
Shellcode Detection in IPv6 Networks with HoneydV6

Sven Schindler1, Oliver Eggert1, Bettina Schnor1 and Thomas Scheffler2

1Department of Computer Science, University of Potsdam, Potsdam, Germany
2Department of Electrical Engineering, Beuth University of Applied Sciences, Berlin, Germany

Keywords: Honeypot, IPv6, Shellcode.

Abstract: More and more networks and services are reachable via IPv6 and the interest for security monitoring of these
IPv6 networks is increasing. Honeypots are valuable tools to monitor and analyse network attacks. HoneydV6
is a low-interaction honeypot which is well suited to deal with the large IPv6 address space, since it is capable
of simulating a large number of virtual hosts on a single machine. This paper presents an extension for
HoneydV6 which allows the detection, extraction and analyses of shellcode contained in IPv6 network attacks.
The shellcode detection is based on the open source librarylibemuand combined with the online malware
analysis tool Anubis. We compared the shellcode detection rate of HoneydV6 and Dionaea. While HoneydV6
is able to detect about 25 % of the malicious samples, the Dionaea honeypot detects only about 6 %.

1 INTRODUCTION

Current measurements of IPv6 adoption1 show that
the new Internet protocol is seeing increased deploy-
ment and in some countries approaches almost 10%
of all network traffic.

The deployment of IPv6-enabled security tools on
such networks is necessary in order to gain a deep
understanding how attackers might adapt to IPv6 and
what strategies are used to target the new network
protocol. It is therefore necessary to have adequate
security tools, like honeypots, available that allow a
deep analysis of usage and attack patterns in IPv6 net-
works.

Honeypots are very different from most traditional
security mechanisms. They provide a security re-
source whose value lies in being actively probed, at-
tacked, or compromised (Spitzner, 2002). The honey-
pot system has no production value and is configured
to monitor unused address space. Every communica-
tion with the honeypot is considered potentially hos-
tile traffic and has to be analysed. A honeypot can
be something like a computer or even a mobile phone
which is set up to attract attackers. By using various
monitoring mechanisms, honeypots can provide valu-
able data about an attack and the strategies used by
the attacker. This information can later be used to de-
velop appropriate countermeasures.

1http://www.google.com/ipv6/statistics.html

Intrusion detection systems likesnort(Beale et al.,
2007) passively observe the network communication
between multiple hosts and send alarms if they de-
tect patterns that indicate malicious activities. Hon-
eypots, on the other hand, are interacting with an ad-
versary directly and therefore have a lot more con-
trol and insight into the communication. This makes
even end-to-end encrypted communication channels
available, such as between a Command-and-Control-
Server and its bots, that could not be analysed by a
network-based intrusion detection system.

In many cases, network attacks try to exploit vul-
nerabilities of the target system to run arbitrary code
under the privileges of the attacked service (Poly-
chronakis et al., 2006). A typical target action is to
spawn a shell on the remote system. This is the reason
why the transferred machine code is commonly called
shellcode. Attacking networks with exploits carry-
ing shellcode has become comparatively easy due to
the availability of tools like the Metasploit frame-
work (Metasploit, nd), which has recently started to
target IPv6-specific risks.

There currently exist two general-purpose honey-
pots which are capable of simulating different IPv6
network services: HoneydV6 (Schindler et al., 2013)
and Dionaea (Dionaea, nd). Other special-purpose
honeypots like the ssh honeypotkippo (kippo, nd)
might be used in IPv6 networks but are not generic
enough to capture a wide range of attack scenarios.
Dionea already provides the ability to detect shell-

198 Schindler S., Eggert O., Schnor B. and Scheffler T..
Shellcode Detection in IPv6 Networks with HoneydV6.
DOI: 10.5220/0005016801980205
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 198-205
ISBN: 978-989-758-045-1
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

code attacks through thelibemushellcode detection
library (Baecher and Koetter, nd). HoneydV6, on the
other hand, did not have the capability to detect and
to extract shellcode binaries.

