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Abstract: We present a tool-supported approach for creating workload models from historical web access log data. The
resulting workload models are stochastic, represented as Probabilistic Timed Automata (PTA), and describe
how users interact with the system. Such models allow one to analyze different user profiles and to mimic
real user behavior as closely as possible when generating workload. We provide an experiment to validate the
approach.

1 INTRODUCTION

The primary idea in performance testing is to es-
tablish how well a system performs in terms of re-
sponsiveness, stability, resource utilization, etc, un-
der a given synthetic workload. The synthetic work-
load is usually generated from some kind of workload
profile either on-the-fly or pre-generated. However,
Ferrari states that synthetic workload should mimic
the expected workload as closely as possible (Ferrari,
1984), otherwise it is not possible to draw any reliable
conclusions from the results. This means that if load
is generated from a workload model, then the model
must represent the real-world user behavior as closely
as possible. In addition, Jain points out that one of
the most common mistakes in load testing is the use
of unrepresentative load (Al-Jaar, 1991).

There already exists a broad range of well estab-
lished web analytics software both as open source
(Analog, AWStats, Webalyzer), proprietary (Sawmill,
NetInsight, Urchin), as well as web hosted ones
(Google Analytics, Analyzer, Insight). All these tools
have different pricing models and range from free
up to several hundred euros per month. These tools
provide all kinds of information regarding the user
clients, different statistics, daily number of visitors,
average site hits, etc. Some tools can even visual-
ize paths that visitors take on the site. However, this
usually requires a high-priced premium subscription.
What the above tools do not provide is a deeper classi-
fication of the users or even a artefact that can directly
be used for load testing. Such an artefact, based on
real user data, would be the ideal source for gener-

ating synthetic load in a performance testing environ-
ment. Instead, the performance tester have to interpret
the provided information and build his own artefact,
from where load is generated. Automatically creat-
ing this artefact would also significantly speed up the
performance testing process by removing the need of
manual labour, and thus saving time and money.

This paper investigates an approach for automat-
ically creating a workload model from web server
log data. More specifically, we are targeting HTTP-
based systems with RESTful (Richardson and Ruby,
2007) interfaces. The proposed approach uses the K-
means algorithm to classify users into groups based
on the requested resources and a probabilistic work-
load model is automatically built for each group.

The presented approach and its tool support inte-
grates with our performance testing process using the
MBPeT (Abbors et al., 2012) tool. The MBPeT tool
generates load in real-time by executing the workload
models in parallel. The parallel execution is meant to
simulate the concurrent nature of normal web requests
coming from real-world users. The tool itself has a
distributed master/slave architecture which makes it
is suitable for cloud environments. However, the ap-
proach proposed in this paper can be used indepen-
dently for analyzing and classifying the usage of a
web site.

The rest of the paper is structured as follow: In
Section 2, we give an overview of the related work. In
Section 3, we present the formalism behind the work-
load models that we use. In Section 4, we cover the
methodology whereas, in Section 5, we present the
tool support. Section 6 shows our approach applied
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on a real-world example. In Section 7, we demon-
strate the validity of our work. Finally, in Section 8,
we present our conclusions and discuss future work.

2 RELATED WORK

Load testing is still often done manually by specifying
load scripts that describe the user behavior in terms
of a subprogram (Rudolf and Pirker, 2000), (Subraya
and Subrahmanya, 2000). The subprogram is then
run for each virtual user, possibly with the data be-
ing pre-generated or randomly generated. With regard
to the data, theses types of approaches exhibit a cer-
tain degree of randomization. However, the behavior
of each virtual user is a mainly a repetition of pre-
defined traces. Most of these approaches are prone
to errors due to much manual work and lack of ab-
straction that stochastic models offer. However, the
question: ”How to create a realistic stochastic perfor-
mance model?” remains.

There exists a plethora of tools on the market that
can analyze HTTP-based logs and provide the user
with statistical information and graphs regarding the
system. Some tools might even offer the user with
common and reoccurring patterns. However, to the
best of our knowledge, there is no web analytics soft-
ware that will create a stochastic model from log data.

