
OntoPhil
Exploitation of Binding Points for Ontology Matching

Lorena Otero-Cerdeira, Francisco J. Rodrı́guez-Martı́nez, Tito Valencia-Requejo,
and Alma Gómez-Rodrı́guez

Laboratorio de Informática Aplicada 2,University of Vigo, Campus As Lagoas, Ourense, Spain

Keywords: Ontology Matching, Ontology Alignment, Similarity Measure, Lexical Measure.

Abstract: This paper presents a new ontology matching algorithm, OntoPhil. The algorithm relies on the exploitation
of some initial correspondences or binding points that connect the two ontologies used as input. First, it
computes these binding points using a new lexical similarity measure which combines the information from a
terminological matcher and an external one. Next, it discovers new binding points, by taking the initial ones
as basis and by exploiting the specific features of the external structure of the ontologies matched. Finally,
the binding points are automatically sifted out to obtain the final alignment. The proposed algorithm was
tested on the benchmarks provided by the well known evaluation initiative OAEI, and compared to other
matching algorithms. The experimental results show that OntoPhil is an effective approach and outperforms
other algorithms that share the same principles.

1 INTRODUCTION

Guaranteeing the interoperability between new and
legacy systems is a key point in systems’ develop-
ment. In this environment, the fields of ontology and
ontology matching are fundamental lines of research
to approach the issues related to systems interoper-
ability.

An ontology provides a vocabulary to describe a
domain of interest and a specification of the mean-
ing of the terms in that context (Euzenat and Shvaiko,
2007). This definition typically includes a wide range
of computer science objects, such as thesauri, XML
schemas, directories, etc. These different objects
identified as ontologies, belong to various fields of
information systems such as web technologies (An-
toniou and van Harmelen, 2004), database integra-
tion (Doan and Halevy, 2005), multi agent systems
(van Aart et al., 2002) or natural language processing.
Therefore, ontologies have been used anywhere as a
way of reducing the heterogeneity among open sys-
tems. Nevertheless, the sole use of ontologies does
not solve the heterogeneity problem, since different
parties in a cooperative system may adopt different
ontologies. Thus, in such case, there is the need to
perform an ontology matching process to guarantee
the interoperability.

Ontology matching is a solution to semantic het-

erogeneity since it finds correspondences between se-
mantically related entities of the ontologies (Shvaiko
and Euzenat, 2013). This set of correspondences is
known as an alignment. A more formal definition
of an alignment was provided in (Ehrig and Euzenat,
2005).

Ontologies are expressed in an ontology language.
Although there is a large variety of ontology lan-
guages (Suárez-Figuero et al., 2011), in this paper
we focus on OWL (W3C, 2013b), (W3C, 2013a),
(Cuenca-Grau et al., 2008).

In this paper, we describe our combinational ap-
proach to ontology matching, the OntoPhil algo-
rithm. This algorithm uses both terminological (string
and language based) and structural methods to deter-
mine the correspondences among the entities (named
classes, object properties and datatype properties) of
the given ontologies. Initially, we determine lexical
similarities among the entities in the ontologies using
a new distance measure. By means of this distance
we obtain an initial set of similarity values between
the entities of the two ontologies. Then, using these
initial matches as starting binding points between the
two ontologies, we exploit their structural features to
discover new binding points. This second step is ap-
plied iteratively until the algorithm converges. Fi-
nally, in the last step of the algorithm we apply some
filters to dismiss the incorrect binding points and to

5Otero-Cerdeira L., J. Rodríguez Martínez F., Valencia-Requejo T. and Gómez Rodríguez A..
OntoPhil - Exploitation of Binding Points for Ontology Matching.
DOI: 10.5220/0005011200050015
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2014), pages 5-15
ISBN: 978-989-758-049-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

turn the correct ones into the final output of the algo-
rithm, i.e., the alignment between both ontologies.

The rest of the paper is organized as follows. Sec-
tion 2 offers a vision of the state of the art in ontology
matching. Then in section 3 we describe our algo-
rithm in detail, and in section 4 we provide the eval-
uation and comparative results of the performance of
our algorithm. Finally, section 5 includes the main
conclusions and remarks.

2 RELATED WORK

The different available methods to compute the align-
ment between two ontologies can be classified into
the following categories (Euzenat, 2004):

� Terminological: these methods are based on string
comparison. The different string distance met-
rics used in these methods have been extensively
tested and compared (Cohen et al., 2003).

� Structural: these methods are based on the struc-
ture of the entities (classes, individuals, relations)
found in the ontology. This comparison can be in-
ternal, that is, regarding the internal structure of
an entity but also attending to the comparison of
the entity with other entities to which is related,
being therefore external.

� Extensional: these methods compute the corre-
spondences by analyzing the set of instances of
the classes (extension).

� Combinational: these methods combine several of
the previous methods.

This classification is made according to the kind
of input which is used by the elementary matching
techniques (Euzenat and Shvaiko, 2005). Neverthe-
less there are other classifications which consider dif-
ferent matching dimensions.

As seen in (Euzenat and Shvaiko, 2007), another
classification can be also made according to the gran-
ularity of the matcher or to the interpretation of the
input information.

Regarding granularity, matchers can be classified
as:

� Element-level: these techniques compute corre-
spondences analyzing just the entities without
considering their relations with other entities.

� Structure-level: these techniques compute corre-
spondences by analyzing how entities display in
the structure of the ontology.

While according to the input interpretation match-
ers can be classified as:

� Syntactic: these techniques limit their input inter-
pretation to the instructions stated in their corre-
sponding algorithms.

� External: these methods exploit additional re-
sources such as thesaurus or human knowledge to
interpret the input.

� Semantic: these techniques use some formal se-
mantics to interpret their input and justify their
results.

