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Abstract: Two digital control systems - Self-tuning PID (Proportional-Integral-Derivative) Control and Predictor-
based self-tuning control with constraints - for the continuous-time pressure process control are presented in 
this paper. The digital self-tuning PID control with optimization of closed-loop parameters and sampling 
period is proposed. The multidimensional optimization problem of closed-loop parameters and sampling 
period is solved by subcomponent search method that enables dividing the problem to one-dimensional 
optimization problems. The golden section search is adjusted to solve those – one-dimensional - 
optimization problems. The predictor-based self-tuning control with constraints is adapted for both 
minimum-phase and nonminimum-phase process models. The control quality of pressure process of both 
control systems has been experimentally investigated. The results of experimental analysis demonstrate that 
the digital self-tuning PID control with optimization is more efficient as compared to predictive-based self-
tuning control with constraints for pressure process. 

1 INTRODUCTION 

At present, various physical nature processes are still 
continuous-time processes, but are frequently 
controlled by digital controllers (Isermann, 1991; 
Åström and Wittenmark, 1997; Bobál, et al, 2005). 
The digital PID (proportional-integral-derivative) 
control laws are the most common for such 
processes (Åström and Hagglund, 1995; 2001; 
Levine 1999). The PID controllers are so widely 
used for its easiness to apply and generally provides 
sufficient control quality if it is properly tuned. 

For the digital PID control based on digital self-
tuning PID controllers the selection of suitable 
closed-loop parameters (Vu, et al, 2007; Kosorus, 
et al, 2012) and proper sampling period (Boucher, 
et al, 1989; Isermann, 1991; Åström and 
Wittenmark, 1997; Levine, 2011) is substantial since 
directly influences the control quality of the process. 
Furthermore, the determination of closed-loop 
parameters and sampling period is not 
straightforward, at the design stage of the control. 

The digital self-tuning PID control system with 
on-line identification and optimization of closed-
loop parameters and sampling period is developed 
for pressure process control (Liaucius, et al, 2011; 
Liaucius and Kaminskas, 2012a) in this paper. 

As an alternative to self-tuning PID control for 
pressure process, the predictor-based self-tuning 
control with constraints (Kaminskas, 2007) is 
analysed. This control method has been modified for 
both minimum-phase and nonminimum-phase 
process models. The results of experimental analysis 
of both control approaches are presented. 

2 THE PRESSURE PROCESS 

The scheme of pressure process is depicted in 
Figure 1. 

The process consists of four main components: 
combined air inlet and outlet tanks, two air chambers 
and two tubes with balls in them. The air from the 
inlet tank flows to air channels through air chambers 
and leaves the equipment through the upper outlet 
tank. The distance to balls is measured using 
ultrasound distance sensors. The fans are used to 
create pressure in the air channels in order to lift the 
balls in tubes. The air chambers are utilized for the 
purpose to stabilize oscillations of the pressure in 
each tube. The momentum of the fan, the inductance 
of the fan motor, air turbulence in the tube leads to 
complex physics governing ball behaviour. Slightly 
different weights of the balls and the location of the 
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air feeding vent additionally impact the behaviour of 
ball in the tubes. 

 

Figure 1: The scheme of the pressure process. 

The control signals (inputs) of the process are the 
voltage values for each fan from the range 0 to 10V. 
The intermediate values of voltage affect the power 
of the fan proportionately. The control responses 
(outputs) are the distances between the balls and the 
bottom of their tubes from the range 20 to 90 in 
centimetres. The control problem is to regulate the 
speed of the fan supplying the air into the tube so as 
to keep the ball suspended at some pre-determined 
level in the tube. 

3 SELF-TUNING PID CONTROL 
WITH OPTIMIZATION 

The mathematical model of the process is necessary 
in order to design the digital PID control system 
with on-line identification. Each tube of the process 
is defined by discrete linear second order difference 
equations, i.e. 
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where )( 1)( zA i , )( 1)( zB i  are the model polynomials, 
2,1i  is the number of the tube of pressure process, 
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are estimated by recursive least squares algorithm 
with forgetting factor (Liaucius and Kaminskas, 

2012a) 
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where )(i
te  is the control error, )(i

e - a constant that 

defines the admissible interval of control error )(i
te  

and ,)(i
jz  2,1j are the roots of polynomial )(ˆ 1)( zA i

t  

and *)(i
ty is a reference signal of the thi tube. 