Kathuria et al. proposed an approach for cluster-
ing users into groups based on the intent of the web
query or the search string (Kathuria et al., 2010). The
authors divide the user intent into three categories:
navigational, informational, and transactional. The
proposed approach clusters web queries into one of
the three categories based on a K-means algorithm.
Our approach differs from this one in the sense that
we cluster the users by their behavior by looking at
the request pattern and accessed resources, whereas
in their approach, the authors cluster users based on
the intent or meaning behind the web query.

Vaarandi (Vaarandi, 2003) proposes a Simple Log-
file Clustering Tool consequently called SLCT. SLCT
uses a clustering algorithm that detects frequent pat-
terns in system event logs. The event logs typically
contain log data in various formats from a wide range
of devices, such as printers, scanners, routers, etc.
The tool automatically detects common patterns in
the structure of the event log. The approach is us-
ing data mining and clustering techniques to detect
normal and anomalous log file lines. The approach is
different from ours in the sense that we assume that
the logging format is known and we build a stochastic
model that can be used for performance testing from
common patterns found in the log.

Shi (Shi, 2009) presents an approach for cluster-
ing users interest in web pages using the K-means al-
gorithm. The author uses fuzzy linguistic variables
to describe the time duration that users spend on web
pages. The final user classification is then done using
the K-means algorithm based on the time the users
spend on each page. This research is different from
ours in the sense that we are not classifying users
based on the amount of time they spend on a web page
but rather on their access pattern.

The solutions proposed by Mannila et al. (Man-
nila et al., 1997) and Ma and Hellerstein (Ma and
Hellerstein, 2001) are targeted towards discovering
temporal patterns from event logs using data min-
ing techniques and various association rules. Both
approaches assume a common logging format. Al-
though association rules algorithms are powerful in
detecting temporal associations between events, they
do not focus on user classification and workload mod-
eling for performance testing.

Another approach is presented by Anastasiou
and Knottenbelt (Anastasiou and Knottenbelt, 2013).
Here, the authors propose a tool, PEPPERCORN, that
will infer a performance model from a set of log files
containing raw location tracking traces. From the
data, the tool will automatically create a Petri Net
Performance Model (PNPM). The resulting PNPM
is used to make an analysis of the system perfor-
mance, identify bottlenecks, and to compute end-to-
end response times by simulating the model. The ap-
proach differs from our in the sense that it operates on
different structured data and that the resulting Petri
Net model is used for making a performance analysis
of the system and not for load generation. In addi-
tion, we construct probabilistic time automata (PTA)
model from which we later on generate synthetic load.

Lutteroth and Weber describe a performance test-
ing process similar to ours (Lutteroth and Weber,
2008). Load is generated from a stochastic model
represented by a form chart. The main differences be-
tween their and our approach is that we use different
type of models and that we automatically infer our
models from log data while they create the models
manually. In addition, due to their nature, form chart
models are less scalable compared to PTAs.

3 WORKLOAD MODELS

The work presented in this paper connects to our pre-
vious model-based performance testing process using
the MBPeT (Abbors et al., 2012) tool. A workload
model is the central element in this process, being
used for distributed load generation. Previously, the
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model was created manually from the performance re-
quirements of the system and based on an estimated
user behavior. In order to model as realistic workload
as possible, we use historic usage data extracted from
web-server logs.

3.1 Workload Models

Traditionally, performance testing starts first with
identifying key performance scenarios, based on the
idea that certain scenarios are more frequent than oth-
ers or certain scenarios impact more on the perfor-
mance of the system than other scenarios. A perfor-
mance scenario is a sequence of actions performed by
an identified group of users (Petriu and Shen, 2002).
However, this has traditionally been a manual step in
the performance testing process. Typically, the iden-
tified scenarios are put together in a model or subpro-
gram and later executed to produce load that is sent to
the system.

