
Prime
A Service-oriented Framework with Minimal Communication Overheads

Sergey Zhigalov1 and Yuri Okulovsky2

1Yandex N. V., Lev Tolstoy street, 16, 119021, Moscow, Russia
2Institute of Mathematics and Computer Science, Ural Federal University, Lenina 51, 620000, Yekaterinburg, Russia

Keywords: Control Systems, Service-Oriented Approach, Framework.

Abstract: We present Prime, a framework for development of service-oriented control systems in robotics. Prime uses an
original approach to services: the service is not a monolith, but is subdivided into three layers. This approach
allows creating services’ internal logic without references to communication-related entities, and therefore
almost without initial learning of Prime. In addition, Prime offers three methods of linking services together
that are completely interchangeable and compatible. The first is a classic service-oriented solution; the second
belongs more to functional programming, it combines the algorithms inside each service into one function,
that is equivalent to the behavior of the service-oriented system. The third uses code emission technique to
significantly increase the performance. The Prime adds little overheads and is much faster than, for example,
Microsoft Robotics Studio.

1 INTRODUCTION

The control systems for modern autonomous robots
are incredibly complex. They contain dozens of al-
gorithms for motion planning and control, process-
ing data from sensors, etc. These algorithms need
to be developed, tested and then combined together
into one program. Managing this process is a non-
trivial problem for a software architects. One of the
approaches to the problem is called service-oriented
(Kramer, Scheutz, 2007; Somby,2008). It demands
each algorithm to be developed as a service, i.e. a
separate entity that performs a single task and com-
municates with other services to obtain the input data
or to pass the output data further. The most prominent
implementations of this approach are Robot Operat-
ing System (ROS, (Foote et al., 2009)) and Microsoft
Robotics Developer Studio (MRDS, (MRDS)).

Service-oriented approach brings many benefits.
The development of the control system may easily be
distributed between several programmers, and each of
them should only consider his or her part of the job.
The control system can evolve gradually: at the first
iteration, the developers may create a draft system
with services stubs that perform a very basic func-
tionality; at later stages, they replace some services
with the more complex ones. This facilitates AGILE
development methodology in robotics, as well as the

educational and research process: the development
becomes the series of the small steps, and each of
them is easy enough to understand and to try. Service-
oriented systems are also more testable, since each
algorithm can be separated from others and run with
test data. The performance of service-oriented system
may be easily increased by distributing it over several
computers.

However, service-oriented approach has two ma-
jor disadvantages. The first is the communication
overheads. The framework for service-oriented pro-
gramming requires time to pass data between ser-
vices, and this time is considerable and often unpre-
dictable. The second drawback is that the algorithms
in the service-oriented control system become aware
of the framework. They use framework-specific enti-
ties (like communication ports, or messages) to send
and receive data. This brings the following conse-
quences:

� All the developers have to learn about the frame-
work. In some cases there is a lot to learn: for
example, the complexity of MRDS is often con-
sidered as its biggest disadvantages.

� The services require the operating framework to
consume data, and thus the framework should be
set up for testing. It increases time of tests execu-
tion.

169Zhigalov S. and Okulovsky Y..
Prime - A Service-oriented Framework with Minimal Communication Overheads.
DOI: 10.5220/0005017201690175
In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2014), pages 169-175
ISBN: 978-989-758-039-0
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



� Since the algorithms usually have references to
framework-specific parts, they are locked inside
their frameworks. The only way to use them out-
side is to rewrite code, replacing these communi-
cation entities.

We describe our implementation of service-
oriented approach to robotics. It has minimum com-
munication overheads, and facilitates the develop-
ment of services in comparison with ROS and MRDS.
The approach is based on the original topology of the
services, which was first described in (Kononchuk et
al., 2001). Existing solutions use the classic service-
oriented approach, when services can arbitrary call
each other. To achieve that, Microsoft Robotics Stu-
dio uses a star topology, and ROS uses all-to-all
broadcast. Our topology resembles the models from
LabView (Travis,2001) or Simulink (Karris, 2008).
The services cannot communicate arbitrarily: they
have inputs and outputs, which are strictly intercon-
nected, and so data flow only along these connections.
In this article we show, how this topology may be ex-
ploited to obtain the best performance while keeping
all the advantages of service-oriented approach, and
present Prime - the middleware for robotics control
system.