Applying on-line identification algorithm (4), the 
estimates of model parameters are updated only if 
the value of )(i

te  is outside of the admissible interval 

defined by )(i
e  and the current on-line model is 

stable. 
The results of on-line identification of models 

are used to the digital self-tuning PID controllers 
(Ortega and Kelly, 1984; Bobál, et al, 2005), which 
are defined as follows: 
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by expressions 
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which are obtained by solving the system 
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  is the natural frequency of oscillation,   is the 
damping factor of characteristic equation of 
continuous-time closed-loop system 

.02 22  ss  (17)

The scheme of the digital PID controller is depicted 
in Figure 2. Such structure of PID controller is more 
effective as compared to the structure of 
conventional PID controller for pressure process 
control (Liaucius, et al, 2011). 

 

Figure 2: The scheme of the digital PID controller. 

The required control response of control system with 
digital self-tuning PID controllers can be achieved 
by the selection of proper closed-loop parameters (

, ) and sampling period ( 0T ). Therefore, is 

reasonable to find such values ( *
0

** ,, T ) of these 

parameters that minimize control quality criterion 
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where N  is the number of observations, *)(i
ty   is the 

reference signal of the thi  tube, 0  is a weight 
coefficient. The criterion consists of two parts: the 
first part estimates the variance of control error of 

each tube, the second - characterizes the variance of 
control signal change of each tube. 

The scheme of the digital self-tuning control of 
the pressure process is depicted in Figure 3. 

 

Figure 3: The scheme of the digital self-tuning control of 
the pressure process. 

The optimization problem (18) is solved as follows. 
The optimal sampling period *

0T  is obtained by 
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The optimal closed-loop parameters **,   are 
obtained by 
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In order to solve optimization problem of (20), a 
technique of one dimensional search is used. The 
most popular algorithms of this technique are golden 
section and quadratic interpolation (Kaminskas, 
1982). The results of experimental analysis 
(Liaucius and Kaminskas, 2012b) showed that 
golden section algorithm for pressure process is 
more effective. 

Golden section algorithm is related with an 
initial uncertainty interval 
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where its length is not longer than desired 0T  and 

with a function (21) minimum inside. For this 
purpose, two new values of sampling period 0T  are 

chosen by 
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in the search procedure and a new uncertainty 
interval is then defined by the rule 
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Then the optimal sampling period *
0T  is obtained by 
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The subcomponent optimization method 
(Kaminskas, 1982) is applied to solve the 
optimization problem of (21): 
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)1(
0
lT  is a 0T  value, obtained by golden section 

algorithm, where the new value of (21) must be 
calculated, i.e.: 
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Each of the optimization problems (28) are solved 
by golden section search analogously to (23)-(27). 

4 PREDICTOR-BASED SELF-
TUNING CONTROL WITH 
CONSTRAINTS 

Since the pressure process is defined by the model 
(1)-(2), the control law of predictor-based self-
tuning controller with constraints (Kaminskas, 2007) 
for the thi  tube is described by equations 
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,)(
min
iu  )(

max
iu  are the control signal boundaries of the  

thi  tube, 0)( i
t  is the restriction value for the 

change rate of the control signal, z  is a forward-
shift operator ( *)(

1
*)( i

t
i

t yzy  ). The coefficients of 

polynomial  1)( zL i
t  are found from equation 

      ,ˆ1 1)(21)(1)(   zLzzFzA i
t

i
t

i
t  (38) 

where 

  .ˆ11 1)(
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1)(
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1)(   zazfzF i
t

i
t

i
t  (39)

The coefficients (35)-(37) are obtained by applying 
factorization method (Åström and Wittenmark, 
1980) to polynomial 

     .~ 1)(1)(1)(   zFzBzB i
t

i
t

i
t  (40)

where 

  .ˆˆ 1)(
2

)(
1

1)(   zbbzB i
t

i
t

i
t  (41)

In each expression of the coefficients (35)-(37), the 
first and the third conditions correspond to 
minimum-phase model, while the second and the 
fourth - to nonminimum-phase. 

The scheme of predictor-based self-tuning 
controller with constraints is illustrated in Figure 4. 

 
Figure 4: The scheme of predictor-based self-tuning 
controller with constraints. 
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In on-line identification algorithm (4) for control 
(31)-(37), )(i

jz  are the characteristic polynomial of 
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5 EXPERIMENTAL ANALYSIS 

The realization of digital self-tuning control is 
performed by employing the industrial Beckhoff 
BK9000 programmable logic controller (PLC). The 
PLC controller is configured and controlled by 
TwinCat software. 