In our approach, we use probabilistic timed au-
tomata (PTA) (Jurdziński et al., 2009) to model the
likelyhood of user actions. The PTA consists of a set
of locations interconnected to each other via a set of
edges. A PTA also includes the notion of time and
probabilities (see Figure 1(a)). Edges are labeled with
different values: probability value, think time, and ac-
tion. The probability value represents the likelihood
of that particular edge being taken based on a prob-
ability mass function. The think time describes the
amount of time that a user thinks or waits between
two consecutive actions. An action is a request or a
set of requests that the user sends to the system. Exe-
cuting an action means making a probabilistic choice,
waiting for the specified think time, and executing the
actual action. In order to reduce complexity of the
PTA, we use a compact notation where the probabil-
ity value, think time, and action are modeled on the
same edge (see Figure 1(b)).

4 AUTOMATIC WORKLOAD
MODEL CREATION

In this section, we describe the method for automati-
cally creating the workload model from log data and
we discuss relevant aspects in more detail. The start-
ing point of our approach is a web server log provided
by web servers such as Apache or Microsoft Server.
A typical format for a server log is shown in Table 1.
The log is processed in several steps and a workload
model is produced.

1

2

0.6 / 0 /

3

0.4 / 0 /

4

1.0 / 3 / action1()

5

1.0 / 4 / action2()

6

1.0 / 0 /

7

1.0 / 0 /

8

1.0 / 6 / exit() 1.0 / 8 / exit()

(a) Original PTA

1

2

0.6 / 3 / action1()

3

0.4 / 4 / action2()

4

1.0 / 6 / exit() 1.0 / 8 / exit()

(b) Compact PTA

Figure 1: Example of a probabilistic timed automata.

4.1 Data Cleaning

Before we start parsing the log file we prepare and
clean up the data. This entails that irrelevant data is
removed from the log. Nowadays, it is not uncommon
to encounter requests made by autonomous machines,
also referred to as bots, usually used to crawl the web
and index web sites. These types of requests are iden-
tified and removed from the log into a separate list. At
the moment, we are only interested in HTTP requests
that result in a success or redirect (i.e., response codes
that start with 2xx or 3xx). Requests that result in an
error, typically response codes that start with 4xx or
5xx, are usually not part of the intended behavior and
are also put in a separate list.

4.2 Parsing

The cleaned log file is parsed line by line using a pat-
tern that matches the logging format. In our approach,
a new virtual user is created when a new client IP-
address1 is encountered in the log. For each request
made to the sever, the requested resource is stored in
a list associated with a virtual user. The date and time
information of the request together with the time dif-
ference to the previous request is also stored. The
latter is what we denote as think time between two
requests.

4.3 Pre-processing

From the previous step, we obtain a list of virtual
users and for each virtual user a list of requests made
from the same client IP-address. In the pre-processing

1Our approach uses IP-addresses for user classification
since the UserId is only available for authenticated users
and usually not present in the log.
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Table 1: Requests to be structured in a tree.
Client IP-address User-Identifier User Id Date Method Resource Protocol Status Code Size of Object

87.153.57.43 example.site.com bob [20/Aug/2013:14:22:35 -0500] GET /browse HTTP/1.0 200 855
87.153.57.43 example.site.com bob [20/Aug/2013:14:23:42 -0500] GET /basket/book/add HTTP/1.0 200 685
87.153.57.43 example.site.com bob [20/Aug/2013:14:23:58 -0500] GET /basket/book/delete HTTP/1.0 200 936

136.242.54.78 example.site.com alice [21/Aug/2013:23:44:45 -0700] GET /browse” HTTP/1.0 200 855
136.242.54.78 example.site.com alice [21/Aug/2013:23:46:27 -0700] GET /basket/phone/add HTTP/1.0 200 685
136.242.54.78 example.site.com alice [21/Aug/2013:23:57:02 -0700] GET /basket/view.html HTTP/1.0 200 1772

phase, these lists of requests are split up into shorter
lists called sessions. A session is a sequence of re-
quests made to the web server which represent the
user activity in a certain time interval. It is not al-
ways trivial to say when one session ends and an-
other begins, since the time interval varies from ses-
sion to session. Traditionally, a session ends when a
certain period of inactivity is detected, (e.g., 30 min-
utes). Hence, we define a session timeout value which
is used to split the list of requests of a given user into
sessions. In other words, we are searching for a time
gap between two successive requests from the same
virtual user that is greater than the specified timeout
value. When a gap is found, the request trace is split
into a new session. An example using a timeout of 30
minutes is shown in Figure 2.