Since HoneydV6 handles certain IPv6 specific
properties, like the huge address space of an IPv6 net-
work, better than Dionaea (Schindler et al., 2013), we
decided to implement shellcode detection into Hon-
eydV6 and compare the achievable detection rates.

The following section provides an overview over
HoneydV6. In Section 3 we introduce mechanisms to
detect shellcode contained in network traffic. Next,
we present the architecture of our HoneydV6 exten-
sion in Section 4. We evaluated our implementation
by sending various shellcode samples to HoneydV6
and compared the detection rate of our implementa-
tion with the detection rate of Dionaea. The results of
this experiment are presented in Section 5. The paper
concludes with a summary.

2 HONEYDV6

In (Schindler et al., 2013), the authors presented the
low-interaction honeypot HoneydV6 which can be
used to simulate large IPv6 networks with thousands
of routers and hosts. HoneydV6 is an extension of the
well-known low-interaction honeypotHoneyd(Hon-
eyd, nd) focusing on attack detection in IPv6 net-
works.

By using the network packet capture library
pcap (McCanne and Jacobson, nd), HoneydV6 is
able to simulate multiple machines and even entire
networks including network latency and simulated
packet loss on a single machine. HoneydV6 imple-
ments a custom IPv6 network stack instead of using
the network stack of the underlying operating system.

The honeypot is a framework for network services
and relies on external scripts to emulate services like
telnet, ssh, or http servers. HoneydV6 provides a ba-
sic logging functionality to log events like ICMPv6
echo requests or connection attempts.

The honeypot does not further inspect the com-
munication between script and adversary, except for
some basic statistical analyses. There is no imple-
mentation of any attack detection or classification
mechanism available. This makes it difficult to dif-
ferentiate between interesting traffic caused by new
attacks and potentially uninteresting traffic of well-
known attacks that may be seen on a daily basis.

Our intention is to eliminate the lack of detection
capabilities by extending HoneydV6 with shellcode
detection mechanisms as discussed in the next sec-
tion.

3 SHELLCODE DETECTION AND
ANALYSIS

Shellcode detection allows honeypots and intrusion
detection systems to identify network traffic that con-
tains malicious code that tries to compromise the tar-
geted system.

A simple approach for the detection of a shell-
code attacks is the matching of network traffic against
known code-samples. The well-known intrusion de-
tection systemsnort, for example, runs a signature-
based shellcode detection which compares packets
against a database containing fingerprints for various
attacks. Signature-based shellcode detection is easy,
but it has a number of disadvantages. It is not pos-
sible to detect new attacks for which no fingerprints
are available. The fingerprint database needs to be up
to date in order to achieve any substantial detection
rates. When new signatures are distributed, they be-
come publicly known and malware developer can test
their code samples against the signature base to evade
detection. This has lead to the development of so-
called polymorphic and metamorphic malware which
dynamically changes its signature and behaviour to
work around signature-based detection (Polychron-
akis et al., 2006).

One approach of polymorphic malware is to en-
crypt the machine code before sending it to the vic-
tim. Once the encrypted code is executed on the tar-
get machine, it decrypts itself using an attack-specific
key. Changing the encryption key produces a new
malware signature which cannot be matched against
existing fingerprints of a honeypot or an intrusion de-
tection system.

In contrast to polymorphic malware, metamorphic
malware does not only change its structure but also its
behaviour. One example for metamorphic malware
is Win95/Regswapwhich uses different CPU regis-
ters to store essential computation values for each in-
stance (Ször and Ferrie, 2001).

These examples show that a simple signature-
based shellcode detection is not sufficient for modern
honeypot architectures to automatically detect new
malware samples. An alternative approach is to use
shellcode detection libraries which locate, execute
and monitor machine code contained in network traf-
fic in a secure sandbox. The following sections give
an introduction into emulation-based shellcode detec-
tion libraries. We will focus on the functionality of the
open-source librarylibemuwhich is used by Dionaea
before we discuss alternatives.