Our achievement required three steps. At the
first one, we decompose the service-oriented system
into three layers. Services themselves, as entities in
service-oriented system, are placed at the Topology
layer. The algorithms inside the services are separated
into the Logic layer, and are completely unaware of
SOA. The last Media layer defines what it means, to
be a service and to interconnect them.

The second step was to create two completely
different Media layers and thus two service-oriented
frameworks, Optimus Prime and Liberty Prime. Op-
timus Prime uses the no-SQL database Redis (Redis)
to interconnect services. Redis is a key-value stor-
age and, roughly speaking, stores information in slots.
The Optimus Prime service around a mathematical
function is a thread that waits for the data appear in
the slot, and then processes it with the function and
stores in another slots. Services are interconnected by
routing data in the slots, and the routing topology is
set up by the Prime methods. So Optimus Prime is
yet another service-oriented approach, with the usual
communication overheads.

Liberty Prime is different. The user calls the very
same methods to create a topology, and so may think
that he or she creates the services and then links them
together. But in fact nothing of that sort happens. In-
stead, Liberty Prime uses the functional programming
approach: it combines the logics of the services into
one big function that performs the same actions the

original Optimus Prime topology did.
Finally, at the third step we improved Liberty

Prime with code emission technique and obtained Ra-
diant Prime, and thus achieved the best performance.

All the Media are completely interchangeable.
Prime uses the factory pattern (Gamma et al., 1994)
to create services from their logic and to interconnect
them. To switch the Media we should only rewrite one
line of code and create a different factory. Moreover,
all Media are compatible, and we can create parts of
the system with Liberty Prime and then interconnect
them with Optimus Prime, hence distributing the sys-
tem.

Prime is published at
gitbub.com/air-labs/Prime under GPL v3
license, and is free to use and to extend. It is
implemented in C# language and .NET framework
(Drayton et al., 2002).

In section 1, we describe our approach in more
details. In section 2 we describe our experience with
Prime, and the section 3 bring the result of the compu-
tational experiment which certifies Prime outstanding
performance.

2 PRIME ESSENTIALS

2.1 Linking Services

In this section, we describe the most fundamental fea-
ture of Prime: linking two services together. We ex-
plain this process in much technical details; however,
they are crucial to understand how Prime works and
how it achieves the goals we assigned in Introduction.

Suppose we have two algorithms,
FirstAlgorithm and SecondAlgorithm, and want
to link them together with Prime. Algorithms should
be classes that implement IFunctionalBlock in-
terface. The interface is defined at the Logical layer,
and has the single Process method, which accepts
an input and produces an output. So implementing
algorithms for Prime does not require any special
knowledge, the developer only needs to format the
algorithm as a single function (which may, of course,
call other functions, and do anything the .NET
method can).

To handle algorithms inside Prime, we use
PrimeCore class, a factory to create topology entities.
The PrimeCore can convert FirstAlgorithm to
FirstChain that is a topology entity. It implements
IChain interface, which corresponds to a service with
one input and one output. The exact meaning of “in-
puts” and “outputs” will be defined later.

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

170



FirstAlgorithm
FirstChain

SecondAlgorithm
SecondChain

FirstBlock

SecondBlock

LinkBlock
LinkChain

Figure 1: Layered diagram of linked services.

PrimeCore can convert FirstChain back to
the Logic layer, creating a FirstBlock that is
IFunctionalBlock. However, FirstBlock is
not the FirstAlgorithm! The implementation of
the FirstBlock.Process is to put a value in the
FirstChain input, then wait for the result appears in
the output, and return it. So FirstBlock.Process
calls the FirstAlgorithm.Process, but indirectly.

To link FirstChain and the SecondChain to-
gether, they should be converted to FirstBlock and
SecondBlock. Then we create a LinkBlock instance.
LinkBlock implements IFunctionalBlock, it keeps
references to FirstBlock and SecondBlock, and its
Process method is defined as follows:

public TOut Process(TIn input) {
return SecondBlock.Process

(FirstBlock.Process(input));
}

Since LinkBlock is IFunctionalBlock,
PrimeCore may create LinkChain out of it, which is
the result of linking FirstChain and SecondChain.

It may seem redundant to convert
FirstAlgorithm to FirstChain and then to
FirstBlock. However, FirstChain could be a
composite chain itself (like LinkChain), and in
this case its conversion to IFunctionalBlock is
necessary, so we brought a general algorithm.

