of this band only 
depends on the system and on the ith controller Ki. 
The stability of the ith loop can thus be ensured 
independently of the other controllers.  

2.2.2 Inverse Nyquist-Array Method 

The principle of the INA (Bell, Cook, and Munro, 
1982) method is different. For notational 
convenience, the inverse of a matrix H is noted as Ĥ.  

Let us consider Q an open-loop transfer matrix 
composed of a plant and its SISO controllers as 
described in (5) and H the closed-loop transfer 
matrix. We denote li the open-loop transfer function 
between ei and yi with all the other loops are closed 
as shown in Figure 1 for a TITO (Two Inputs Two 
Outputs) process. 

 

Figure 1: TITO process (the second loop is closed and the 
first one is being closed). 

Considering this open-loop transfer function li 
takes into account the stability of the whole system. 
li is not a priori known but  gives a good 
approximation of the inverse of li thanks to 
Ostrowski’s theorem: Considering a complex p×p 
matrix Z diagonally row dominant, then: 
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Applying this theorem to the ith row of Ĥ that is 
supposed row diagonally dominant, we obtain after 
calculation: 
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Consequently, 1/li(jω) is contained within a 
circle centered in . We call this an Ostrowski 

circle and the union of all these circles an Ostrowski 
band.  

The terms Φi physically represent the maximal 
relative couplings in the other loops. Since  is 
assumed to be row diagonally dominant, Φi is 
smaller than 1. The ith Ostrowski band is thus 
contained within the ith Gershgorin band of the 
inverse of the open-loop transfer matrix. Moreover, 
although each term of Φi depends on the controllers 
of the other loops, Φi is independent of these. It can 
be concluded that the width of row Ostrowski bands 
only depends on the plant and on the ith controller. 
The stability of loop i can thus be ensured 
independently of the other loops’ controllers. 

As in DNA with Gershgorin bands, Ostrowski 
bands can be used to characterize the stability of the 
system in INA. The inverse Nyquist criterion (Bell, 
Cook, and Munro, 1982) is then used: A feedback 
loop with nzeros unstable zeros in the loop gain Q is 
stable if and only if the sum of the anticlockwise 
encirclements around the critical point of the inverse 
Nyquist locus of Q equals nzeros.  

3 CONTROL LAWS DESIGN 

The goal is to define a method to design a 
decentralized control for MIMO systems. There is 
no restriction about the structure of the controller. 
PID controllers have been chosen in this study 
because they remain the industry standard and reach 
good performances for most applications with an 
easy to understand structure. Nevertheless, it is easy 
to implement other controller structures in the 
algorithm. 

The method consists in tuning SISO controllers 
independently for each SISO system thanks to the 
optimization of a cost function depending on the 
controllers parameters. Similar criteria are defined 
thereafter for each loop of the system for DNA and 
INA analysis. 

3.1 Stability 

As seen before, to ensure stability, Gershgorin 
(respectively Ostrowski) bands must not include the 
critical point. Moreover, the bands have to encircle 
anticlockwise the critical point a number of times 
corresponding to the number of open-loop unstable 
poles (respectively unstable zeros). 

To take in consideration the number of 
encirclements, one idea is to force the Nyquist locus 
(respectively the inverse of the Nyquist locus) to 
travel through specific areas. After a brief study of 
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the plant and the shape of its Nyquist locus, it is 
possible to define attractive areas depending on the 
number of the open-loop unstable poles 
(respectively unstable zeros).  

For instance, let us consider an open-loop 
monovariable system Q with an unstable pole, the 
Nyquist locus of which presents infinite branches 
that do not encircle the critical point. Ensuring that 
locus crosses the real axis at the left of the critical 
point and travelling below it are sufficient conditions 
to have closed-loop stability as in Figure 2. 

For each attractive area k, a measure of distance 
between the nearest point of the Nyquist locus with 
the segment [Pk1,Pk2] is constituted by (12). To force 
the Nyquist locus to travel through these attractive 
areas, the distances Dk will be minimized. In Figure 
2, two attractive areas are defined with [P11,P12] and 
[P21,P22]. To facilitate the readability, only the 
calculation of D1 is presented. 

2121 -)-)(-)((inf kkkkk PPPjQPjQD 


  (12)

  

Figure 2: Calculation of D1 with checkpoints P11, and P12. 