These classifications for ontology matching tech-
niques are mostly derived from classifications made
for schema matching approaches such as those by
Rahm & Bernstein (Rahm and Bernstein, 2001) or
Do, Melnik & Rahm (Do et al., 2002), and from stud-
ies in the database field (Batini et al., 1986) (Spac-
capietra and Parent, 1991). In fact, the ontology
matching field has its origins in the database field
from which it inherits several concepts and tech-
niques, although it has evolved independently.

This independent evolution is reflected, on the one
hand, in the amount of surveys and books that in
the last decades specifically reviewed the ontology
matching field such as (Rahm and Bernstein, 2001),
(Choi et al., 2006), (Falconer et al., 2007), (Doan and
Halevy, 2005), (Noy, 2004), (Euzenat and Shvaiko,
2005), (Gómez-Pérez and Corcho, 2002), (Parent and
Spaccapietra, 2000). On the other hand, it is also
stated by the number and variety of systems that ad-
dress the ontology matching problem.

Some of the systems that have appeared in these
years have participated in the Ontology Alignment
Evaluation Initiative (OAEI) campaigns (Euzenat
et al., 2011) which is an initiative that aims at eval-
uating the ontology matching tools.

In the OAEI 2012, 21 participants evaluated their
algorithms in the different offered tracks. As re-
vealed by a revision of these matching systems, the
one that shares more similarities with ours is LogMap,
although it is not the only one in literature that
follows the same general outline. Other examples
are: Anchor-Flood (Hanif and Aono, 2008), Anchor-
Prompt (Noy and Musen, 2001), ASCO (Le et al.,
2004), Eff2Match (Chua and Kim, 2010) and SoBOM
(Xu et al., 2010). In all these systems, first some ini-
tial alignments are computed which are then used as
a basis to continue obtaining new alignments between
the input ontologies. Actually, the approach that we
describe in this work is motivated by some of the ideas
studied in these approaches, although there are fun-
damental differences in the way some structures are
exploited and considered.

In the following we include a brief review of these
algorithms.

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

6

Anchor-Flood initially takes as input an anchor
that is obtained by a program module which is not
considered part of the basic algorithm. Such mod-
ule takes advantage of both lexical and statistical
relational information to obtain some aligned pairs.
Later, by exploiting the locality principle in the ontol-
ogy graph, it assesses the neighboring information of
these aligned pairs or anchors, obtaining for each one
a pair of blocks that contain possible similar concepts
between the ontologies. Then, these concepts are
aligned exploiting their lexical, semantic and struc-
tural information with the purpose of discovering new
pairs, which are later further processed. The main dif-
ferences with OntoPhil are that it does not use exter-
nal modules to compute the initial pairs, which are
obtain using an internal lexical matcher, and that to
exploit the initial pairs it uses just structural informa-
tion.

Anchor-Prompt starts off a group of related terms
(anchors), that can be both user-defined or automat-
ically discovered by a lexical matcher. These initial
pairs are seen as nodes in a sub-graph of the ontol-
ogy. The algorithm continues with the assessment of
which classes show a higher appearing frequency in
the paths that connect these related terms, as they are
considered as potentially new similar concepts. The
similarity measure of these new pairs is computed by
aggregating the measures obtained from all the paths
where these pairs can be found. The only similar-
ity with OntoPhil is the general outline to compute
the initial pairs, done by means of a lexical matcher.
The procedure followed to exploit these pairs is sig-
nificantly different, as OntoPhil does not extract sub-
graphs and neither measures the frequency rate of the
terms in the ontologies.

ASCO computes the alignment by applying
TF/IDF techniques and relying in WordNet as exter-
nal resource. In its initial linguistic phase, three dif-
ferent similarity measures are obtained (names, la-
bels and descriptions). These measures are then com-
bined to obtain the linguistic similarity value of the
input entities. For names and labels, the similarity
distance is computed with string metrics and Word-
Net while for the similarity of the description, TF/IDF
techniques are used. Later, in a structural phase, the
authors develop the idea that if the paths from the root
of two classes (CO1 and CO2) in the two hierarchies
contain similar concepts, then CO1 and CO2 are likely
to be similar too. The final output of the algorithm
is obtained by combining the structural and linguis-
tic values. The similarities with ASCO are limited to
the general outline of the algorithm, which has two
phases. However, the steps taken in each one of these
phases are different. OntoPhil does not use TF/IDF

techniques, and does not use different measures to
compute the similarity values of the different input
entities. Besides, the procedure to compute the struc-
tural similarity is different, as it will be explained in
section 3.

Eff2Match computes the initial set of anchors with
a exact string matcher that considers both names and
labels of the entities. Then, it lists candidates for all
entities in the source ontology that did not obtain a
corresponding pair in the initial step. Namely, for
each class, it obtains three vectors from the names,
labels and comments (annotations) in the ancestors,
descendants and the concept itself. Regarding proper-
ties, the vectors include the annotations for the prop-
erty’s domain and range classes as well as its own
annotations. The similarity value between two con-
cepts is obtained by means of an aggregation of the
cosine similarity between the classes, ancestors and
descendants vectors. After this, in the phase of anchor
expansion, new pairs are detected using terminologi-
cal methods to compare source and candidate entities.
The procedure followed for Eff2Match is equivalent
as the one in OntoPhil, however the way these initial
pairs are exploit shows no resemblance. In OntoPhil,
the initial pairs are exploit by means of a structural
matcher, but the structural matcher itself does not out-
put any similarity measure that has to be aggregated
with the lexical one.

LogMap initially computes a set of correspon-
dences known as anchor mappings which are almost
exact lexical correspondences. To obtain these an-
chors, it obtains a lexical and a structural index of the
ontologies. On these anchors, it iteratively applies,
mapping repair and mapping discovery procedures
which respectively refine and discover new mappings.
From these anchors, new ones then are discovered by
using the ontologies’ extended class hierarchy. One of
the main differences with OntoPhil is that we do not
consider structural information to compute the initial
pairs, besides, the procedure followed to discover new
pairs is different.

