
Aspect-oriented Requirements Engineering with Problem Frames

Stephan Faßbender, Maritta Heisel and Rene Meis
paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen, Duisburg, Germany

Keywords: Early Aspect, Problem Frames, Requirements Engineering.

Abstract: Nowadays, the requirements of various stakeholders for a system do not only increase the complexity of the
system-to-be, but also contain different cross-cutting concerns. In such a situation, requirements engineers
are really challenged to master the complexity and to deliver a coherent and complete description of the
system-to-be. Hence, they are in need for methods which reduce the complexity, handle functional and quality
requirements, check completeness and reveal interactions, and are tool supported to lower the effort. One
possible option to handle the complexity of a system-to-be is the separation of concerns. Both, aspect-oriented
requirements engineering and the problem frames approach implement this principle. Therefore, we pro-
pose a combination of both, the AORE4PF (Aspect-Oriented Requirements Engineering for Problem Frames)
method. AORE4PF provides guidance for classifying requirements, separating the different concerns, mod-
eling requirements for documentation and application of completeness and interaction analyses, and weaving
the reusable parts to a complete and coherent system. AORE4PF provides tool support for most activities. We
exemplify our method using a smart grid case obtained from the NESSoS project. For validation, the results
of a small experiment in the field of crisis management systems are presented.

1 INTRODUCTION

Keeping an eye on good and sufficient require-
ments engineering is a long-known success fac-
tor for software projects and the resulting software
products (Hofmann and Lehner, 2001). Nonethe-
less, larger software incidents are regularly reported,
which originate in careless dealing with, for exam-
ple, security requirements. Beside reputation damage,
loss of market value and share, and costs for legal
infringement (Cavusoglu et al., 2004; Khansa et al.,
2012), fixing defects that caused the incident is costly.
Fixing a defect when it is already fielded is reported to
be up to eighty times more expensive than fixing the
corresponding requirements defects early on (Boehm
and Papaccio, 1988; Willis, 1998). Therefore, it is
crucial for requirements engineers to identify, ana-
lyze, and describe all requirements and related quality
concerns. But eliciting good requirements is not an
easy task (Firesmith, 2003), even more when consid-
ering complex systems.

Nowadays, for almost every software system, var-
ious stakeholders with diverse interests exist. These
interests give rise to different sets of requirements.
These diverse requirements not only increase the
complexity of the system-to-be, but also contain dif-

ferent cross-cutting concerns, such as qualities, which
are desired by the stakeholders. In such a situation,
the requirements engineer is really challenged to mas-
ter the complexity and to deliver a coherent and com-
plete description of the system-to-be.

One possible option to handle the complexity of
a system-to-be is the concept of separation of con-
cerns (Parnas, 1972). In its most general form, the
separation of concerns principle refers to the ability
to focus on, and analyze or change only those parts
of a system which are relevant for one specific prob-
lem. The main benefits of this principle are a re-
duced complexity, improved comprehensibility, and
improved reusability (Parnas, 1972).

Both, aspect-oriented requirements engineering
and the problem frame approach implement this prin-
ciple, but for different reasons. The approach of
AORE (aspect-oriented requirements engineering),
which originates from aspect-oriented programming,
is to separate each cross-cutting requirement into an
aspect. Instead of integrating and solving the cross-
cutting requirement for all requirements it cross-cuts,
the aspect is solved in isolation. Hence, aspect-
orientation leads to a clear separation of concerns. To
combine an aspect with a requirement, an aspect de-
fines a pointcut (set of join points), which describes

145Faßbender S., Heisel M. and Meis R..
Aspect-oriented Requirements Engineering with Problem Frames.
DOI: 10.5220/0005001801450156
In Proceedings of the 9th International Conference on Software Paradigm Trends (ICSOFT-PT-2014), pages 145-156
ISBN: 978-989-758-037-6
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



how the aspect and a requirement can be combined.
The problem frames approach (Jackson, 2001) gen-
erally also follows the separation of concerns princi-
ple. It decomposes the overall problem of building
the system-to-be into small sub-problems that fit to
a problem frame. Each sub-problem is solved by a
machine, which has to be specified using the given
domain knowledge. All machines have to be com-
posed to form the overall machine. We will show that
aspect-orientation gives guidance for the process of
decomposing the overall problem and especially for
the composition of the machines. As both ways of
separating concerns seem to be complementary, it is
promising to combine both. Hence, we propose the
AORE4PF (Aspect-Oriented Requirements Engineer-
ing for Problem Frames) method that provides guid-
ance for classifying requirements, separating the dif-
ferent concerns, modeling requirements for documen-
tation and application of completeness and interaction
analyses, and weaving the reusable parts to a com-
plete and coherent system. Furthermore, AORE4PF
provides tool support for most activities.