Shellcode�Detection�in�IPv6�Networks�with�HoneydV6

199

3.1 Shellcode Detection by Emulation

Polychronakis et al. are using a different approach
to detect even polymorphic malware (Polychronakis
et al., 2006). Instead of matching malware against
a precomputed fingerprint, they propose to execute
and monitor potential malicious code as long as possi-
ble. While there are a number of scientific documents
about this topic available, we could find only one open
source library, thelibemu(Baecher and Koetter, nd),
which safely executes and evaluates malicious ma-
chine code. Other implementations are either not pub-
lic or turned into a commercial product.

Libemu was developed in 2007 by Paul Baecher
and Markus Koetter in the C programming language.
The same authors developed Dionaea which includes
libemu as shellcode detection component. Libemu
implements an x86 emulator with the corresponding
registers, program counter, virtual memory and a ma-
chine code disassembler. This way, libemu is able to
run shellcode in a safe and insulated environment on
the emulated processor.

Besides executing and checking machine code,
libemu is able to detect machine code in an arbi-
trary byte sequence. Malicious shellcode that was
transferred over a network and installed on the tar-
get system is usually located somewhere in the tar-
get system’s memory. In order to work, many mal-
ware types need to execute functions which determine
its own location within the memory. Code imple-
menting those functions is called GetPC code, derived
from the expression ”get program counter”. An ex-
ample for GetPC code is an x86CALL command fol-
lowed by a statement that accesses the return address
which is stored on the stack due to theCALL com-
mand execution. Libemu provides a function called
emu shellcode test() to locate GetPC code in a
given byte sequence. If a GetPC code could be found
thenemu shellcode test() returns the position of
the detected code sequence.

Listing 1 shows thelibemucode excerpt that in-
spects a given byte sequence for call-based GetPC
code. The code block is entered if the currently in-
spected byte represents an assemblycall instruction.
Libemu creates a copy of the current stack pointer of
the emulated CPUc and starts emulating thecall and
subsequent assembly instructions. Iflibemudetects
that the stack pointer points to the same location as
before executing the instructions then it returns 1, in-
dicating that a GetPC code sequence has been found.
This is the case if the shellcode popped the current
code location, which was previously pushed on the
stack due to thecall instruction, from the stack.

Besides the call-based GetPC code,libemuis able

to detect malware using thefstenv instruction. The
instruction can be used to store debug information
about the state of the floating point unit into mem-
ory. These debug information also contain the current
program counter.

/∗ c a l l ∗ /

cas e 0xe8 :

/∗ . . . ∗ /

u i n t 3 2 t espcopy = e muc pu re g32 ge t (c , esp) ;

i n t j ;

f o r (j =0 ; j <64; j ++)

{

i n t r e t = emu cpu parse (emucpu get (e)) ;

i f (r e t != −1)

{

r e t = e mu c pu s te p (emucpu get (e)) ;

}

/∗ . . . ∗ /

i f (e mu c pu re g32 ge t (c , esp) == espcopy)

re turn 1 ;

}

re turn 1 ;

break ;

Listing 1: Excerpt oflibemu’s emu get pc function.

After locating possible malware in a byte se-
quence,libemucan be used to emulate the potential
shellcode and try to detect accesses to system func-
tions and libraries. This monitoring process is called
malware profiling. Libemu is able to create a call
graph which visualises malware behaviour.

An alternative malware profiling tool called
Shellzerwas presented in 2011 by Fratantonio et
al. (Fratantonio et al., 2011). The tool also emulates
malware and analyses accesses to system calls. How-
ever, Shellzer is limited to the analysis of JavaScript-,
Flash and PDF malware. Since it is no general pur-
pose malware detection library, it is not suitable for
integration into the low-interaction honeypot.

The next subsections will present alternative on-
line and offline profiling approaches which may be
included into an honeypot architecture.

3.2 Execution on a Real OS

Libemu emulates system resources like CPU or op-
erating system calls in order to monitor malware be-
haviour. An alternative approach is the execution of
malware on a real operating system. Of course, this
requires a new operating system setup after each run

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

200

of a malware sample. Virtual machines provide a con-
venient tool to setup isolated machines which can be
reset to an initial state after each malware execution.