The experimental analysis has been performed 
for 3 cases: digital self-tuning PID control by 
algorithms (4), (9), (18) and digital self-tuning PID 
control with unoptimal closed-loop parameters and 
optimal sampling period and digital predictor-based 
self-tuning control with constraints. 

The predefined conditions of experimental 
analysis of self-tuning PID control are as follows: 
the initial uncertainty intervals of closed-loop 
parameters  ,rad/s0.1,rad/s02.0   ,0.2,02.0  and 
sampling period ]s2.0,s04.0[0 T  have been selected 

with s06.00 T . The optimization (30) is started 

with an initial damping factor 0.1)0(  . The control 

signal boundaries ,V5.3)(
min iu  ,V10)(

max iu  with the 

change rate V10)( i
t  of the control law (31)-(32) 

for the thi  tube is used. 
The same step-shape reference signal for both 

tubes has been applied with repeatable values of 75 
and 40. The observation time of each signal is 1000 
second, but only the last 800 values are used in 
criterion calculations, in order to eliminate the 

influence of initial adaptation process. 
The searches of sampling period and closed-loop 

parameters by golden section algorithm are depicted 
in Figure 5 and Figure 6. 

 

Figure 5: Search of sampling period (20) by golden 
section algorithm. 

 

 

 

Figure 6: Subcomponent search of closed-loop parameters 
(28) by golden section algorithm with optimal sampling 

period s.08.0*
0 T  

Figure 5 demonstrates that the optimal sampling 
period obtained by golden section algorithm is with 

s.08.0*
0 T  and Figure 6 depicts the search of closed-

loop parameters with that value of sampling period. 
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Notice that criterion, with a fixed sampling period to 
its optimal value, is optimized within 3 steps of 
subcomponent search procedure by golden section 
algorithm thus is necessary to find only 28 criterion 
values. 

The optimization results by golden section 
algorithm have shown that optimal closed-loop 
parameters and optimal sampling period are 

,rad/s146.0*   ,92.0*   s.08.0*
0 T with minimal 

criterion value ,17.83* Q  when 9  ( ,90.81* Q  
when 0 ). 

The control performance of digital self-tuning 
PID control of pressure process with optimal closed-
loop parameters and optimal sampling period is 
demonstrated in Figure 7. The on-line identification 
of model parameters of this case is illustrated in 
Figure 8. 

 

Figure 7: Control performance of self-tuning PID control 
of pressure process with optimal closed-loop parameters 

and optimal sampling period - ,rad/s146.0*  ,92.0* 

s.08.0*
0 T , (a) – reference and output signals, (b) – 

control signals. 

 

Figure 8: On-line identification of model parameters – 
self-tuning PID control with optimization. 

If we select slightly shifted values from optimal 
closed-loop parameters ( ,rad/s174.0  )0.1  with 
sampling period remaining unchanged, the control 
performance by self-tuning PID control (Figure 9) is 
degraded - the steady state error is significantly 
increased and the variance of control signals change 
are also raised. The on-line identification of model 
parameters of this case is illustrated in Figure 10. 

 

Figure 9: Control performance of self-tuning PID control 
of pressure process with closed-loop parameters and 

sampling period - ,rad/s174.0  ,0.1  s.08.0*
0 T , (a) 

– reference and output signals, (b) – control signals. 

 

Figure 10: On-line identification of model parameters – 
self-tuning PID control. 

The sampling period ( 0T ) is commonly selected 

from equation (Åström and Wittenmark, 1997) 

,6.01.0 0  T  (46)

but optimization results show that with optimal 
closed-loop parameters and sampling period is 
outside of the interval (46). Figure 11 demonstrates 
that with unoptimal sampling period, from the 
interval (46), the control quality of pressure process 
is significantly decreased. 
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Figure 11: Control performance of self-tuning PID control 
of pressure process with closed-loop parameters and 
sampling period - ,rad/s118.0  ,662.0  s.0.10 T , (a) 

– reference and output signals, (b) – control signals. 

The control performance of pressure process by 
predictor-based self-tuning controllers with 
constraints is depicted in Figure 12. It is seen from 
the graph that control quality is poor: the output 
signals of both tubes not settle in certain time, 
oscillating with high amplitudes. 

 

Figure 12: Control performance of predictor-based self-
tuning control with constraints for pressure process with 

s.,1.00 T V,5.3)(
min iu V,10)(

max iu V10)( i
t : ,9.2675Q

when 9  ( ,02.186Q when 0 ), (a) – reference and 
output signals, (b) – control signals. 

The on-line identification of model parameters of 
this case is illustrated in Figure 13. 

 

Figure 13: On-line identification of model parameters – 
predictor-based self-tuning control with constraints. 