The rest of the paper is structured as follows. Sec-
tion 2 introduces a smart grid scenario, which is used
as a case study. In Section 3, we briefly introduce
the problem frames approach and UML4PF as back-
ground of this paper. Our method for the integration
of AORE into the problem frames approach is pre-
sented in Section 4. A small experiment for validation
is presented in Section 5. Work related to this paper is
discussed in Section 6. Finally, Section 7 concludes
the paper and presents possible future work.

2 CASE STUDY

To illustrate the application of the AORE4PF method,
we use the real-life case study of smart grids. As
sources for real functional requirements, we consider
diverse documents such as “Application Case Study:
Smart Grid” provided by the industrial partners of
the EU project NESSoS1, the “Protection Profile for
the Gateway of a Smart Metering System” (Kreutz-
mann et al., 2011) provided by the German Fed-
eral Office for Information Security2, and “Require-
ments of AMI (Advanced Multi-metering Infrastruc-
ture”) (OPEN meter project, 2009) provided by the
EU project OPEN meter3.

We define the terms specific to the smart grid do-
main and our use case in the following. The smart

1http://www.nessos-project.eu/
2www.bsi.bund.de
3http://www.openmeter.com/

meter gateway represents the central communication
unit in a smart metering system. It is responsible for
collecting, processing, storing, and communicating
meter data. The meter data refers to readings mea-
sured by smart meters regarding consumption or pro-
duction of a certain commodity. A smart meter rep-
resents the device that measures the consumption or
production of a certain commodity and sends it to the
gateway. An authorized external entity can be a hu-
man or an IT unit that communicates with the gateway
from outside the gateway boundaries through a wide
area network (WAN). The WAN provides the commu-
nication network that interconnects the gateway with
the outside world. The LMN (local metrological net-
work) provides the communication network between
the meter and the gateway. The HAN (home area net-
work) provides the communication network between
the consumer and the gateway. The term consumer
refers to end users of commodities (e.g., electricity).

For the rest of the paper, we have chosen a small
selection of requirements to exemplify our method.
These requirements are part of the 13 minimum
use cases defined for a smart meter gateway given
in the documents of NESSoS and the open meter
project. The considered use cases are concerned with
gathering, processing, and storing meter readings
from smart meters for the billing process. The
requirements are described as follows:

(R1) Receive Meter Data. The smart meter gateway
shall receive meter data from smart meters.

(R17) New Firmware. The gateway should accept a
new firmware from authorized external entities. The
gate shall log the event of successful verification of a
new version of the firmware.

(R18) Activate New Firmware. On a predetermined
date the gateway executes the firmware update. The
gateway shall log the event of deploying a new
version of the firmware.

(R28) Prevent Eavesdropping. The Gateway should
provide functionality to prevent eavesdropping. The
gateway must be capable of encrypting communi-
cations and data by the safest and best encryption
mechanisms possible.

(R29) Privacy and Legislation. Many countries pro-
tect customers’ and people’s rights by laws, to ensure
that personal and confidential information will not
be disclosed easily within communicating systems.
Grid systems shall not be a way to reveal information.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

146



Description
Informal

Requirements
Base

Diagrams
Problem
Base

Specifications
Problem
Base

Requirements
Quality

Relations
Cross−Cut
Preliminary

Requirements
Aspect
Preliminary

Requirements
Quality
Preliminary

Aspect
Requirements

Relations
Cross−Cut

Specifications
Problem
Weaved

Relations
Weaving

Diagrams
Problem
Aspect
Consolidated

Diagrams
Problem
Base
Consolidated

Specifications
Problem
Weaved
Consolidated

Relations
Weaving
Consolidated

Specifications
Problem
Aspect

Diagrams
Problem
Aspect

Document

Requirements

Classify Requirements
Base
Model

Qualities
Underlying

Identify

Analyse

Completeness Requirements
Aspect
Model Weave

Requirements

o
u

tp
u

t
in

p
u

t 
/

o
u

tp
u

t
in

p
u

t 
/

information flow control flow Activity generated automatically generated semi−automatically

Analyze

Interactions

p
ro

c
e

s
s

Figure 1: The AORE4PF method.