This allows to find a controller that stabilizes the 
closed-loop system, even if the initial conditions of 
the optimization match with a controller 
configuration leading to an unstable closed-loop. 

For SISO systems, robustness against model 
uncertainties is ensured if the direct or inverse 
Nyquist loci present sufficient phase margin. Note 
that the phase margin of the inverse of a SISO 
system is the opposite of the phase margin of the 
system. 

The determination of the phase margin of a 
MIMO system is not obvious (Ye et al., 2008). In 
this paper, phase margin is assessed applying the 
previous considerations for SISO systems to 
Gershgorin bands (respectively Ostrowski bands). In 
(Ho, Lee, and Gan, 1997), the circle at the cutoff 
frequency is used to determine the phase margin. 

The problem is that in some configurations, circles 
at other frequencies can be closer from the critical 
point than the one at the cutoff frequency.  

An example is presented in Figure 3 where the 
blue point represents the crossing of the circle at the 
cutoff frequency with the unit circle, and the green 
point corresponds to the point associated with true 
phase margin. Thus, it seems more relevant to 
consider the envelope of the circles. 

It is then possible to define an objective with a 
specified phase margin Mφ* (when using INA, the 
opposite of the specified phase margin is used). 
Besides ensuring stability, the phase margin leads to 
an upper bound for the damping of the system. It is 
also possible to define the gain margin using the 
envelope of the bands in the same way. Thus, a 
minimum gain margin can be obtained considering a 
specified gain margin Mg* in the criterion to 
optimize (when using INA, the opposite of the 
specified gain margin is used). 

In DNA, Gershgorin bands ensure the same 
stability margins for all loops. Indeed, when the 
bands are superimposed (which is often the case 
when approaching the critical point), the 
characteristic loci of each diagonal element are not 
necessarily contained in the Gershgorin bands of this 
element. The global stability margins finally match 
with the worst stability margins determined from the 
different bands.  

By contrast, Ostrowski bands can ensure 
different stability margins for each loop. 

 

Figure 3: Phase margin for a MIMO process. 

3.2 Performances 

To give an upper bound of the peak modulus of the 
closed-loop frequency response of system, the 
complementary modulus margin is considered 

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

638



(Bourlès, 2010). It represents physically the inverse 
of this maximum gain.  

)()(
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

 jGdjK
jGdjK

cM   (13)

A criterion is then defined with an objective Mc* 
to reach. This specification can be directly 
interpreted in the Nyquist diagram thanks to M-
circles (Mirkin, 2011) which are the contours of the 
constant closed-loop magnitude. M-circles are 
described by the equation: 
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X and Y are the real and imaginary coordinates in 
the complex plane and M is the magnitude of the 
closed-loop transfer function. In order to satisfy 
simultaneously stability and closed loop maximum 
modulus conditions, the points Pk1 can be chosen 
adequately on the specified M-circle as shown in 
Figure 2. There are no real rules to set the points Pk2, 
they only have to be far enough from the points Pk1.  

The crossover frequency highly impacts the 
bandwidth of the closed-loop system. It is then 
useful to take it into account in a criterion, defined 
with a desired crossover frequency ωc*. 

In order to cancel the static error and reduce the 
tracking error, the integral action of the controller, 
whose structure is given in (15),  is maximized: 
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The criteria for previously considered concepts,  
are summarized here: 
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3.3 Optimization 

For each SISO loop, the controller parameters are 
determined by solving a least-square optimization 
problem characterized by a criterion J taking into 
account the criteria previously described: 
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This cost function presents weighting factors qk 
that give more or less importance to each criterion. 
If the initial choice for the parameters lead to a 
stable closed-loop system, J1 is not necessary. Often, 
it is sufficient to take into account J2 for robustness 
stability so that J3 may not be considered. To speed 
up the optimization, controllers found with classical 
SISO methods (Astrôm and Hägglund, 1995) can be 
used for initial conditions. 

Each optimization gives the controller parameter 
settings for one SISO loop and the tuning of the 
other SISO loops do not affect the stability of the 
loop already tuned, which makes this method 
interesting. 