This approach is used by Cuckoobox (Sand-
box, nd), a project that was developed by Claudio
Guarnieri within the scope of the Google Summer of
Code 2010. Cuckoobox executes malware and mon-
itors system function calls, created files, downloads,
and network traffic. Furthermore, it is able to cre-
ate screenshots during the malware execution. Cuck-
oobox consists of a host and multiple guest machines.
The host machine is responsible for receiving the mal-
ware samples and distributing the samples to avail-
able guest machines. A guest machine executes the
malware sample and monitors the execution, e.g. file
accesses and system calls. The analysis results of this
approach are much more specific than the results pro-
duced bylibemu. However, this approach needs a lot
more system resources because a set-up containing a
real operating system is needed.

3.3 Online Malware Analysis

The additional administration and system require-
ments of Cuckoobox can be avoided by using online
malware analysis services like Malwr (Malwr, nd) or
Anubis (Anubis, nd). Malwr provides a web inter-
face for a Cuckoobox backend which is running on
servers managed by Malwr. Anubis is a similar web
service which allows to upload Windows-based mal-
ware and which monitors access to the file system,
the Windows Registry as well as network and process
activities. In contrast to Malwr, Anubis provides an
interface to automatically upload malware samples.
The resulting protocols can be downloaded in HTML-
, XML, PDF- or ASCII text format. The captured net-
work traffic is also provided as a pcap file.

3.4 Discussion

The malware profiling capabilities of the sandboxed
libemu execution can mainly detect code-sequences
that represent entry points for malicous activities.

Malware analysis on real operating systems can
provide a much higher level of interaction with sys-
tem components and services and makes classifica-
tion of malware behaviour easier. However, it also re-
quires a sophisticated test architecture that is not easy
to build and maintain for every honeypot installation.

Therefore, we decided to extend HoneydV6 with
libemu to detectpotentialmalware in IPv6 network
traffic. Due to its modular structure and convenient
high-level functions,libemucan be easily integrated
into HoneydV6’s network flow. Once potential mal-

ware has been identified, we can extract this code and
send it to an operating system-based analysis service
like Anubis. By doing so, we combine the strengths
of both approaches in the analysis of network attacks.

4 ARCHITECTURE AND
IMPLEMENTATION

This section presents the integration oflibemu and
Anubis into HoneydV6. Furthermore, we introduce
an extended database logging facility which simplifies
analysing monitored attacks. The presented modifica-
tions enable HoneydV6 to collect information about
IP address, port number, and protocol type, as well as
payload and timestamp of all established connections.
In order to detect network scans, ICMP and ICMPv6
traffic is also logged in a database.

Figure 1 depicts the basic components of Hon-
eydV6 (white boxes) and the malware detection ex-
tensions (blue boxes). Incoming network packets are
captured by HoneydV6 using the network packet cap-
ture librarylibpcap.

Figure 1: HoneydV6 with Malware Detection Components.

Depending on the packet type, the packet dis-
patcher passes the packets to a TCP, UDP, ICMP or
ICMPv6 processor. ICMP and ICMPv6 packets are
processed by an internal component, while TCP and
UDP traffic may be forwarded to a configured service
script (see Section 2).

A copy of the traffic that is transferred from an ad-

Shellcode�Detection�in�IPv6�Networks�with�HoneydV6

201

versary to a service script is handed over to the shell-
code emulation librarylibemu. This approach allows
HoneydV6 to process the traffic as early as possible
without any modifications to the service scripts.

The necessary modification to HoneydV6 are de-
scribed in the next section.

4.1 Connecting Libemu to HoneydV6

The first step towards shellcode inspection is the lo-
calisation and extraction of shellcodes contained in
the network traffic. In order to accomplished that,
the shellcode detection librarylibemu needs access
the entire honeypot traffic.