3 UML-BASED PROBLEM
FRAMES

Problem frames are a means to describe software de-
velopment problems. They were proposed by Jack-
son (Jackson, 2001), who describes them as follows:
“A problem frame is a kind of pattern. It defines an
intuitively identifiable problem class in terms of its
context and the characteristics of its domains, inter-
faces and requirement.” It is described by a frame
diagram, which consists of domains, interfaces be-
tween domains, and a requirement. We describe prob-
lem frames using UML class diagrams extended by
stereotypes as proposed by Hatebur and Heisel (Hate-
bur and Heisel, 2010). All elements of a problem
frame diagram act as placeholders, which must be in-
stantiated to represent concrete problems. Doing so,
one obtains a problem diagram that belongs to a spe-
cific class of problems.

Figure 2 shows a problem diagram in UML no-
tation. The class with the stereotype �machine�
represents the thing to be developed (e.g., the soft-
ware). The classes with some domain stereotypes,
e.g., �causalDomain� or �lexicalDomain� represent
problem domains that already exist in the applica-
tion environment. Jackson distinguishes the domain
types causal domains that comply with some physi-
cal laws, lexical domains that are data representations,
biddable domains that are usually people, and con-
nection domains that mediate between domains.

Domains are connected by interfaces consisting
of shared phenomena. Shared phenomena may be
events, operation calls, messages, and the like. They
are observable by all connected domains, but con-
trolled by only one domain, as indicated by an ex-
clamation mark. For example, in Figure 2 the nota-
tion LMN!fforwardDatag means that the phenomenon in
the set fforwardDatag is controlled by the domain LMN
and observable by the machine domain SMGReceiver,

which is connected to it. These interfaces are rep-
resented as associations, and the name of the associ-
ations contain the phenomena and the domains con-
trolling the phenomena.

In Figure 2, the lexical domain TemporaryMeterData
is constrained and the SmartMeter is referred to, be-
cause the machine SMGReceiver has the role to request
meter data from the SmartMeter and store the response
as TemporaryMeterData for satisfying requirement R1.
These relationships are modeled using dependencies
that are annotated with the corresponding stereotypes.

The full description for Figure 2 is as follows:
The causal domain SmartMeter controls the sendData
command, which is forwarded by the LMN and finally
observed by the machine domain SMGReceiver. The
SMGReceiver controls the phenomenon writeTemporary-
Data, which stores the received information in the
lexical domain TemporaryMeterData. Additionally, the
SMGReceiver can requestData which is forwarded by
the LMN to the SmartMeter. The connection domain
LMN forwards the data and requests it observes. The re-
quirement R1 constrains the TemporaryMeterData and
refers to the SmartMeter.

Software development with problem frames pro-
ceeds as follows: first, the environment in which the
machine will operate is represented by a context di-
agram. Like a problem diagram, a context diagram
consists of domains and interfaces. However, a con-
text diagram contains no requirements. Then, the
problem is decomposed into subproblems. If ever
possible, the decomposition is done in such a way that

Figure 2: Problem Diagram R1: Receive Meter Data.

Aspect-oriented�Requirements�Engineering�with�Problem�Frames

147



the subproblems fit to given problem frames. To fit
a subproblem to a problem frame, one must instan-
tiate its frame diagram, i.e., provide instances for its
domains, phenomena, and interfaces. The UML4PF
framework provides tool support for this approach. A
more detailed description can be found in (Côté et al.,
2011).

4 METHOD

An illustration of our method is given in Figure 1.
The initial input for our method is a textual infor-
mal description of the requirements the system-to-be
shall fulfill. These requirements are classified into
preliminary aspect requirements (or short aspects),
which are functional and cross-cutting, preliminary
quality requirements (or short qualities), which are
non-functional and cross-cutting, and base require-
ments (or short bases), which are not cross-cutting.
Additionally, the relations between requirements and
aspects or qualities are documented as preliminary
cross-cut relations. Then all identified base require-
ments are modeled following the problem frames ap-
proach introduced in Section 3, such that for each
base requirement a base problem diagram is created.
Additionally, we create a sequence diagram for each
problem diagram. The sequence diagrams serve as a
base problem specification. To prepare the complete-
ness analysis, we identify for all preliminary aspect
requirements the underlying qualities they address.
The already known preliminary quality requirements
can aid the identification. As a result, we get a set of
quality requirements. Based on the identified quality
and base requirements, we can analyze whether there
is a cross-cut relation between a quality requirement
and a base requirement not discovered yet. Thus, we
analyze the completeness of the preliminary cross-
cut relations and update them if necessary. The re-
sults are a set of cross-cut relations and also updated
aspect requirements. Next, the aspect requirements
are modeled in a similar way as requirements using
specialized problem diagrams, called aspect problem
diagrams. Again, we specify the machine behav-
ior using sequence diagrams, which results in aspect
problem specifications. For the next step, weave re-
quirements, the base problem specifications and as-
pect problem specifications are weaved to fulfill the
base and aspect requirements as defined by the base
problem diagrams and aspect problem diagrams. For
the weaving, we have to accomplish two activities.
First, we define the weaving relations. These relations
refine the cross-cut relations. Then, we can automat-
ically generate for each requirement a weaved prob-