The Fig. 1 represents the result of the linking pro-
cedures. Here gray rectangles denote Topology enti-
ties, while white rectangles correspond to the Logic
layer. Each transition between Logic and Topology
layer requires methods on the Media layer.

Note that despite both chains are at the Topology
layer, the logic of their interaction is placed inside
LinkBlock, a logical entity, and hence unaware of
topology. So we may easily invent other ways to com-
bine chains: for example, IfBlock to reroute the in-
put to the FirstChain or the SecondChain accord-
ing to a given condition (see Fig. 2). The same ap-
proach was used to create loops and others standard

FirstAlgorithm
FirstChain
FirstBlock

SecondAlgorithm
SecondChain
SecondBlock

if endif

IfThenElseBlock
IfThenElse

Figure 2: Layered diagram of if statement.

programming concepts. Potentially, with Prime one
may assemble an algorithm from blocks, like in Lab
View or Simulink.

2.2 Media layer

All versions of Prime offer different implementations
of IChain. OptimusChain is a service in the usual
sense of this word. It keeps the names of Redis’s
InputSlot and OutputSlot. When run, it enters
the infinite loop in the separated thread, waits for the
value in Redis with the key InputSlot, then reads
and deserializes it, calls the Process method of the
inner IFunctionalBlock, and stores the output in
Redis with the OutputName key.

LibertyChain is completely different. It is
not a service; it only has a pointer Function,
which references to the Process method of the
IFunctionalBlock inside. The Fig. 3.a shows the
complete map of methods inside the LinkChain that
is built by Liberty Prime.

The main advantage of Prime is an ability to
switch from the service-oriented to the functional
programming paradigm and therefore minimize the
overheads. To perform the switch, the developer
should only replace OptimusCore with LibertyCore.
Since they are implementations of the same abstract
PrimeCore class, no further code revisions are re-
quired. Media can be used together: in examples on
Fig. 1 and 2, FirstChain and SecondChain may be
Optimus Prime chains and run on remote computers,
while LinkChain or IfThenElseChain remains a lo-
cal Liberty Prime chain.

The linking algorithm from the para-
graph 1.1 is actually never used. All
the media improve it. OptimusCore
just reassigns SecondChain.InputName
to FirstChain.OutputName, and returns
LinkChain such that LinkChain.InputName
equals to FirstChain.InputName,
and LinkChain.OutputName equals to

Prime�-�A�Service-oriented�Framework�with�Minimal�Communication�Overheads

171



Link

LinkBlock

FirstBlock SecondBlock

FirstChain SecondChain

FirstAlgorithm SecondAlgorithm

reference

call #1 call #2

call

ref

call

ref

Link

anonymous method

FirstAlgorithm SecondAlgorithm

reference

call #1 call #2

(a) (b)

Figure 3: Initial (a) and optimized (b) map of methods in services’ link.

SecondChain.OutputName. When LibertyCore
links chains, it assigns LinkChain.Function to
the composition of FirstChain.Process and
SecondChain.Process (see Fig. 3.b for the revised
methods map). Therefore, ideally the overheads in
Liberty Prime are reduced to the costs of the two
methods invocations.

Liberty Prime approach can be implemented in
any object-oriented language. However, in .NET
framework the synchronous linking may be further
improved with the code emission technique and LINQ
Expressions library. Code emission allows writing
code in the runtime, compiling it, and then running
with the performance of the code that is written in
the traditional way. LINQ Expression simplifies this
process, offering the expressions tree, which are the
object-oriented representation of an ordinary syntax
tree.

We developed a third version of Prime, Ra-
diant Prime. RadiantChain keeps a link to
the expression that corresponds to the chain.
For example, FirstChain stores the expression
x=>firstBlock.Process(x), and the second stores
y=>secondBlock.Process(y). These expressions
are not delegates, are not the pointers functions,
they are syntax trees for corresponding functions.
When chains are concatenated, we substitute y in
the SecondChain with firstBlock.Process(x),
thus obtaining the resulting function. When
ToFunctionalBlock is called, the expression is com-
piled and transformed into a delegate. This delegate
then used to process data with Process method.

Radiant Prime can also build expressions for
IfThenElse of Foreach chains, as well as for other
synchronous actions.