3.4 DNA and INA 

As seen in the previous part, the two approaches 
work with a similar algorithm. However, conditions 
for stability are not the same and the algorithm lead 
to different solutions. It is not obvious to guess a 
priori which one is the least conservative. The size 
of Gershgorin bands of the plant only depends on the 
magnitude of the coupling terms. The ratio between 
off-diagonal terms and diagonal terms gives the 
distance between the bands and the origin of the 
Nyquist diagram. However, we are interested in the 
distance between the bands and the critical point and 
there is no information about that. That is why it is 
difficult to know which method to prefer.  

Even if the Gershgorin bands can be used to 
predict stability when the gains in all the loops 
change simultaneously, the DNA method deals with 
eigenvalues of the system that can be sensitive to 
model perturbations. It is thus less robust than the 
INA method where stability is ensured considering a 
monovariable system. Another advantage of INA is 
that it can be used to indicate whether the system 
would be stable if one loop failed. 

Finally, the choice of the method is determined 
by the shape of the frequency response of the plant.  

Ability to make the direct (inverse) open loop 
matrix transfer column (row) diagonal dominant can 
lead the choice for the method DNA (INA). 

3.5 Case of TITO Plants 

The case of TITO processes is specific because of 
the form of the inverse of the system: 
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If Gd is column diagonally dominant, it implies 
that Gd

-1 is row diagonally dominant. In addition, the 
ratio between magnitudes of diagonal terms with 
off-diagonal terms is conserved. 

The consequence is that DNA and INA are not 
exclusive. Indeed, the first one requires the column 
diagonal dominance of the system and the second 
one requires the row diagonal dominance of the 
inverse of the system, and these properties are 
equivalent. These considerations are only true for 
TITO systems. Indeed, in the general case, the 
inverse of a column diagonally dominant system is 
not a priori row diagonally dominant. 

4 SIMULATION EXEMPLES 

Academic examples are now considered to 
demonstrate the efficiency of this method with a 
great variety of processes. 

4.1 Optimization with INA 

In this first example, Gd is a TITO plant described 
by: 
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Technical specifications are described in Table 1. 
The inverse of the plant is row diagonal dominant, 
the INA can thus be applied. Settings of the 
designed controller are presented in Table 2. Due to 
its negligible derivative action, the first controller 
has been simplified in a PI one. 

Hereafter figures present Nyquist loci and 
inverse Nyquist loci respectively in blue and green, 
and the points defining phase margins represented 
by crosses. Gershgorin and Ostrowski bands are 
respectively drawn in magenta and yellow. Nyquist 
diagrams and Gershgorin bands are plotted in Figure 
4 for the two diagonal terms. The plots on the left-
hand side give an overview of the Nyquist diagrams. 

Table 1: Technical specifications. 

Controller 
Complementary 
Modulus Margin 

Crossover 
frequency 

(rad/s) 

Phase 
Margin 

(°) 
K1 1/1.05 0.7 35 
K2 1/1.05 0.7 35 

 

Table 2: Controllers parameters. 

Controller Kp Ti Td N 
K1 0.26 0.47 X X 
K2 -0.62 4.2 1.0 33 

In the first case, the inverse Nyquist locus and 
Ostrowski bands do not encircle the critical point. In 
the second loop, the inverse Nyquist locus encircles 
the critical point once that is logical because the 
second loop contains one unstable zero. 

Stability can also be analyzed with Gershgorin 
bands. The open-loop transfer matrix is stable and it 
can be checked that Gershgorin bands do not 
encircle the critical point. 

The right diagrams zoom on the critical point to 
check that specifications are satisfied. As it can be 
seen, phase margins are compliant. For the first loop, 
the phase margin obtained with Gershgorin bands is 
similar to the one obtained with Ostrowski ones. 
However, for the second loop, the phase margin 
obtained with Gershgorin bands is clearly smaller 
than the one obtained with Ostrowski bands. If DNA 
had been chosen, the settings of the controller would 
not have been found because the phase margin 
would not have been satisfied. The benefits of INA 
appear clearly in this case. 

M-circles are also drawn to visualize the 
complementary modulus margins. For each loop, the 
Nyquist loci tangent the M-circles. That means the 
complementary modulus margins are fulfilled. 

 

Figure 4: Nyquist-array of the designed loops. 

4.2 Optimization with DNA 

Consider the MIMO process described by the 3×3 
transfer matrix Gd in (25). By analysing the plant, it 
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can be seen that medium interactions are still 
present. 
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(25)

To present several study cases, each diagonal 
element has a different structure. The first diagonal 
term is stable and includes a time delay. The second 
diagonal term has one unstable pole and includes a 
time delay as well. The third diagonal term includes 
an integrator and has two unstable poles.  