lem specification representing the weaved system be-
havior. Last, we have to analyze the base and aspect
problem diagrams for unwanted interactions, such as
conflicts. The weaving relations and the weaved prob-
lem specifications can support this activity. The re-
sults of this step are consolidated base and aspect
problem diagrams as well as consolidated weaving
relations and problem specifications. We will discuss
all steps of our method in detail in the following sec-
tions.

4.1 Classify Requirements

As a first step, we have to identify and analyze the
requirements contained in the informal description.
We have to separate and classify these requirements
as they will be treated differently afterwards. A re-
quirement can be 1) a base, which is functional and
not cross-cutting, 2) an aspect, which is functional
and cross-cutting, and 3) a quality, which is non-
functional and cross-cutting. Note that we see quality
requirements as requirements, which are not opera-
tionalized to an aspect right now. Hence, there is a
clear relation between qualities and aspects, and we
will later on refine qualities to aspects. Normally,
statements in an informal description are not given
that clear-cut as given by the three discussed classes
of requirements. Hence, one can find requirements
mixing different classes, for example, aspects are al-
ready combined with the corresponding bases or qual-
ities are mentioned in the according bases. In con-
sequence, identifying statements which constitute re-
quirements is only half of the job, but also a separa-
tion of mixed requirements has to be performed.

First, we separate functional and quality require-
ments. A tool like OntRep (Moser et al., 2011) can
support the requirements engineer in this step. This
way we identify R29 as requirement containing two
quality requirements (R29A and R29B) and R28 con-
taining one quality (R28A) and one functional require-
ment (R28B):

(R28A) Security. The Gateway should provide func-
tionality to prevent eavesdropping. [. . . ]

(R29A) Privacy. [. . . ] to ensure that personal and
confidential information will not be disclosed easily
within communicating systems. Grid systems shall
not be a way to reveal information.

(R29B) Compliance. Many countries protect cus-
tomers’ and people’s rights by laws, [. . . ]

Thus, we have identified and separated the prelimi-
nary quality requirements.

Second, we have to analyze the functional require-
ments for aspects and separate them. For this ac-

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

148



tivity tools like EA-Miner (Sampaio et al., 2007),
Theme/Doc (Baniassad and Clarke, 2004) or REAs-
sistant4 can aid the requirements engineer. This way
we identify the following two aspects:

(R28B) Encryption. [. . . ] The gateway must be ca-
pable of encrypting communications and data by the
safest and best encryption mechanisms possible.

(R30) Logging. The gate shall log the occurring im-
portant events.

Note that while eavesdropping is already formulated
as separate aspect, logging is introduced as a new as-
pect that is extracted from R17 and R18 which both
contain the logging aspect:

(R17B) New Firmware: Logging. The gate shall log
the event of successful verification of a new version of
the firmware.

(R18B) Activate New Firmware: Logging. The
gateway shall log the event of deploying a new ver-
sion of the firmware.

Thus, we have identified and separated the prelimi-
nary aspect requirements.

The remaining functional requirements form the
base requirements for our system:

(R1) Receive Meter Data. The smart meter gateway
shall receive meter data from smart meters.

(R17A) New Firmware. The gateway should accept
a new firmware from authorized external entities.

(R18A) Activate New Firmware. On a predeter-
mined date the gateway executes the firmware update.