SOBOM starts off a set of linguistically matched
anchors. These anchors are obtained relying on tex-
tual (names, labels, etc.), structural (number of pre-
decessor, descendants and constraints) and individual
(number of existing individuals) information. Tak-
ing these anchors as starting point, the algorithm re-
trieves sub-ontologies and ranks them according to
their depths. To obtain the concept alignments, it
computes the similarity between the different sub-
ontologies obtained from the input ontologies accord-
ing to their depths. Finally it uses the previously
obtained concept alignments to retrieve the relation-
ship alignments. The general outline is similar to On-

OntoPhil�-�Exploitation�of�Binding�Points�for�Ontology�Matching

7

toPhil’s, however the distances considered to retrieve
these initial correspondences are different. Besides,
OntoPhil does not retrieve sub-ontologies at any mo-
ment.

Another algorithm that we considered in our re-
view is the one proposed by Akbari & Fathian in (Ak-
bari and Fathian, 2010) which introduces a combina-
tional approach to ontology matching. This algorithm
sequentially applies lexical and structural matchers to
compute the final similarity between the input ontolo-
gies. The lexical similarity is computed separately for
the different kinds of entities (classes, object proper-
ties and data properties) and different similarity matri-
ces are obtained. In the structural step, authors create
a neighboring matrix for each node of ontology, then
they compare the structure of these matrices to iden-
tify similar concepts. This algorithm also shares the
same general outline with OntoPhil, as several of the
previous ones, although the bigger differences are to
be found in the actual procedure used to obtain the
lexical similarity and the way the structural matcher
is used.

Further details of the performance of OntoPhil are
included in section 3, where it will become clearer the
differences mentioned in this section.

3 A NEW ALGORITHM FOR
ONTOLOGY MATCHING

This section presents our approach to ontology match-
ing. It relies on the exploitation of some initial corre-
spondences or binding points that connect both on-
tologies.

The process designed takes a couple of ontologies
as input and consecutively applies, first some lexical
matchers and later some structural matchers to obtain
the final result, as represented in figure 1. Therefore
the matching process followed by the algorithm is se-
quential as defined by Euzenat and Shvaiko in (Eu-
zenat and Shvaiko, 2007).

We aim at discovering several binding points be-
tween the input ontologies by using some new lexi-
cal matchers. Thereafter, taking these binding points
as pivots, an structural matcher is applied to the ini-
tial binding points. This matcher exploits particular
features and properties of the ontologies to discover
new binding points. Finally, by selecting and refin-
ing these binding points, we obtain the alignment be-
tween the input ontologies.

In the following sections we present a detailed
view of each one of the steps and sub-steps of the
algorithm. The order of the sections follows the se-
quence showed in figure 1.

Figure 1: Schematic Diagram of Algorithm Steps.

3.1 Step 1: Obtaining Initial Binding
Points

Obtaining the initial binding points is a crucial part
of the matching process since these binding points
are the basis on which the rest of the algorithm is
built. To identify these initial binding points, we use
two different lexical matchers. In particular, one uses
the WordNet database as external resource and the
other uses string and language-based distance mea-
sures. Using two matchers improves results because
the second matcher helps in filtering the results pro-
vided by the first one. In this case, the amount of re-
sults obtained is sacrificed for their quality, since the
better these initial binding points, the better the qual-
ity of the final output.

3.1.1 Sub-step 1.1: Lexical Matchers

This lexical matching phase will produce as result
two distinct lexical matrices since classes and proper-
ties are separately aligned by means of a ClassesLex-
icalMatcher (CLM) and a PropertiesLexicalMatcher
(PLM) respectively.

The CLM = fLexicalValue(c;c0)g denotes the
matrix containing the set of similarity values between
each c 2C;c0 2C0 and PLM = fLexicalValue(p; p0)g
denotes the matrix containing the set of similarity val-

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

8

ues between each p2 P; p0 2 P0 being, C and C0 be the
set of classes from ontologies o and o0, and P and P0

the set of properties from ontologies o and o0 respec-
tively.

Both these matching approaches use string and
language-based methods to identify similar entities in
the given ontologies. To do so a new distance measure
is introduced.

This new measure is defined according to the fol-
lowing considerations. To compute the lexical simi-
larity between two strings s1 and s2, the first step is
to remove the figures that may appear on the strings.
Numbers are omitted since they would only inter-
fere in the final result and would not provide relevant
matching information. After doing so, each string is
tokenized by using as delimiters any non-alphabetical
character, blank spaces and the uppercasing - lower-
casing changes in the word, obtaining for each one of
the original strings a bag of words, bs1 and bs2 re-
spectively. Then, these bags of words are compared
with the following procedure.

Step 1. First, the words shared by the two bags are
removed, hence obtaining bs01 and bs02.

Step 2. If both bags are empty then the similarity
measure between the input strings is 1:0.
Otherwise, all the words left in the first bag
bs01 are compared to the words left in the
second bag bs02 by using the Jaro-Winkler
Distance (Cohen et al., 2003) and consider-
ing the Levenshtein Distance (Cohen et al.,
2003) as a complementary measure.

Step 3. If the Jaro-Winkler distance measure of two
words, (a;b), returns a number greater than
a, and for these words the Levenshtein dis-
tance measure returns a number lower or
equal than b, then the combined similarity
value of these words is set to 1:0. In previous
works, these thresholds, a and b, have been
empirically set to 0:90 and 1:0 respectively.