Req1 Req2 Req4 Req5 Req6 Req7 Req8Req3

Req1 Req2 Req4 Req5 Req6Req3 Req7 Req8

1 min

Time Out Value 30 min

3 min 32 min

GAP

12 min 5 min 35 min 22 min

1 min 3 min 12 min 5 min

GAP

22 min

Figure 2: Example of splitting a list of requests into shorter
sessions.

4.4 Building a Request Tree

Visitors interact with web sites by carrying out ac-
tions. Actions can be seen as abstract transactions or
templates that fit many different requests. These re-
quests can be quite similar in structure, yet not identi-
cal to each other. For example, consider a normal web
shop where users add products to the basket. Adding
two different products to the basket will result in two
different web requests even though the action is the
same. In this step, we group similar requests into ac-
tions.

To achieve this, we first put the requests into a tree
structure. For example, consider the example in Ta-
ble 1. We split the string of the requested resource

/basket

/book

/phone

/add

/delete

/add

/basket

/book, phone

/add
/delete

[Collection]
[Resource]

action

/view.html

/view.html

/ /

/browse

/browse

2

2

1

1

1

1

1

1

2

Figure 3: Example of request tree reduction.

by the ”/” separator and structure it into a tree. Fig-
ure 3-left shows how the requests in Table 1 would
be structured. We always keep count of how many
times we end up in a leaf node. For each new log line,
we try to fit the request into the tree, otherwise a new
branch is created.

After parsing a large log file, we obtain a large
tree that might be difficult to manage. However, the
tree can be reduced into a smaller tree by grouping to-
gether nodes. The algorithm is recursive and nodes at
the same level in the tree are grouped together if they
share joint sub-nodes. Figure 3-right shows how a tree
can be reduced into a smaller tree. Once the request
tree has been reduced as much as possible, every path
in the reduced tree, that reaches a leaf node, is then
considered as an action that can be executed against
the system.

Consider the second request made by both Bob
and Alice in Table 1. These two requests are basically
the same type of request. They both request a resource
from the same collection. This is similar to a REST
interface where one uses collections and resources. It
would seem obvious that these two requests are the
result of the same action, only that the user requested
different resources. Hence, by grouping together re-
quests of the same type to the same resources, the tree
can be reduced to a smaller tree. Similar requests are
grouped into an action.

Requests in the tree can also be joined by manu-
ally inspecting the tree and grouping nodes that are
a result of the same action. If a node in the path
has more than one parameter, (e.g., it is a result of
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grouping two resources) that part of the request can
be parameterized. For example, the request ”/bas-
ket/book,phone/add” is a parameterized action where
either book or phone should be used when sending the
actual request to the system.

4.5 User Classification

Before we start constructing a workload model repre-
senting the user behavior, we cluster different virtual
users into groups according to their behavior. By user
behavior we mean a behavioral pattern that a group
of web site visitors have in common. A User Type
can be seen as a group abstracting several visitors of
a web site.

To group visitors based on the actions they per-
form we use the K-means algorithm (MacQueen,
1967). Table 2 shows the properties used for clus-
tering. The properties are the actions obtained from
the reduced request tree and the numbers represent
the number of times a visitor has performed that ac-
tion. Figure 5 show how the different visitors in Table
2 would be clustered into groups (or User Types) us-
ing the K-means algorithm. The only input in this
step is the number of desired clusters which has to be
specified a priori. Figure 4 depicts a typical exam-
ple of clustering data into two groups using K-means.
K-means clustering is an old method that involves as-
signing data points to k different clusters so that it
minimizes the total squared distance between each
point and its closest cluster center. One of the most
widely used algorithms is simply referred to as ”K-
means” and it is a well documented algorithm that
have several proposed optimization to it. The clus-
tering is executed as follows:
1. Choose k clusters and initialize the centroid by

uniformly choosing a random value from the data
points.