2.3 Asynchronous Data Processing

Let us briefly describe asynchronous data process-
ing with Prime. The first logical entity is an
IEventBlock, an interface with the single defined
Event. At the Topology layer, ISource is defined,
an entity that is analogous to IChain, but with one
output only. PrimeCore creates ISource out of
IEventBlocks, and when IEventBlock.Event is
raised with some value, this value is stored in Redis
slot (in Optimus Prime) or in a buffer (in Liberty and
Radiant Prime). ISource can be then converted to
IReader, a logical entity, which is capable to read
values from output: one value at a time, or all the
published values as an array.

To link IChain to ISource, we use the same
approach as to synchronous linking. We introduce
the SourceLinkBlock (its layered diagram is repre-
sented at the Fig. 4.a.) When ISourceLinkBlock
starts, it enters the infinite loop at a separate thread,
processes the values from IReader with a Block, and
publishes them in EventBlock. Note that the combi-
nation of ISource and IChain is ISource, and addi-
tional chains may be then linked to it.

Prime allows managing threads when working
with asynchronous data. For example, if chains are
combined into one chain and then linked to ISource,
only one thread for the assembled chain will be cre-
ated. In addition, data from sources can be synchro-
nized with the aid of Collector. The Collector is
a chain, it contains CollectorBlock with IReader
inside, and returns the data from IReader in response
to an empty object Token (see Fig. 4.b for a layered
diagram). It adds to thread, but data from the source
will be processed synchronously.

Radiant Prime currently does not differ from Lib-
erty Prime in asynchronous data processing.

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

172



Res. ISource

ISource

IReader

IChain

IFuncBlock

IEventBlock

SourceLinkBlock

ISource

IReader
CollectorBlock
CollectorChain

(a) (b)

Figure 4: Layered diagram (a) of a chain, linked to a source; (b) of a collector.

3 EXPERIENCE OF USING
PRIME

In our laboratory we used Prime and its prototype for
two years as a primary tool to develop control sys-
tems for Eurobot competitions (Eurobot). We devel-
oped numerous auxiliary services (like Collector or
IfThenElse, and two working control systems for a
differential wheeled robot and a manipulator, consist-
ing of more than 50 services in total.

The main advantage Prime brings into the devel-
opment process is a quick start. When a student
comes to the laboratory and shows interest to robotics,
it is important (by our opinion) to instantly provide
him or her the opportunity to make something useful,
right now. It was not possible with MRDS or Robo-
CoP, the systems we used in the past. They required
too much knowledge even to start working with, and
students experienced a decrease of motivation and ex-
citement when told so.

With Prime, however, we may instantly assign stu-
dent to some algorithm, because the only thing he
or she needs to do is to encode algorithm as the im-
plementation of IFunctionalBlock. The code may
be further tested by unit testing, or even created un-
der Test-Driver Development methodology, when we
write tests at the first place, and only then try to imple-
ment the code that passes them. It brings the devel-
opment of robotics control systems closer to a pure
software development, without robotics peculiarities
(except for those that are in the control algorithms
themselves). And it is important in our environment,
because the laboratory is situated at the Institute for
Mathematics and Computer Sciences, and so the pri-
ority is to teach algorithms and software development,
and not the features of MRDS or ROS.

After the algorithm is developed and tested, it may
be included to a control system. This requires a next
level of understanding Prime: how one should con-

nect services to make them work. However, it is easy
to explain, and diagrams of services (the usual ones,
not the layered diagrams from this article) are effec-
tive even for pupils that are 12-14 years old: for ex-
ample, Lego Mindstorms and Aldebaran NAO robots
provide them. Prime lacks the visual system for edit-
ing topologies (and we are not planning to add it, be-
cause Prime is designed for the software development
students, not the pupils), but methods of PrimeCore
reflects the diagrams very well.

The complete understanding of Prime layers is re-
quired only to develop the Media or auxiliary logical
blocks, like Collector or IfThenElse. However,
such tasks are extremely rare, so we do not have teach
all the students to perform them, we need only a few
students, who work in the robotics for a long time and
thus are motivated enough to learn about Prime and
have enough time to do that.

Let us also note that Liberty Prime uses ele-
ments of functional programming paradigm and asyn-
chronous tasks management. By our observations,
both these topics are traditionally hard for com-
puter science students. However, Liberty and Radi-
ant Prime effectively hide them behind the mask of
service-oriented approach. Hence, Liberty and Radi-
ant Prime have the potential to become a framework
for other software systems, not only in robotics.