(JaroWinkler(a;b)> a)\
(Levenshtein(a;b)< b)) sim(a;b) = 1:0

(1)

Step 4. In case Levenshtein distance measure indi-
cates that the shortest word must be com-
pletely modified to be matched to the sec-
ond one, this causes a proportional forfeit in
the combined result. Otherwise, the result of
the Jaro-Winkler distance measure is stored
as result for that pair of words (a;b) in the
bags.

Levenshtein(a;b)� minLength(a;b)) sim(a;b) =

JaroWinkler(a;b)� (1� Levenshtein(a;b)
maxLength(a;b)

)

(2)

Step 5. Once every possible pair of words is assigned
a value, the final result for the bags is com-
puted by adding them up. In this sum an
improvement factor f is used to strengthen
the similarity of the bags that share several
words.

bagEvaluation(s1;s2) =

å pairEvaluation(a;b)+ repeatedWords�f

1+ repeatedWords
(3)

Step 6. The original strings, s1 and s2 are also com-
pared using the Jaro-Winkler and Leven-
shtein distances. As final result, the best
score between the original comparison and
the bags comparison is returned.

LexicalValue(s1;s2) =

max[bagEvaluation(s1;s2);

stringEvaluation(s1;s2)]

(4)

This procedure is used in the following example. Let
s1 and s2 be respectively: s1 = ”ConferenceDinner”
and s2 = ”Conference Banquet”.

[Step 1]
bs1 = [conference, dinner]; bs2 = [conference, banquet]
After creating the bags of words, the word ”confer-
ence” is removed from both bags. So the bags remain
as follows:
bs01 = [dinner]; bs02 = [banquet]

[Step 2]
JaroWinkler (dinner, banquet) = 0.54
Levenshtein(dinner,banquet) = 5.0

[Step 3]
JaroWinkler (dinner, banquet) < a)
sim(dinner, banquet) 6= 1:0

[Step 4]
Levenshtein (dinner, banquet) < 6 (no forfeit applied)
sim(dinner, banquet) = 0:54� (1� 5

7) = 0:15

[Step 5]
Since the word ”conference” is common to both
bags, the improvement factor f is applied: bagEvalua-
tion(dinner, banquet) = 0:15+1�f

2 = 0.57

OntoPhil�-�Exploitation�of�Binding�Points�for�Ontology�Matching

9

[Step 6]
JaroWinkler(ConferenceDinner,Conference Banquet)=
0.88
Levenshtein(ConferenceDinner,Conference Banquet) = 6.0

LexicalValue(ConferenceDinner,Conference Banquet)=
max[0.57,0.88] = 0.88

Considering these results the final evaluation of
the similarity for the strings ”ConferenceDinner”
and ”Conference Banquet” would be 0:88.

We compute separately the similarity among
classes, object properties and data properties of the
two input ontologies using this procedure and so,
three lexical similarity matrices are obtained.

3.1.2 Sub-step 1.2: WordNet Matcher

As stated in figure 1, next step is to run the Word-
Net matcher. The WordNet matcher outputs a matrix
that contains the set of similarity values between each
class and property from the source ontology and the
target ontology.

WNM = ffWordNet(c;c0)g[fWordNet(p; p0)gg (5)

These similarity values are used to asses the accu-
racy of the values provided by the lexical matchers.

3.1.3 Sub-step 1.3: Combine and Select results

The matrices resulting from the previous steps are
combined in a new structure, where all the candidate
correspondences generated by the properties lexical
matcher and the classes lexical matcher, are joined in
a set.

This set is composed by tuples of the form:
(e1;e2;LexicalValue(e1;e2);WordNetValue(e1;e2)),
where e1 and e2 are the entities linked (classes or
properties), LexicalValue(e1;e2) is the value obtained
from running the ClassesLexicalMatcher(e1;e2)
or the PropertiesLexicalMatcher(e1;e2) and
WordNetValue(e1;e2) is the value obtained from
running the WordNetMatcher(e1;e2).

Next, all the initial binding points or candidate
correspondences are sifted out. The sifting out is fun-
damental for the algorithm since it reduces the num-
ber of binding points that are used as the starting point
for the next step. For this purpose, only the most accu-
rate points are used, so a sifted set, (Sifted CS), con-
taining just the elements with a lexical value of 1:0 is
constructed.

The better these initial binding points the higher
the chances that the correspondences obtained in Step

2 (see 3.2) are valid ones, therefore only those bind-
ing points with the highest lexical similarity (1:0) are
chosen to be the start point of the set expansion pro-
cedures.

These expansion procedures aim at discovering
new binding points between the two input ontologies
by exploiting structural features of the ontologies.

3.2 Step 2: Discovering New Binding
Points

As stated before, the sifted set (Sifted CS), obtained in
the previous step, becomes the base set on which the
expansion procedures are built. The candidate bind-
ing points obtained in this step, can link either proper-
ties or classes and therefore there are properties can-
didate correspondences and classes candidate corre-
spondences.

Depending on the structural feature that is ex-
ploited in each procedure, there is a different likeli-
hood that the discovered candidate binding points are
promising, therefore some of these procedures will di-
rectly update the base set by modifying or inserting
new binding points while others will insert them in a
candidate set.

Each one of the new discovered binding points is
placed in a bag that identifies the procedure and sub-
procedure that led to its discovery. The procedures are
sequentially applied, and each one exploits a different
feature of the ontologies. In case a binding point is
reached by several procedures, it is saved in all the
corresponding bags. Initially those class and property
candidate correspondences which are binding points
in the base set, are put in the bags CC BASE SET and
CP BASE SET respectively.

The different procedures applied are detailed in
the following subsections. From equations (6) to (11),
the notation used is represented in table 1.

Table 1: Notation used in equations.