HoneydV6 uses the following functions to process
TCP packets:

tcp recv cb46 - This callback function is called by
the packet dispatcher for incoming TCP pack-
ets. It checks whether HoneydV6 emulates the
requested service and sends an ICMP or ICMPv6
error if not. HoneydV6 maintains a data structure
which contains all established connections. For
each incoming TCP packet, the honeypot looks
up the corresponding connection entry of type
tcp conand writes the packet payload into an as-
signed file descriptor.

tcp new46 - If tcp recv cb46cannot find an existing
connection entry for an incoming TCP packet, it
needs to create a new connection entry by using
this function.

cmd tcp read and cmd tcp write - HoneydV6 uses
the library libevent to monitor read and write op-
erations to the file descriptors that are assigned
to a connection. As soon as something is written
into the in- or output-stream of a connection, one
of these two callback functions is called. There-
fore, the entire TCP payload passes these func-
tions which provides a convenient point to add our
traffic inspection.

tcp free - When a TCP connection is closed,tcp free
removes the connection entry from the connection
data structure.

For each function listed above, there exists an
UDP counterpart. HoneydV6 writes incoming traf-
fic to the file descriptors of the corresponding service
script without doing any further inspection. The hon-
eypot does not keep a reference to the exchanged traf-
fic. As soon as the payload is passed to a service
script, it is out of scope of the honeypot.

If we want to inspect incoming traffic for mali-
cious shellcode, we have to keep a reference to the
exchanged payload which can be passed tolibemu.
Therefore, we extended the existingtcp con and

udp con structures with a pointer to a shellcode
buffer which gets initialised when a new connection
entry is created. We modifiedcmdtcp write and
cmdudp write to copy incoming data into the buffer
before it is forwarded to the service emulation script.
We restricted the maximum size of the buffer to a con-
figurable value in order to avoid DoS attacks. Cur-
rently, the maximum payload size is set to a default
value of 1024 bytes. The influence of the buffer size
is investigated in Section 5.4. In case of larger pay-
loads which exceed the buffer size, only the first 1024
bytes are stored and used for inspection.

It is important to note that malware profiling,
which is done later using Anubis whenlibemucould
detect a malware sample, may produce wrong results
if the shellcode binary is cropped. If precise profiling
results are required then the buffer size should be set
to the maximum size of the expected shellcode bina-
ries.

The inspection withlibemuand Anubis requires a
lot of time. For this reason we process the payload in a
separate thread in a non-blocking manner. Thelibemu
functionemu getpc check() is used to identify ma-
licious payloads. All payloads that are classified mali-
cious are uploaded to Anubis for further analysis. The
next section describes this process in detail.

4.2 Payload Inspection with Anubis

In contrast to Dionaea, HoneydV6 uses the advanced
online malware analysis service Anubis instead of
libemu to conduct malware profiling. Traffic that is
classified malicious bylibemucan automatically be
uploaded to Anubis by an internal HoneydV6 process.

In order to use Anubis, we had to convert our mal-
ware samples into the executable Windows.exefile
format. Furthermore, we needed to implement a Hon-
eydV6 module which automatically uploads the gen-
erated binaries via HTTP to Anubis.

Due to performance reasons, we do not run a shell-
code inspection for TCP and UDP traffic instantly. In-
stead, we extract the received payload and store it in
a newly created SQLite logging database. A sepa-
rate thread periodically inspects new binary samples
stored in the database and triggers an upload to Anu-
bis. Figure 2 depicts the structure of the new logging
database.

The tableconnectionholds information about all
incoming connections. This includes start time and
end time, source and destination address as well as
the layer 3 protocol type. Theprotocol id refers to
an entry in theicmp or tcp udp tables. All incom-
ing ICMP and ICMPv6 messages are logged in the
icmp table. Furthermore, we are logging source and

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

202

Figure 2: Logging database tables.

destination ports of UDP and TCP connections in the
tcp udptable. An entry in thetcp udptable contains a
payloadid which refers to payload stored in thepay-
load table. Besides the actual payload, a payload ta-
ble entry contains a report URL which points to the
Anubis report. We also store the processed malware
sample in the filesystem and use the filename-entry in
the database to point to it, which allows later access
and analysis.