In addition, Prime brings all the standard improve-
ments, associated with service-oriented approach:
the development becomes less centralized, and stu-
dents may develop tasks independently, in different
branches of version control systems, merging and
working together only when their task is completed.
Prime also supports AGILE software development
methodology, by gradual replacement services with
their new, more effective versions, and thus allows us
using the practiced that are common for software de-
velopment.

Prime�-�A�Service-oriented�Framework�with�Minimal�Communication�Overheads

173



Table 1: Performance comparison for several chains, in asynchronous and synchronous modes, in microseconds per transmis-
sion.

Synchronouse mode

Small data Medium data Big data
FOR 0;024�0;001 0;017�0 0;017�0
Radiant Chains 0;031�0;001 0;024�0 0;023�0;001
Liberty Chains 0;335�0;006 0;325�0;005 0;323�0;006
CCR (in sync mode) 5;687�0;518 5;194�0;648 5;169�0;579
Prime Sources 0;642�0;022 0;498�0;009 0;491�0;012
CCR (in async mode) 1;254�0;025 0;949�0;02 0;913�0;019

Asynchronouse mode

Small data Medium data Big data
FOR 0;018�0 0;006�0 0;005�0
Radiant Chains 0;018�0 0;007�0 0;007�0
Liberty Chains 0;184�0;008 0;131�0;006 0;125�0;004
CCR (in sync mode) 8;654�0;493 8;379�0;47 8;402�0;405
Prime Sources 0;954�0;046 0;743�0;026 0;726�0;032
CCR (in async mode) 0;918�0;018 0;812�0;025 0;783�0;018

4 PERFORMANCE OF PRIME

In this section, we describe the computational exper-
iment that certifies the effectiveness of Prime. Our
main objective was to test the approach rather than
implementation, and so we choose to compare Liberty
and Radiant Prime to Concurrency and Coordination
Runtime (CCR), a Microsoft .NET solution to mes-
saging in service-oriented robotics system. We did
not considered Decentralized Software Services tech-
nologies, which is built upon CCR and is a true core of
Microsoft Robotics Studio, because DSS adds over-
heads of interprocess interaction that Liberty Prime
does not have. We have not considered Optimus
Prime, because the majority of overheads are intro-
duced by Redis in this case, and testing Redis per-
formance is not a theme of our article; in addition,
we do not declare that Redis is the best solution for
interprocess communication, and Prime architecture
allows us replacing it with another technology easily.
We have also not tested ROS, because it runs on dif-
ferent framework and on different operating system,
so it would be unclear, whether overheads are brought
by communication approach or by framework; how-
ever, based on (Hongslo, 2012), we assume ROS per-
formance is inferior to the CCR.

For experiment, we used a topology that consists
of several chains of services. Each service performs
an addition function, and therefore consumes a neg-
ligible time. The data that flow through the services,
and can be small (100 bytes), medium (1 kilobyte) or
big (10 kilobytes). There are two modes of how each
chain processes signals:

� Asynchronous mode, when data flow through the
chain constantly. The common example is pro-
cessing data from sensors. It is the native behav-
ior of CCR. In Prime, it is represented as ISource
with the subsequently connected IChain (let us
call this topology Prime Source for shortness).

� Synchronous mode, when the new input signal ap-
pears only when the output signal is produced for
the previous input, most commonly, as a response
to it. Synchronous chains are the most common
element of our control systems. The systems are
mostly synchronous; however, they sometimes re-
quire the collection of processed asynchronous
data. Prime Sources and CCR may operate in this
mode, if they are augmented with a dispatcher that
releases an input signal when the output is com-
puted. The presumed implementation of this pat-
tern in Prime is linked chains, which have differ-
ent implementation in Radiant and Liberty Prime.

For comparison, we also consider the time, re-
quried to achieve the same task without any services,
by calling the methods directly inside for cycle. This
“system” is represented in results with the name FOR.

At the first series of our experiment, we directly
measured overheads in Prime Sources, Prime Chains
and CCR. Two later systems were forced to work in
synchronous mode by the dispatcher. We measured
the total time of processing several signals, and ob-
tained the overheads time per one transmission, which
is shown in Table 1 for various package sizes.