Symbol Meaning
q1, p1 properties in Ontology1
q2, p2 properties in Ontology2
c1 class in Ontology1
c2 class in Ontology2
dom(p1) domain set for property p1
dom(p2) domain set for property p2
ran(p1) range set for property p1
ran(p2) range set for property p2
#dom(p1) domain cardinality for property p1
#dom(p2) domain cardinality for property p2

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

10

3.2.1 Sub-step 2.1: Properties Inverse Procedure

The aim of this procedure is to discover new property
candidate correspondences. For every properties cor-
respondence in the base set, the procedure retrieves its
inverse properties correspondence.This is only feasi-
ble if the properties from the original correspondence
have defined an inverse property using the construct
owl : inverseO f .

8(q1;q2;PLM(q1;q2);WNM(q1;q2)) 2 BASE SET ()
9[((p1; p2;PLM(p1; p2);WNM(p1; p2)) 2 BASE SET)

^(9q1 � :p1)^ (9q2 � :p2)]
(6)

If the inverse correspondence already exists in the
base set the counter of its occurrences is increased,
otherwise the new correspondence is inserted in the
CP BASE SET INVERSE bag.

3.2.2 Sub-step 2.2: Properties Domain Range
Procedure

This procedure allows the identification of new class
candidate correspondences. The first step is to re-
trieve all the property candidate correspondences in
the base set. Thereafter the domain and range for each
property in the correspondence is recovered from
their corresponding ontologies.

Shall we consider first the domain sets. If both
of them have only one class each, then these two
classes constitute a new class candidate correspon-
dence (see equation (7)). In case this new corre-
spondence already exists in the base set or candidate
set the number of its occurrences is increased, oth-
erwise it is inserted in the candidate set in the bag
CC DIRECT DERIVED.

9c1 2 dom(p1)^9c2 2 dom(p2)^
#dom(p1) = #dom(p2) = 1

) (c1;c2;CLM(c1;c2);WNM(c1;c2)) 2 BASE SET
(7)

If the cardinality of any of the domain sets is
higher than 1, the superclasses approach, described
next, is followed. The correspondences discov-
ered with this procedure are inserted in the bag
CC DIRECT DERIVED WITH SET.

For each of the classes in both domain sets, its
superclasses are retrieved recursively until the higher
level in the ontology hierarchy is reached. This way,
for every class in every domain a temporary set con-
taining all its superclasses is obtained. If there is a
common superclass to several classes in the same do-
main set, then the intermediate classes are dismissed
and only the initial class and the common superclass

are considered. All the selected classes are integrated
in the same set, so we will have only one final set as-
sociated to each domain. These sets are represented
as sup(dom(p1)) and sup(dom(p2)) respectively, in
equation (8). The classes from these final sets are
combined to obtain new candidate correspondences.

sup(dom(p1))� sup(dom(p2)) =

f(c1;c2;CLM(c1;c2);WNM(c1;c2))g
where

(c1 2 sup(dom(p1))^ c2 2 sup(dom(p2)))

(8)

If any of these new correspondences already ex-
ists in the base set or candidate set their number of
occurrences are properly modified. For the rest of the
new correspondences, their lexical and WordNet val-
ues are retrieved from the matrices resulting from the
lexical and WordNet matcher respectively, to create a
new tuple. If the lexical value surpasses the threshold
d then the tuple is inserted in the candidate set, other-
wise it is dismissed (see equation (9)). The d thresh-
old limits the amount of new correspondences that are
inserted in the set by dismissing the less promising
ones. We have experimentally determined, in previ-
ous works, that a value of 0:9 for d threshold achieves
the best results.

8t 2 f(c1;c2;CLM(c1;c2);WNM(c1;c2))g;

t 2CANDIDAT E SET () t:slex > d
(9)

This procedure that we have just described for the
domain sets is also applied for the range sets.

3.2.3 Sub-step 2.3: Classes Properties Procedure

This procedure discovers not only class candidate cor-
respondences but also property candidate correspon-
dences. To do so, the first step is to retrieve all the ex-
isting class candidate correspondences from the base
set and then, for every pair of classes, their correlated
properties set is put together.

The set of correlated properties is the result of the
cartesian product of the properties from the source on-
tology whose domain or range includes the first class
of the explored correspondence, with the properties
from the target ontology, whose domain or range in-
cludes the second class in that correspondence.

To choose a pair of properties for the correlated
set, if the first class in the explored pair belongs to the
domain of the first property in the candidate pair, then
the second property in the candidate pair must also
have the second class in the explored pair as part of its
domain, otherwise the pair of properties is dismissed
(see equation (10)).

OntoPhil�-�Exploitation�of�Binding�Points�for�Ontology�Matching

11

Correlated Properties(c1;c2) = fp1g�fp2g
where

(c1 2 dom(p1)^ c2 2 dom(p2))

_(c1 2 ran(p1)^ c2 2 ran(p2))

(10)

Once all the correlated properties are identified,
the procedure continues assessing their domains and
ranges to determine whether there can be found new
correspondences or not.

For each pair of properties belonging to the cor-
related properties set, their domains and ranges are
retrieved. If a pair of properties is inserted in the
correlated properties set because their respective do-
mains has a pair of classes already aligned in the base
set, then the domains receive the aligned sets sub-
procedure, and the ranges receive the non-aligned set
sub-procedure.

� Aligned Set Sub-procedure
The initial classes whose correlated properties are
under assessment are removed from the aligned
sets, since these classes are already part of the
base set. In case that, after doing so, there is
only one class left in each one of the aligned
sets, then a new class candidate correspondence
has been identified. If this new identified cor-
respondence already exists in the base set or
in the candidate set its number of occurrences
is accordingly modified. Otherwise this new
correspondence is added to the candidate set.
This correspondence of classes is inserted as a
new class candidate correspondence in the bag
CC SOURCE INC WITHOUT SET.
If the cardinality of the sets is bigger than 1
then the superclasses approach previously de-
scribed in section 3.2.2 is followed, although
the new correspondences are placed in the bag
CC SOURCE INC WITH SET.