2. For every sample in the data set, assign it to the
closest cluster using the Euclidean distance.

3. Calculate a new centroid for every cluster by com-
puting the average of all samples in the cluster.

4. Repeat step 2 and 3 until the clusters no longer
change.

Table 2: Example showing the number of actions that dif-
ferent visitors perform.

Virtual User Action1 Action2 Action3 Action4 Action5
Visitor 1 2 0 0 3 3
Visitor 2 0 3 4 3 3
Visitor 3 1 0 1 8 9
Visitor 4 4 6 0 0 1
Visitor 5 0 0 4 8 7
Visitor 6 5 2 0 7 0

Figure 4: Example of two dimensional K-means clustering.

Visitor 1

User Type 1

User Type 2

Visitor 6Visitor 4

Visitor 2

Visitor 3

Visitor 5

Figure 5: K-means clustering on data from Table 2.

Our approach also allows us to cluster virtual
users based on other characteristics. Table 3 shows an
example using different clustering parameters. Here
the variable #Get means the total number of GET re-
quests sent to the system and #Post means the total
number of POST requests sent to the system. ATT
stands for Average Think Time, ASL stands for Av-
erage Session Length, and ADT stands for Average
Response Size.

Table 3: Example showing different clustering parameters.
Virtual User #Get #Post ATT ASL ARS

Visitor 1 25 3 44 653 696
Visitor 2 17 0 25 277 1353
Visitor 3 31 3 54 1904 473
Visitor 4 19 1 23 444 943

This method, however, gives a different clustering
result than the method presented previously and can
be used as a complement if the first method gives an
unsatisfactory result.

4.6 Removing Infrequent Sessions

Before we start building the workload model for each
selected cluster, we filter out low frequency sessions.
If we would include all possible sessions in the fi-
nal workload model it would become too cluttered
and difficult to understand and would include actions
which do not contribute significantly to the load due
to their low frequency rate. We are mainly interested
in the common group behavior among visitors in the
same cluster.

Removing sessions that have low frequency is
achieved by sorting the sessions in descending or-
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der according to their execution rate. We filter out
low frequent sessions according to a Pareto probabil-
ity density function (Arnold, 2008) by cutting off the
tail beneath a certain threshold value. The threshold
value is given as a percentage value. That means that
sessions below the threshold are simply ignored and
treated as irrelevant. The threshold value can how-
ever be adjusted on-the-fly to include more or fewer
sessions in the workload model. Table 4 shows an
example of sessions listed in a descending order ac-
cording to their execution count. There is a total of
20 sessions, some of them have been executed several
times, (e.g., session 1 has been executed 7 times). A
threshold value of 0.7 would in this case mean that
we want 70 percent of the most executed sessions in-
cluded in our model, meaning a total of 14 sessions.
Thus, we would have to construct a model with (Ses-
sion1 * 7) + (Session2 * 6) + (Session3 * 1).

Table 4: Sessions listed in a descending order according to
number of times executed.

Session Number of times executed
Session 1 7
Session 2 6
Session 3 3
Session 4 2
Session 5 1
Session 6 1
Total 20

4.7 Building the Workload Model

The workload models that we create describes the
common behavior of all virtual users belonging to the
same cluster. We say that the model describes the be-
havior of a particular User Type. Creating the model
for a particular user type is a step-wise process where
we overlap sessions of all visitors belonging to the
same cluster.

Session by session we gradually build a model,
while reusing existing nodes in the model as much as
possible. At each step, we note the number of times
an edge has been traversed, the action, and the think
time value. We use this information to calculate the
probability and average think time of each edge in the
model.

Figure 6 depicts how the workload model is grad-
ually built. One session at a time is included in the
workload model. An edge represents an action be-
ing sent to the system. The numbers associated to the
edges represent session IDs. Each node represents a
place, where the visitor waits before sending the next
action. One by one we include all the session belong-
ing to the same cluster, while reusing existing nodes
as much as possible. Identical sessions will be laid on
top of each other and at each step, we note the number
of times an edge has been traversed, the action, and

the think time value. We use this information to cal-
culate the probability and average think time of each
edge.

Figure 6: Model built in a step-wise manner.