The time depends on packages sizes only slightly,
because neither Prime not CCR does not serialize or
deserialize them for local systems. We can see that

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

174



Liberty Chains is about 15 times faster than CCR, and
Radiant Chains are about 10 times faster than that.
The performance of Radiant Chains is only slightly
worse than in FOR system. We consider it as a con-
firmation that both our approach and its implementa-
tion are successful: we managed to create a service-
oriented framework with minimal overheads.

At the second series, we explored the asyn-
chronous case. Eight chains was run to process sig-
nals; in synchronous mode, the chains worked in par-
allel, but each chain still processed the signals syn-
chronously. The experiment was performed on a com-
puter with 8 cores, so interaction between threads
brings additional overheads. The load of all cores dur-
ing the experiment was close to 100%.

We may see the unusually low performance of
CCR in synchronous mode. Perhaps, the reason for
that is that the synchronous mode is not native for
CCR, and therefore CCR is not optimized for that.
Prime Chains processes signals even faster, that CCR
in asynchronous mode, in spite the Prime chain pro-
cesses only one signal in a time, and CCR in asyn-
chronous mode processes several.

Prime Source sometimes has worse performance
that CCR. However, we know ways to optimize them,
and in a real practice we never build systems of that
architecture. Instead of linking several chains to a
source, we link these chains together, obtain a syn-
chronous chain and then link it to a source, achieving
the performance of Prime Chains.

5 CONCLUSION

In this paper, we presented Prime, a framework for
development of service-oriented control system. We
described layered model or service-oriented software,
and explained how it is applied for synchronous con-
trol systems. We demonstrated an essential perfor-
mance improvement in this synchronous case. The
approach was used in creation of two control systems
for real robots, and we believe it is much easier to use
and to learn.

We understand that Prime is yet not ready for the
industrial exploitation. Also, Prime is implemented
for .NET framework in C# language, which is prob-
ably not the best selection of the industrial control
system. However, we believe the approach we of-
fer is useful even for the real-time and industrial sys-
tems, because one can precisely compute the amount
of time, required for linking services in synchronous
mode.

ACKNOWLEDGEMENTS

The work is supported under the Agreement
02.A03.21.0006 of 27.08.2013 between the Ministry
of Education and Science of the Russian Federation
and Ural Federal University.

We would like to thank Alexander Mangin for crit-
icism and valuable comments that help us make Prime
faster, better and much more understandable.

REFERENCES

Drayton, P., Albahari, B., Neward, T. C# in a Nutshell.
O’Reilly, Sebastopol (2002)

Eurobot association, http://eurobot.org.
Foote, J. L., Berger, E., Wheeler, R., Ng, A.:

ROS: an open-source Robot Operating System
(2009), http://www.robotics.stanford.edu/ang/papers/
icraoss09-ROS.pdf

Gamma E., Helm R., Johnson R., Vlissides J., Design Pat-
terns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

Hongslo, A.: Stream Processing in the Robot Operating
System framework (2012), http://www.ida.liu.se/
divisions/aiics/publications/Exjob-2012-Stream-
Processing-Robot.pdf

Karris, S. T.: Introduction to Simulink with Engineering
Applications, 2e. Orchand Publications (2008).

Kononchuk D.O., Kandoba V.I., Zhigalov S.A., Abdura-
manov P.Y., Okulovsky Y.S.: RoboCoP: a Protocol for
Service-Oriented Robot Control System. Proceedings
of international conference on Research and Educa-
tion in Robotics - Eurobot (2011).

Kramer, J., Scheutz, M.: Development environments for au-
tonomous mobile robots: A survey. In: Autonomous
Robots, V. 22. pp. 132 (2007)

Microsoft Robotics Developer Studio. http://msdn.
microsoft.com/en-us/robotics/default.aspx

Mono project. http://www.mono-project.com
Redis homepage. http://redis.io
Robotics operating system. http://www.ros.org
Somby, M.: Software Platforms for Service Robotics

(2008) http://www.linuxfordevices.com/c/a/Linux-
For-Devices-Articles/Updated-review-of-robotics-
software-platforms/

Travis, J. LabVIEW for Everyone. Prentice Hall, Upper
Saddle River (2001)

Prime�-�A�Service-oriented�Framework�with�Minimal�Communication�Overheads

175