� Non-Aligned Set Sub-procedure
In the non-aligned sets, the first thing to check is
the cardinality, if both sets have just one class then
a new class candidate correspondence is created
and put in the bag CC DIRECT CLASSES. This
new correspondence is confronted separately with
the base set and candidate set.
If the class candidate correspondence already ex-
ists in the base set, then its number of occurrences
is increased and the properties that link these
classes become a new property candidate corre-
spondence. This new correspondence is evaluated
against the base set too in order to check for previ-
ous occurrences. Its inverse candidate correspon-
dence is also assessed.
These new property candidate cor-

respondences are respectively set
in bags CP DIRECT CLASSES and
CP DIRECT CLASSES INVERSE. If the class
candidate correspondence is identified as new,
then it is inserted in the base set.
If the class candidate correspondence exists in
the candidate set its number of occurrences
is increased, and the corresponding proper-
ties are evaluated against the candidate set to
become a new property candidate correspon-
dence. Its inverse correspondence is also as-
sessed. If the class candidate correspondence
is identified as new it is placed in the bag
CC PROPERTIES WITHOUT SET and then it
is inserted in the candidate set as well as the
new property candidate correspondences iden-
tified in this step. The property candidate
correspondence and its inverse, in case it ex-
ists, are placed in CP DIRECT CLASSES and
CP DIRECT CLASSES INVERSE respectively.
In case the non-aligned sets cardinality is dif-
ferent from 1, then the superclasses approach is
followed, as described in section 3.2.2. In this
case the bag for the new class candidate cor-
respondences is CC PROPERTIES WITH SET
and for the new property candidate correspon-
dences CP DIRECT CLASSES WITH SET and
CP DIRECT CLASSES WITH SET INVERSE.

3.2.4 Sub-step 2.4: Classes Family Procedure

The Classes Family Procedure is the family approach
to identifying new class candidate correspondences.
Following this approach class candidate correspon-
dences from the base set are retrieved and their fa-
miliar relations are exploited.

For each one of the classes in the class candidate
correspondences, its superclasses, subclasses and sib-
ling classes are recovered, identified in equation (11)
as sup(class), sub(class) and sib(class) respectively.
Then, a cartesian product is applied between the two
sets of classes recovered for each correspondences,
dividing the results into the three identified levels.
The new identified pairs are compared with the ex-
isting ones in both base set and candidate set.

FamiliarCorrespondences = f(sup(c1)� sup(c2))[
(sub(c1)� sub(c2))[(sib(c1)� sib(c2))g

(11)

As it has been done in previous steps, if a corre-
spondence already exists in any set (base set or candi-
date set) its number of occurrences is increased, oth-
erwise these new correspondence are inserted in the
candidate set provided that the lexical valued corre-
sponding to these new tuples surpass the d threshold.

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

12

These new tuples are placed in the bag CC FAMILY.
By applying the procedures described in sections

3.2.1 to 3.2.4 new binding points are discovered and
classified in different types of bags.

3.3 Selecting Binding Points

After applying the procedures presented in section
3.2, a final version of the base set and candidate set
is obtained. In case that any of these methods has
caused the modification of the initial base set with
new binding points, a new iteration is done. In this
new iteration the base set is composed only by those
binding points that were inserted in the base set in the
previous iteration.

Iterations stop when no more modifications are
done in the base set so the system converges. This
convergence is always achieved as the number of pos-
sible binding points is finite.

After finishing all the iterations, results are com-
bined and the selection process begins. This process
is essential since it is a way of dismissing false cor-
respondences and therefore defining the final output
of the algorithm. For this process various restrictions
have been defined which treat differently class can-
didate correspondences and property candidate corre-
spondences. These restrictions are based in the idea
that the different procedures exploit different features
of the ontologies and therefore they outcome corre-
spondences with different levels of accuracy. Hence,
the location of the correspondences in different bags
facilitates their selection, in order to choose for the
final output the best possible ones.

At present, some of the simpler restriction rules
taken into account for the algorithm are:

� Retrieve those correspondences in the bag:
CC BASE SET.

� Retrieve those correspondences in the bag:
CC DIRECT DERIVED.

� For those property correspondences that share the
same entity in the source ontology, retrieve those
whose mean, between the WordNet value and lex-
ical value, is higher.

� For property correspondences retrieve the Single-
tons.

4 EVALUATION

The goal of any algorithm for ontology matching is to
generate an alignment that discovers the correspon-
dences, and only the correct ones, between two input
ontologies. The correctness of these correspondences

is evaluated against a reference alignment provided by
the human interpretation of the meaning of the input
ontologies.

To evaluate the accuracy of an ontology matching
algorithm, the standard information retrieval metrics
of Precision, Recall and F-measure are used.

The precision measures the ratio of correctly
found correspondences over the total number of re-
turned correspondences, which in logical terms re-
flects the degree of correctness of the algorithm.

The recall measures the ratio of correctly found
correspondences over the total number of expected
correspondences which in logical terms measures the
degree of completeness of the alignment.

Even though precision and recall are widely used
and accepted measures, in some occasions it may be
preferable having a single measure to compare dif-
ferent systems or algorithms. Moreover, systems are
often not comparable based solely on precision and
recall. The one which has a higher recall may have a
lower precision and vice versa (Euzenat and Shvaiko,
2007) and therefore the f-measure was introduced, as
a ratio between precision and recall.

We have evaluated the accuracy of our algorithm
using these measures and comparing our results with
those provided by the algorithm of Akbari & Fathian
(Akbari and Fathian, 2010) due to the similarities that
our algorithm’s structure shares with theirs because
both algorithms use lexical and structural matchers
applied sequentially to discover the correspondences
between the ontologies. Akbari & Fathian’s algorithm
was tested using the benchmark test set provided in
the Ontology Alignment Evaluation Initiative 2008
(OAEI-08) (Caracciolo et al., 2009).