We calculate the probability for an action as the
ratio of a particular action to all the actions going
out from a node. In a similar way, we calculate the
think time of an action by computing the average of
all think time values of an action.

In order to guarantee that the workload gener-
ated from the workload model matches the workload
present in the log file, we calculate the user arrival
rate. This information together with the distribu-
tion between user types is described in a higher level
model called the root model. Figure 7 depicts such a
model.

1

2

0.1 / 45 / user_type1 0.4 / 60 / user_type2 0.5 / 20 / user_type3

Figure 7: Root model describing different user types their
waiting times and probability.

The labels on the edges are separated by a ”/” and
refer to the probability, waiting time, and user type,
respectively. The probability value describes the dis-
tribution between different user types. The waiting
time describes the average waiting time between ses-
sions. The user type value simply denotes what work-
load model to execute. To calculate the waiting time
of a user type, we first have to study the waiting time
between different sessions of a particular user. We
then calculate the user waiting time by computing an
average time between sessions for every user belong-
ing to a cluster.
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5 TOOL SUPPORT

Tool support for our approach was implemented using
the Python (Python, 2014) programming language.
To increase the performance of the tool and make use
of as many processor cores as possible for the most
computation intensive tasks, we made use of Python’s
multiprocessing library.

Our tool has a set of pre-defined patterns for com-
mon logging formats that are typically used in mod-
ern web servers (e.g., Apache and Microsoft Server).
However, if the pattern of the log file is not automat-
ically recognized (e.g., due to a custom logging for-
mat) the user can manually specify a logging pattern
via a regular expression. Once the log is parsed, the
data is stored into a database. This way we avoid hav-
ing to re-parse large log files from one experiment to
another.

Before parsing a log file, the tool prompts the user
for a session time out value and the number of user
clusters. This information, however, has to be pro-
vided a priori. Once the file has been parsed and
the reduced request tree has been built, the user has
a chance to manually inspect the tree. Requests can
be grouped manually by dragging one node on top of
the other. Figure 8 shows an example of such a re-
quest tree.

Figure 8: Example of the request tree.

When the workload models have been built for

each cluster they are presented to the user. Figure 9
shows an example where 2 clusters have been used.
The left pane shows the number of concurrent users
detected throughout the logging period. The slider
bar at the bottom of the figure can be used to adjust the
threshold value, which determines how many sessions
to include in the model. A higher threshold value usu-
ally means more sessions are included in the model,
leading to a more complex model.

When saving the model, the tool will create two
artifacts: the workload models and the Python adapter
code. The latter contains the mapping of each action
in the models in a parameterized form and is used to
interface our MBPeT tool with the system under test.

6 EXAMPLE

In this section, we apply our approach to a web log
file containing real-users data.

The web site2 used in this example maintains
scores of football games played in the football league
called pubiliiga. It also stores information about
where and when the games are played, rules, teams,
etc. The web site has been created using the Django
framework (Django Framework, 2012) and runs on
top of an Apache web server.

6.1 Data Cleaning

The log that we used was 323 MB in size and con-
tained roughly 1.3 million lines of log data. The web
site was visited by 20,000 unique users that resulted
in 365,000 page views between April 25th of 2009
and August 23rd of 2013. However, most of the users
only visited the web site once or twice and there were
only about 2,000 frequent users that regularly visited
the web site. Also, since the web site is updated fre-
quently on the same platform on which it is running,
the log contained a significant amount of data from er-
roneous requests made by the simple method of trail
and error during development. All erroneous requests
and requests made from known robots were filtered
out. The results that we are going to show in this sec-
tion are generated from a selected section of the log
data containing a mere 30,000 lines of log data, gen-
erated by 1092 unique users.

6.2 Pre-processing

We used a session timeout value of 60 minutes to de-
termine where to split the list of requests into ses-
sions. In this experiment, we clustered the users into

2www.pubiliiga.fi
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Figure 9: The output window.