Besides its capability to allow asynchronous mal-
ware processing, the database has great advantages
over HoneydV6’s old log file format. It is now pos-
sible to create sophisticated SQL queries to gather
statistical information about accessed ports, addresses
etc. Furthermore, the database provides a central pay-
load store which is independent from capturing and
logging capabilities of service scripts.

We used the Metasploit toolmsfencode(Metas-
ploit, nd) to transform the collected malware samples
into the Windows.exefile format. Besides creating
executable files,msfencodecan be used to create ma-
licious payloads because it supports various machine
code modifications, e.g. removing null bytes or en-
crypting machine code. We configuredmsfencodeto
generate unencrypted x86 binaries to keep the inspec-
tion for Anubis as simple as possible.

In our experiments, the process of generating an
.exefile took about 5 to 10 seconds on a 2,3 GHz
Quad-Core Intel Core i7 with 16 GByte RAM using
a solid-state drive (SSD). In order to ensure a non-
blocking service on slower machines, we moved the
file creation into a separate process, using thefork
system call. The process communication is accom-
plished via pipes that are created using thepopensys-
tem call.

We only process malware samples which have not
yet been inspected by an earlier connection. This

is achieved by generating an MD5 checksum for the
sample that represents a folder used to store the sam-
ple on the filesystem. If a folder with the same name
already exists on the filesystem, we assume that the
malware sample has already been processed and we
skip the inspection.

After the malware file has been successfully cre-
ated, we use the network librarylibcurl to upload the
file to Anubis. We attache the malware sample to an
HTTP POST request which we send to the Anubis
website. The server replies with a website contain-
ing the URL pointing to the inspection result. Hon-
eydV6 extracts this URL and stores it in the logging-
database. From there it can be accessed later to man-
ually evaluate the inspection results.

5 EVALUATION

In order to validate our implementation, we com-
pared the shellcode detection rate of the extended
HoneydV6 to Dionaea’s detection rate by sending a
large amount of malicious traffic to both honeypots.
Because both honeypots are using the same shellcode
detection library (libemu), we expected an equal be-
haviour on both systems.

5.1 Generating Malicious Code Samples

We used the Metasploit Framework version 4.4.0-
release (Metasploit, nd) to generate malicious code
samples that we can send to both honeypots.

Such malicious code sample consists of an exploit,
usually a specially crafted byte sequence which ex-
ploits a software vulnerability, and shellcode which
should be placed on the target system. Metasploit
contains many different exploits targeting various
software vulnerabilities and allows it to combine var-
ious exploits with different shellcodes. Since we only
want to test the shellcode detection capabilities of our
approach, we only vary and send the shellcode bina-
ries and skip the exploits.

The tools msfpayload and msfencodeof the
Metasploit Framework were used to create the test
samples. We wrote a simple bash script which calls
msfpayload -l to create a file containing a list of
all available Metasploit shellcodes (274 at the time of
writing). For each element in the list, a second bash
script iteratively callsmsfpayloadandmsfencodeto
create shellcode binaries as follows:

msfpay load $1 R | msfencode−a x86
−e g e n e r i c / none− t raw >

$ o u t f i l e 2>/ dev / n u l l

Shellcode�Detection�in�IPv6�Networks�with�HoneydV6

203

Table 1: Distribution of payload sizes for the transmitted shellcode samples.

Size in bytes 17-32 33-64 65-128 129-256 257-512 513-1024 1025-2048 2049-4096 4097-8192
#Samples 2 3 39 28 24 3 4 4 2

In our case,msfencodetakes the shellcode output
of msfpayloadand converts it into an x86 binary. We
used the command line parameters-e and-t to re-
trieve an unencrypted raw binary file.