This is a well known benchmark series of tests that
has been used for several years. This allows the com-
parison with other systems since 2004. This bench-
mark is built around a seed ontology and variations
of it (Aguirre et al., 2013) and its purpose is to pro-
vide a stable and detailed picture of the algorithms.
These tests were organized into simple tests (1xx),
systematic tests (2xx) and real-life ontologies (3xx).
Recently the structure of the benchmark was changed
and real-life ontologies were removed.

Table 2: Average performance of the algorithm proposed by
Akbari & Fathian on the OAEI-08 benchmark test suite.

1xx 2xx 3xx Average
Precision 0.98 0.78 0.87 0.88
Recall 0.95 0.74 0.84 0.85
F-measure 0.96 0.75 0.85 0.86

From the results presented in tables 2 and 3, our
algorithm shows better precision and f-measure val-
ues than the system proposed by Akbari & Fathian.

OntoPhil�-�Exploitation�of�Binding�Points�for�Ontology�Matching

13

Table 3: Average performance of our algorithm on the
OAEI-08 benchmark test suite.

1xx 2xx 3xx Average
Precision 0.97 0.96 0.92 0.95
Recall 1 0.71 0.82 0.85
F-measure 0.99 0.77 0.86 0.88

It is specially important for us the results obtained
in the set of tests 3xx (real-life ontologies), since we
aim at integrating our system in a real-world applica-
tion.

Besides, we have compared the results of our al-
gorithm with those provided by the algorithms partic-
ipating in the Ontology Alignment Evaluation Initia-
tive 2012 (OAEI-12), as shown in table 4.

From these results we can outline that the pro-
posed algorithm has a better average behavior than
most of the competing systems, since even if our ap-
proach has not the highest value in any of the three
measures precision, recall and f-measure, it certainly
has the most balanced ones.

Table 4: Results obtained by the participants in the OAEI-
12 compared with our approach.

edna AROMA ASE
P 0.35 0.98 0.49
R 0.41 0.77 0.51
F 0.50 0.64 0.54

AUTOMSV2 GOMMA Hertuda
P 0.97 0.75 0.90
R 0.69 0.67 0.68
F 0.54 0.61 0.54

HotMatch LogMap LogMapLt
P 0.96 0.73 0.71
R 0.66 0.56 0.59
F 0.50 0.46 0.50

MaasMatch MapSSS MEDLEY
P 0.54 0.99 0.60
R 0.56 0.87 0.54
F 0.57 0.77 0.50

Optima ServOMap ServOMapLt
P 0.89 0.88 1.0
R 0.63 0.58 0.33
F 0.49 0.43 0.20

WeSeE WikiMatch YAM++
P 0.99 0.74 0.98
R 0.69 0.62 0.83
F 0.53 0.54 0.72

OntoPhil
P 0.95
R 0.83
F 0.79

5 CONCLUSIONS

In this paper we have presented a novel ontol-
ogy matching algorithm that finds correspondences
among entities of input ontologies based on their lex-
ical and structural information. The algorithm pro-
posed relies on the exploitation of some initial corre-
spondences or binding points that connect one ontol-
ogy to the other. This is an adaptive way of matching
two ontologies which allows the identification of new
correspondences by exploiting the particular features
of the matched ontologies.

Likewise, we have introduced a new lexical mea-
sure that determines the lexical similarity among en-
tities by using the terminological information avail-
able for each pair of entities. For this lexical similar-
ity measure a full and detailed example is provided to
show how the similarity is computed.

The comparison of our algorithm to other similar
ones, reflects that it has good and balanced results that
encourage the work on this research line.

In spite of the promising start of this line work,
there are still several steps that must be taken before
it is fully functional. First, there is work to do to
improve the algorithm. For instance, to improve the
calculation of the initial binding points, to refine of
the restriction rules so the amount of false positives
retrieved in the alignment are kept to a minimum or
to include other features such as multilingual support
and instance matching. These improvements are be-
ing developed to be included in the algorithm as a way
to enhance the results of OntoPhil.

There is also the need to validate the usefulness of
the approach by testing it within a real environment.
These real-environment tests will be very useful to
check the robustness, scalability and flexibility of the
algorithm, and its applicability in real-life problems.
Our research group is currently working on applying
this algorithm to a Smart City environment.

REFERENCES

Aguirre, Jose Luis; Eckert, Kai; Euzenat, Jérôme; Fer-
rara, Alfio; van Hage, Willem Robert; Hollink, Laura;
Meilicke, Christian; Nikolov, Andriy; Ritze, Do-
minique; Scharffe, Francois; Shvaiko, Pavel; Svab-
Zamazal, Ondrej; Trojahn, Cássia; Bernardo, Ernesto
Jimenez-Ruiz; Grau, Cuenca, and Zapilko, Benjamin.
Results of the Ontology Alignment Evaluation Initia-
tive 2012. The 7th International Workshop on Ontol-
ogy Matching, 2013.

Akbari, Ismail and Fathian, Mohammad. A Novel Algo-
rithm for Ontology Matching. Journal of Information
Science, 36(324):12, 2010.

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

14

Antoniou, Grigoris and van Harmelen, Frank. Semantic
Web Primer. The MIT Press, 2004.

Batini, Carlo; Lenzerini, Maurizio, and Navathe,
Shamkant Bhalchandra. A Comparative Analysis
of Methodologies for Database Schema Integration.
ACM Computing Surveys, 18(4), 1986.