1

2

0.097 / 0 / exit()

3

0.086 / 0 / action224

0.44 / 6 / action27

6

0.043 / 5 / action24

7

0.043 / 0 / action208

0.20 / 5 / action26

9

0.032 / 22 / action25

10

0.054 / 0 / action23

0.84 / 0 / exit()

0.16 / 23 / action220.55 / 0 / exit()

0.29 / 5 / action22

5

0.17 / 11 / action23

1 / 0 / exit()

1 / 0 / exit()

1 / 22 / action22 1 / 4 / action20

1 / 0 / exit()

1 / 0 / exit()

Figure 10: Workload models recreated from log data.

two different groups. The total time to parse and pre-
process the data was around 10 seconds. The com-
puter was equipped with a 8 core Intel i7 2.93 GHz
processor and had 16 GB of memory.

6.3 Results

We used a threshold value of 0.3 when reconstruct-
ing the workload model for both clusters, meaning
that 30 percent of most executed traces are included in
the models. Figure 10 shows the workload model for
cluster 1. A total of 985 virtual users were grouped
into this cluster.
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For confidentiality reasons the actual request types
have been left out and replaced by abstract types. Cre-
ating the model took approximately 2 seconds. How-
ever, the execution time may hugely vary depending
on the number of sessions that need to be included
in the workload model. That number of sessions in-
cluded in the model depends on what threshold value
is selected.

7 VALIDATION

In this section, we demonstrate the validity of our
approach on an auctioning web service, generically
called YAAS (Yet Another Auction Site). The YAAS
web service was developed as a university stand-alone
project. The web service has a RESTful interface and
has 5 simple actions:
� Browse: Returns all active auctions.
� Search: Returns auctions that matches the search

query.
� Get Auction: Returns information about a particu-

lar auction.
� Get Bids: Returns all the bids made to a particular

auction.
� Bid: Allows an authenticated user to place a bid on

an auction.
During this experiment we preformed two load

tests. First, we generated load from workload models
that we built manually. We then re-created the work-
load models from the log data that was produced dur-
ing first load test. In the second load test, load was
generated from the re-created workload models. Fi-
nally, we compared the load that was generated during
both tests. In the first step, we manually created mod-
els for two different user types. To test if the cluster-
ing works as expected, we made the workload mod-
els almost identical except for one request. One user
type is doing distinctively a browse request while the
other user type is always doing a search request. Fig-
ure 11(a) depicts the model for user type 1, the one
that is performing distinctively a browse request. A
similar model was also created for user type 2. If the
algorithm can cluster users into different groups when
only one action distinguishes them, then we consider
the clustering to be good enough.

7.1 Generating a Log File

Once the models were built, they were used to load
test the YAAS system using our in-house performance
testing tool MBPeT. We simulated 10 virtual users
(60% user type 1 and 40% user type 2) in parallel

for 2 hours. We set the virtual users to wait 20 sec-
onds between each session. This value is later going
to influence the timeout value during pre-processing
phase. From the produced log file, containing roughly
10,000 lines, we re-created the original models as ac-
curately as possible. We point out that the original
model is of a probabilistic nature, which means that
distinctly different traces with different lengths can
be generated from a fairly simple model. For exam-
ple, the shortest session had only 1 action, while the
longest session had 22 actions. Also, we do not have
exact control over how many times each trace is exe-
cuted by a user.

7.2 Recreating the Models

To make sure that we split the sessions in a similar
way we used a timeout value of 20 seconds. No other
delay between the requests was that large. We also
clustered the data into 2 user types. Each user type
is later going to be represented with a separate work-
load model. In this experiment we did not filter out
any user sessions, hence we used a threshold value
of 1.0, meaning all traces found in the log were used
to recreate the models. Figure 11(a) shows the origi-
nal workload model while Figure 11(b) shows the re-
constructed workload model for User Type 1. A sim-
ilar model was also created for User Type 2. As one
can see, the only difference from the original model
is the probability values on the edges. However close,
the probability values in the original models do not
match exactly those in the generated workload mod-
els. This is due to the fact that we use a stochastic
model for generating the load and we do not have
an exact control of what traces are generated. Figure
12(a) shows original root model while Figure 12(a)
shows the re-created root model. From the figures we
can see that the probability values of the re-created
root model match that of the original root model (60%
and 40%) and that the waiting time is close to 20 sec-
onds (19.97 and 19.98).