Considering only the variance of control errors, i.e. 
not taking into account the influences of control 
signals from criterion (19), the optimized self-tuning 
PID control (Figure 7) has up to 2 times lower as 
compared to predictor-based self-tuning control with 
constraints (Figure 12). 

6 CONCLUSIONS 

The design method of digital self-tuning PID control 
with optimization of closed-loop parameters and 
sampling period for pressure process has been 
proposed. 

The multidimensional optimization problem of 
closed-loop parameters and sampling period by 
subcomponent search method may be divided into 
optimization problems of one-variable functions. 

The predictor-based self-tuning control with 
constraints for both - minimum-phase and 
nonminimum-phase - process models is proposed. 

Experimental analysis has demonstrated that the 
control quality of pressure process by digital self-
tuning PID control with closed-loop parameters and 
sampling period optimization is significantly better 
as compared to the predictor-based self-tuning 
control with constraints. 

REFERENCES 

Åström, K., J., Hagglund, T., 1995. PID Controllers: 
Theory, Design, and Tuning, Research Triangle Park, 
North Carolina. 

Åström, K., J., Hagglung, T., 2001. The future of PID 
control. In Control Engineering Practice, vol. 9, no. 
11, pp. 1163-1175. ScienceDirect. 

Åström, K., J., Wittenmark, B., 1980. Self-tuning 
controller based on pole-zero placement. In IEE 
Proceedings D, vol. 127, pp. 120-130. IEEEXplore. 

Åström, K., J., Wittenmark B., 1997. Computer-
Controllers Systems: Theory and Design, Prentice 

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

618



Hall, New Jersey, 3rd edition. 
Bobál, B., Böhm, J., Fessl, J., Macháček J., 2005. Digital 

Self-tuning Controllers, Springer-Verlag. London, 2nd 
edition. 

Boucher, A., R., Cox, C., S., Doonan, A., 1989. Sampling 
Time Selection and its Effect on Direct Digital 
Adaptive Control Algorithm Implementation. In IEE 
Colloquium on Implementation Problems in Digital 
Control, pp. 5/1-5/8. IEEEXplore. 

Isermann, R., 1991. Digital Control Systems, Springer-
Verlag. London, 2nd edition. 

Kaminskas, V., 1982. Dynamic system identification via 
discrete-time observation: Part 1. Statistical method 
foundation. estimation in linear systems, Mokslas 
Publishers. Vilnius (in Russian). 

Kaminskas, V., 2007. Predictor-Based Self Tuning 
Control with Constraints.  In Book Series Springer 
Optimization and Its Applications, Model and 
Algorithms for Global Optimization, vol. 4, p. 333-
341. 

Kosorus, H., Hollrigl-Binder, M., Allmer, H., Kung, J., 
2012. On the Identification of Frequencies and 
Damping Ratios for Structural Health Monitoring 
Using Autoregressive Models. In 23rd International 
Workshop on Database and Expert Systems 
Applications (DEXA), pp. 23–27. IEEEXplore. 

Levine, W., S., 1999. The Control Handbook. CRC Press, 
Mumbai. 

Levine, W., S., 2011. The Control Handbook, Second 
Edition: Control System Fundamentals, CRC Press. 
London, 2nd edition. 

Liaucius. G., Kaminskas, V., Liutkevicius, R., 2011. 
Digital Self-Tuning PID Control of Pressure Plant 
with Closed-Loop Optimization. In Information 
Technology and Control, vol. 40, no. 3, pp. 202 209. 

Liaucius, G., Kaminskas, V., 2012. Adaptive digital PID 
control of pressure process. In Power Engineering, 
vol. 58, no. 3, pp. 158-165. EBSCO. 

Liaucius, G., Kaminskas, V., 2012. Closed-Loop 
Optimization Algorithms in Digital Self-Tuning PID 
Control of Pressure Process. In ECT2012 – the 9th 
International Conference on Electrical and Control 
Technologies, pp. 25–29. 

Ortega, R., Kelly, R., 1984. PID self-tuners. Some 
theoretical and practical aspects. In IEEE Transaction 
of Industrial Electronics, vol. 31, pp. 332-338. 
IEEEXplore. 

Vu, V., H., Thomas, M., Lakis, A., A., Marcouiller, L., 
2007. Multi-autoregressive model for structural output 
only modal analysis. In Proceedings of the 25th 
Seminar on machinery vibration, Canadian Machinery 
Vibration Association, pp. 41-1. 

Digital�Self-tuning�Control�for�Pressure�Process

619