Caracciolo, Caterina; Euzenat, Jérôme; Hollink, Laura;
Ichise, Ryutaro; Isaac, Antoine; Malaisé, Véronique;
Meilicke, Christian; Pane, Juan; Shvaiko, Pavel;
Stuckenschmidt, Heiner; Šváb-Zamazal, Ondrej, and
Svátek, Vojtech. Results of the Ontology Alignment
Evaluation Initiative 2008. Ontology Matching Work-
shop, 2009.

Choi, Namyoun; Song, Il-Yeol, and Han, Hyoil. A Survey
on Ontology Mapping. SIGMOD Record, 35(3), 2006.

Chua, Watson Wei Khong and Kim, Jung-Jae. Eff2Match
results for OAEI 2010. CEUR Workshop Proceedings,
689, 2010.

Cohen, William W.; Ravikumar, Pradeep, and Fienberg,
Stephen E. A Comparison of String Distance Metrics
for Name-Matching Tasks. Proceedings of IJCAI-03
Workshop on Information Integration, pages 73–78,
2003.

Cuenca-Grau, Bernardo; Horrocks, Ian; Motik, Boris; Par-
sia, Bijan; Patel-Schneider, Peter, and Sattler, Ulrike.
OWL 2: The Next Step for OWL. Journal Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 6:309–332, 2008.

Do, Hong-Hai; Melnik, Sergei, and Rahm, Erhard. Com-
parison of Schema Matching Evaluations. NODe
2002 Web and Database-Related Workshops on Web,
Web-Services, and Database Systems, 2593:221–237,
2002.

Doan, Anhai and Halevy, Alon Y. Semantic Integration Re-
search in the Database Community: A Brief Survey.
American Association for Artificial Intelligence, 26:
83–94, 2005. URL www.aaai.org.

Ehrig, Marc and Euzenat, Jérôme. Relaxed Precision and
Recall for Ontology Matching. Integrating Ontolo-
gies, 156:8, 2005.

Euzenat, Jérôme. State of the art on Ontology Alignment.
Knowledge Web, 2, 2004.

Euzenat, Jérôme and Shvaiko, Pavel. A Survey of Schema-
based Matching Approaches. Journal on Data Seman-
tics IV, 5:21, 2005. URL www.ontologymatching.org.

Euzenat, Jérôme and Shvaiko, Pavel. Ontology Matching.
Springer-Verlag, Berlin Heidelberg (DE), 2007.

Euzenat, Jérôme; Meilicke, Christian; Stuckenschmidt,
Heiner; Shvaiko, Pavel, and dos Santos, Cássia Tro-
jahn. Ontology Alignment Evaluation Initiative: Six
Years of Experience. Journal on Data Semantics -
Springer, 15:158 – 192, 2011.

Falconer, Sean M.; Noy, Natalya F., and Storey, Margaret-
Anne. Ontology Mapping - A User Survey. Pro-
ceedings of the Workshop on Ontology Matching
(OM2007) at ISWC/ASWC2007, pages 113–125,
2007.

Gómez-Pérez, Asunción and Corcho, Óscar. A survey on
ontology tools. OntoWeb, 2002.

Hanif, Md. Seddiqui and Aono, Masaki. Anchor-Flood:
Results for OAEI 2009. In Shvaiko, Pavel; Eu-
zenat, Jérôme; Giunchiglia, Fausto; Stuckenschmidt,
Heiner; Noy, Natalya Fridman, and Rosenthal, Arnon,
editors, OM, volume 551 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2008.

Le, Bach Thanh; Dieng-Kuntz, Rose, and Gandon, Fabien.
On Ontology Matching Problems - for Building a Cor-
porate Semantic Web in a Multi-Communities Organi-
zation. In ICEIS (4), pages 236–243, 2004.

Noy, Natalya F. Semantic Integration: A Survey Of
Ontology-Based Approaches. SIGMOD, 33(4), 2004.

Noy, Natalya F. and Musen, Mark A. Anchor-prompt: Us-
ing non-local context for semantic matching. In Pro-
ceedings of the Workshop on Ontologies and Infor-
mation Sharing at the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-2001),
pages 63–70, Seattle (USA), 2001.

Parent, Christine and Spaccapietra, Stefano. Database inte-
gration: The key to data interoperability. Advances
in Object-Oriented Data Modeling, pages 221–253,
2000.

Rahm, Erhard and Bernstein, Philip A. A Survey
of Approaches to Automatic Schema Matching.
The VLDB Journal, 10:334 – 350, 2001. doi:
10.1007/s007780100057.

Shvaiko, Pavel and Euzenat, Jérôme. Ontology matching:
state of the art and future challenges. IEEE Transac-
tions on Knowledge and Software Engineering, 25(1),
2013.

Spaccapietra, Stefano and Parent, Christine. Con-
flicts and Correspondence Assertions in Interoperable
Databases. SIGMOD Record, 20(4):49–51, 1991.

Suárez-Figuero, Carmen; Garcı́a-Castro, Raúl; Villazón-
Terrazas, Boris, and Gómez-Pérez, Asunción. Essen-
tials In Ontology Engineering: Methodologies, Lan-
guages, And Tools. Bioinformatics, 2011.

van Aart, Chris; Pels, Ruurd; Caire, Giovanni, and Bergenti,
Federico. Creating and Using Ontologies in Agent
Communication. Telecom Italia EXP magazine, 2002.

W3C, . OWL: Web Ontology Language, 2013a. URL
www.w3.org/2004/OWL/.

W3C, . OWL 2: Web Ontology Language, 2013b. URL
http://www.w3.org/TR/owl2-overview/.

Xu, Peigang; Wang, Yadong; Cheng, Liang, and Zang,
Tianyi. Alignment results of SOBOM for OAEI 2010.
CEUR Workshop Proceedings, 689, 2010.

OntoPhil�-�Exploitation�of�Binding�Points�for�Ontology�Matching

15