For a number of entries in the generated payload
list, msfpayloadneeded non-default custom parame-
ters which are not provided by our script. We skipped
these entries and obtained 107 valid shellcode bina-
ries that can be used to evaluate the honeypot detec-
tion capabilities.

5.2 Honeypot Setup

We adapted the default Dionaea configura-
tion to accept HTTP connections by adding
the entries http and httpd to the section
processors/filteremu/config/allow in the
default Dionaea configurationdionaea.conf. In order
to enable a verbose logging, we started Dionaea
with the parameters"-l all,debug -L ’*’".
Dionaea stores all connection information in an
SQLite database calledlogsql.sqlite. The database
contains the tablesconnectionsand emuprofiles to
store connection details and malware samples.

HoneydV6 was installed using./configure and
makefrom the GNU Autotools. We configured Hon-
eydV6 to simulate a single virtual IPv6 host running a
web server. The newly implemented shellcode detec-
tion was enabled by adding the necessarydbfile, shell-
codedirandsubmitentries to Honeyd’s configuration
file. Detected shellcode is stored in the database file
honeyd.db.

5.3 Shellcode Transmission

We used the command line toolnetcat(Netcat, nd) to
send our malware samples via HTTP GET requests
to HoneydV6 and Dionaea. A script iterates over the
list of the previously generated shellcode binaries and
creates an HTTP GET request for each binary. The
script uses a different TCP source port, starting from
5000, for each connection request to allow the cor-
relation of the logged requests. The sending process
was done consecutively in two steps. In the first step,
we sent all traffic to Dionaea before we repeated this
process for HoneydV6 in a second step.

After finishing the sending process we inspected
the Dionaea and HoneydV6 databases to determine
which connections had been identified to contain ma-
licious traffic.

Table 2: HoneydV6 detection rate for different shellcode
buffer sizes.

Buffer Size 16 32 64 128 256 - 8192
#Detected 0 12 23 25 26

5.4 Results

We sent 107 different malware samples to Dionaea
and HoneydV6. Since all of the metasploit samples
are considered to be malicious, we can not observe
false positives. The samples are of different size as
shown in Table 1. For the first test run, the shellcode
buffer size of HoneydV6 was set to the default size
of 1024 Bytes (see Section 4.1). Figure 3 shows the
number of detected and undetected samples for both
honeypots.

Figure 3: Detection rate of HoneydV6 and Dionaea.

Dionaea creates a database entry for 6 of the 107
shellcodes (about 6 %). HoneydV6 was able to detect
26 malicious samples (about 25%). All shellcodes de-
tected by Dionaea were also detected by HoneydV6.

This different result is surprising, since both hon-
eypots are using the same shellcode detection library
libemu. Hence, both honeypots are usinglibemu’s
emu getpc check function to locate GetPC instruc-
tions and to decide whether a byte stream is malicious
or not.

The only difference is that HoneydV6 logs all
samples with a GetPC occurrence into its database.
Dionaea, however, uses further malware profiling
functions oflibemuto create a complete malware pro-
file. A database entry will only be created, when the
profile creation could be completed successfully. In
case of a profile creation failure, no database entry
will be created even if a GetPC instruction could be
located. In contrast, HoneydV6 detects as many po-
tential attacks as possible and uses the advanced anal-
ysis function of Anubis for the further examination of
the potential malware.

Further, we investigated the influence of the size
of the shellcode buffer on the detection rate. There-

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

204

fore, we varied the buffer size from 16 Bytes up to
8192 Bytes. Table 2 shows the number of detected
samples for different shellcode buffer sizes. A buffer
size of at least 31 bytes was needed to detect the first
sample. Increasing the buffer size up to 32 bytes was
sufficient to detect 12 shellcode samples. Even with
bigger buffer sizes up to 8192 Bytes,libemudetected
at most 26 malware samples.

6 SUMMARY

Attack detection in IPv6 networks is still in an early
stage. Currently, there are only two general pur-
pose low-interaction honeypots available: Dionaea
and HoneydV6.