7.3 Data Gathering

Even though the models look similar, we also wanted
to make sure that the load generated from the origi-
nal models matched the load generated from our re-
created models. Hence, we let the MBPeT tool mea-
sure the number of requests sent to the YAAS system
during both steps. Table 5 shows a comparison be-
tween the tests.

As can be seen from the table, the re-created
model produced a slightly higher workload. However,
we like to point out that the load generation phase
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1

2

1.0 / 0 / browse()

0.10 / 7 / browse()

3

0.87 / 4 / get_auction(id)

6

0.03 / 0 / exit()

0.05 / 4 / browse()

4

0.75 / 4 / get_bids(id)

0.20 / 0 / exit()

0.20 / 5 / browse()

5

0.50 / 3/ bid(id,price,username,password)

0.30 / 0 / exit()

0.25 / 6 / browse()

0.45 / 4 / get_bids(id)

0.30 / 0 / exit()

(a) User Type 1 original model.

1

3

1.0 / 0 / browse()

0.095 / 7 / browse()

2

0.033 / 0 / exit()

4

0.87 / 4 / get_auction(id)

0.052 / 4 / browse()

0.20 / 0 / exit()

5

0.75 / 5 / get_bids(id)

0.24 / 5 / browse()

0.29 / 0 / exit() 6

0.48 / 3 / bid(id, price, username, password)

0.23 / 6 / browse()

0.30 / 0 / exit()

0.48 / 4 / get_bids(id)

(b) User Type 1 recreated model.

Figure 11: Original and re-created workload models.

(a) Original root model.

(b) Recreated root model.

Figure 12: Root models.

Table 5: Comparison between the two test runs.
Request Load Test 1 Load Test 2
Search(string) 1263 1294
Browse() 1895 1942
Get Auction(id) 2762 2821
Get bids(id) 2697 2625
Bid(id, price, username, password) 1288 1265
Total 9903 9947
Request Rate 1.37 req/sec 1.38 req/sec

lasted for 2 hours and we see a difference of 44 re-
quests. This is backed up by looking at the measured
request rate. Load test 1 generated 1.37 req/sec, while
load test 2 is virtually identical with 1.38 req/sec. Fig-
ure 13 shows the workload as a function of request
(actions) over time for both test sessions. As one can
see, the graphs are not identical but the trend and scale
is pretty much similar.

8 CONCLUSIONS

In this paper, we have presented a tool-supported ap-
proach for creating performance models from histor-
ical log data. The models are of a stochastic nature
and specify the probabilistic distribution of actions
that are executed against the system.

The approach is automated, hence reducing the ef-
fort necessary to create workload models for perfor-
mance testing. In contrast, Cai et al. (Cai et al., 2007)
report that they spent around 18 hours to manually
create a test plan and the JMeter scripts for the refer-
ence Java PetStore application (Oracle, 2014).

The experiments presented in this paper have
shown that the approach can adequately enough cre-
ate workload models from log files and they mimic
the real user behavior when used for load testing. Fur-
ther, the models themselves give insight in how users
behave. This information can be valuable for opti-
mizing functions in the system and enforcing certain
navigational patterns on the web site.

Future work will targeted towards handling larger
amount of log data. Currently the tool is not op-
timized enough to operate efficiently on large data
amounts. Another improvement is automatic session
detection. Currently the tool follows a pre-defined
timeout value for detecting sessions. Automatic ses-
sion detection could suggest different timeout values
for different users, hence, improving on the overall
quality of the recreated model. Currently, we are only
clustering users according to accessed resources. In
the future, we would like to extend the K-means clus-
tering algorithm to cluster based on other relevant fac-
tors like: request method, size of resource, user re-
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(a) Load Test 1

(b) Load Test 2

Figure 13: Number of request shows as a function over time.

quest rate, etc. This clustering method could suggest
models that, when executed, exercise the workload
patterns on the system, thus, potentially finding ”hid-
den” bottlenecks. Further, an interesting experiment
would be to analyze only failed or dropped requests.
This way one could for instance study the details of
how a DoS-attack was carried out and what pages
were hit during the attack.
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