Gd is column diagonally dominant, the algorithm 
with DNA can thus be applied and PID controllers 
have been chosen. Technical specifications are 
described in Table 3 and details of the controller 
settings K1, K2, and K3 are presented in Table 4. 

Due to its negligible derivation action, a PI 
controller has finally been designed for the second 
loop. Performances broadly match with technical 
specifications. Nyquist diagrams and Gershgorin 
bands are plotted in Figure 5 for each diagonal term. 
As in the first example, the plots on the left-hand 
side give an overview of the Nyquist diagrams to 
check that the number of anticlockwise 
encirclements matches with the number of unstable 
poles (respectively 0, 1 and 2 for the three loops). It 
can be seen on the diagrams on the right-hand side 
that Gershgorin bands do not include the critical 
point and fulfilled the specified phase margins. 
Moreover, complementary modulus margins are 
satisfied. 

Table 3: Technical specifications. 

Controller 
Complementary 
Modulus Margin 

Crossover 
frequency 

(rad/s) 

Phase 
Margin 

(°) 
K1 1/1.05 10 30 
K2 1/1.4 10 30 
K3 1/1.15 300 30 

Table 4: Controllers parameters. 

Controller Kp Ti Td N 
K1 4.6 1.1 1 9960 
K2 7.45 0.63 X X 
K3 1610 0.38 0.065 990 

 

Figure 5: Nyquist-array of the designed loops. 

4.3 Analysis using Row and Column 
Dominance 

Consider now the TITO process: 
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The system is column diagonal dominant and 
technical specifications are given in Table 5. The 
design is performed with PI controllers with the 
proposed algorithm for DNA and details of the 
controller settings are presented in Table 6. 

Table 5: Technical specifications. 

Controller 
Complementary 
Modulus Margin 

Crossover 
frequency 

(rad/s) 

Phase 
Margin 

(°) 
K1 1/1.05 6 45 
K2 1/1.05 6 45 

Table 6: Controllers parameters. 

Controller Kp Ti 
K1 0.27 0.05 
K2 0.54 0.14 

In figure 6, Nyquist diagrams of the two diagonal 

Multi-loop�Control�Using�Gershgorin�and�Ostrowski�Bands

641



elements are plotted in blue and red and the 
associated bands are respectively in magenta and 
cyan.  

Considering column Gershgorin bands in Figure 
6a, the worst phase margin does not satisfy the 
specified one. It can be noted that Q12 is much 
smaller than Q21 close to the cutoff frequency (bands 
of the second loop are much thinner than those of 
the first one). By plotting row instead of column 
Gershgorin bands as in Figure 6b, the largest bands 
become further from the critical point. Thanks to this 
analysis, it is possible to ensure the specified phase 
margin for the MIMO system. 

 
(a)                                        (b) 

Figure 6: Nyquist-array of the designed loops. 

Row Gershgorin bands can not be considered for 
the design of the controllers as seen before but can 
be used to assess stability as well. It is similar for 
column Ostrowski bands. 

Moreover, once design has been done whatever 
the chosen approach, Gershgorin and Ostrowski 
bands can be superimposed to determine stability 
margins. 

5 CONCLUSIONS 

This paper proposes a new method of tuning multi-
loop controllers. SISO controllers can be designed 
independently using DNA or INA thanks to the 
optimization of similar cost functions. The described 
procedure aims to reach some performances while 
ensuring stability robustness of the closed-loop 
multivariable process thanks to Gershgorin bands in 
DNA and Ostrowski bands in INA. By 
superimposing both Gershgorin and Ostrowski 
bands, it is possible in some cases to reduce the 
conservatism of the chosen approach. 

PID controllers have been chosen in this study 
but the method can be easily applied with other 
types of controllers. 

To conclude, the proposed method offers a 

straightforward and systematic way of designing 
MIMO controllers, while still leaving freedom to the 
designer. Simulation results illustrate the good 
performances obtained by this method for a wide 
range of processes. 

Future works will focus on the adaptation of the 
methodology to improve the multivariable 
performances, particularly concerning the dynamic 
couplings of the closed-loop system. 
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