Shellcode detection in low-interaction honeypots
is an important feature for network health monitoring
and zero-day attack detection. Dionaea already pro-
vides an integrated shellcode detection mechanism.
However, since Dionaea can not be usefully applied to
very large IPv6 networks, we decided to extend Hon-
eydV6 with a similar shellcode detection component.

We achieved this goal by integrating the open-
source detection librarylibemu into HoneydV6. Be-
yond the detection and extraction of shellcode bina-
ries, we integrated the online malware analysis ser-
vice Anubis into HoneydV6 to allow an advanced pro-
filing of malware samples.

In our evaluation, we compared the shellcode de-
tection rate of Dionaea and HoneydV6. Since both
honeypots are using the same shellcode detection li-
brary libemu, we expected a similar detection rate
for both honeypots. We found that Dionaea detected
about 6%, while HoneydV6 can detect about 25% of
all our generated malware samples. This difference in
the detection rates can be explained by an additional
profiling mechanism only present in Dionaea, which
is used as an additional alert filter criteria.

What is noticeable, though, is the general low de-
tection rate for shellcode attacks. This shows that
there is still a lack of more advanced open-source
shellcode detection libraries that could mitigate these
kind of network attacks.

Still it is not possible to inspect traffic that is en-
crypted on service layer. This problem can be partly
solved by extending HoneydV6 with an internal TLS
implementation so that HoneydV6 is responsible for
encrypting and decrypting the communication and
therefore keeps control also over the encrypted com-
munication.

REFERENCES

Anubis (nd). Anubis: Analyzing Unknown Binaries. Avail-
able from: http://anubis.iseclab.org.

Baecher, P. and Koetter, M. (nd). libemu –
x86 Shellcode Emulation. Available from:
http://libemu.carnivore.it/.

Beale, J., Baker, A. R., Esler, J., and Northcutt, S. (2007).
Snort: IDS and IPS toolkit. Jay Beale’s open source
security series. Syngress.

Dionaea (nd). dionaea catches bugs. Available from:
http://dionaea.carnivore.it/.

Fratantonio, Y., Kruegel, C., and Vigna, G. (2011). Shel-
lzer: A tool for the dynamic analysis of malicious
shellcode. InProceedings of the 14th International
Conference on Recent Advances in Intrusion De-
tection, RAID’11, pages 61–80, Berlin, Heidelberg.
Springer-Verlag.

Honeyd (nd). Honeyd Virtual Honeypot. Available from:
http://www.honeyd.org.

kippo (nd). kippo - SSH Honeypot. Available from:
https://code.google.com/p/kippo/.

Malwr (nd). Malwr - Malware Analysis by Cuckoo Sand-
box. Available from: https://malwr.com.

McCanne, S. and Jacobson, V. (nd). tcpdump & libpcap.
Available from: http://www.tcpdump.org/.

Metasploit (nd). Metasploit: Penetration Testing Software.
Available from: http://www.metasploit.com.

Netcat (nd). The GNU Netcat project. Available from:
http://netcat.sourceforge.net.

Polychronakis, M., Anagnostakis, K. G., and Markatos,
E. P. (2006). Network level polymorphic shell-
code detection using emulation. InProceedings
of the Third International Conference on Detection
of Intrusions and Malware & Vulnerability Assess-
ment, DIMVA’06, pages 54–73, Berlin, Heidelberg.
Springer-Verlag.

Sandbox, C. (nd). Cuckoo Sandbox. Available from:
http://www.cuckoosandbox.org.

Schindler, S., Schnor, B., Kiertscher, S., Scheffler, T., and
Zack, E. (2013). HoneydV6: A low-interaction IPv6
honeypot. InProc. of the 10th International Confer-
ence on Security and Cryptography (SECRYPT 2013),
Reykjavik, Iceland.

Spitzner, L. (2002). Honeypots: Tracking Hack-
ers. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Ször, P. and Ferrie, P. (2001). Hunting for metamorphic. In
In Virus Bulletin Conference, pages 123–144.

Shellcode�Detection�in�IPv6�Networks�with�HoneydV6

205