We document the relations between the separated
functional, quality, and aspect requirements in a pre-
liminary cross-cut relation table. These relations are
given in Table 1 with crosses in italic. If a require-
ment is separated into a functional requirement (base
or aspect) and a quality, then we add a cross in the
corresponding cell of the table. In Table 1, we doc-
umented that the aspect R28B is related to the quality
R28A. If functional requirements are separated into
base and aspect requirements, then we also add re-
spective crosses. In Table 1, we documented that the
aspect R30 cross-cuts the base requirements R17A and
R18A. Note that everything given in bold is discov-
ered later on in the annotated step (x).

4.2 Model Base Problems

In this step, we model the functional requirements
identified in the previous step. For each functional re-

4https://code.google.com/p/reassistant/

Table 1: Requirements (Cross-Cut) Relation Table for the
Smart Grid Scenario.

Quality Aspect

R28A R29A R29B R31 R28B
R30

(R17B,
R18B)

Base R1 X4 X4 X4 X4 X4 X4

R17A X4 X3 X4 X
R18A X3 X

Quality R28A I7 I7 I7 X
R29A I7 I7 I7 X4

R29B I7 I7 I7 X4 X4

R31 I7 I7 I7 X3

quirement, we create a problem diagram as proposed
by the problem frames approach introduced in Sec-
tion 3. For reasons of space, we only show the prob-
lem diagrams for the requirements R1 and R17A, but
these two problem diagrams are sufficient to under-
stand the rest of the paper, even though we use the five
selected requirements for exemplifying our method.
The problem diagram for R1 is shown in Figure 2 and
explained in Section 3. Figure 3 shows the problem
diagram for R17A. The biddable domain Authorized-
ExternalEntity controls the updateFirmware command,
which is observed by the connection domain WAN.
The SMGFirmwareStorage controls the phenomenon
storeNewFirmware, which is observed by the lexical do-
main FirmwareUpdate. The WAN forwards the firmware
update it observes. The requirement R17A (for a tex-
tual description see Section 2) constrains the Firmware-
Update and refers to the AuthorizedExternalEntity.

For every problem diagram, we have to provide
a reasoning, called frame concern (Jackson, 2001),
why the specification of the submachine together with
the knowledge about the environment (domain knowl-
edge) leads to the satisfaction of the requirement. To
visualize how frame concern is addressed in the spe-
cific problems, we create at least one sequence dia-
gram for each problem diagram. These sequence dia-
grams describe the specification (behavior of the ma-
chine) and the domain knowledge (behavior of the do-
mains) which is necessary to satisfy the requirement.
How to systematically create the sequence diagrams
is out of scope of this paper, but the approach pre-
sented by Jackson and Zave (Jackson and Zave, 1995)
can be used for this task. Figure 4 shows the se-
quence diagram for the sub-problem New Firmware..
The interaction is started by an AuthorizedExternalEn-
tity causing the phenomenon updateFirmware (require-
ment). This request is forwarded via the WAN to
the sub-machine SMGFirmwareStorage (domain knowl-

Figure 3: Problem Diagram R17A : New Firmware.

Aspect-oriented�Requirements�Engineering�with�Problem�Frames

149



Figure 4: Sequence diagram for R17A.

edge). The sub-machine then performs a verification
on the received firmware update (specification). In
the case of a successful verification, the new firmware
is stored in the lexical domain FirmwareUpdate (spec-
ification). Hence, the gateway accepts new firmware
from authorized external entities (requirement).

4.3 Identify Underlying Qualities

In order to check whether the cross-cut relation is
complete, we identify for all aspects the software
qualities they address. Note that the relationship be-
tween aspects and qualities is many-to-many. That
is, an aspect can address multiple software qualities.
For example, the logging of system events possibly
addresses the software qualities accountability, trans-
parency, maintainability, performance, and traceabil-
ity. On the other hand, a software quality can be ad-
dressed by multiple aspects, for example, the software
quality confidentiality could be addressed by the fol-
lowing aspects: encryption, authentication and autho-
rization, and data minimization. For the identification
of underlying qualities tools such as QAMiner (Rago
et al., 2013) can be used. This way we discover that
in our case the aspect R30 has the underlying quality
maintainability:

(R31) Maintainability. All events which are useful
to trace a malfunction of the gateway shall be logged.

4.4 Analyze Completeness

Based on the identified qualities, we can re-use
quality-dependent analysis techniques on problem
frames to check the completeness of the cross-cut
relation. For example, for privacy one can use the
ProPAn method (Beckers et al., 2014), the law (iden-
tification) pattern method (Faßbender and Heisel,
2013) provides guidance for compliance, security is
covered by the PresSuRE method (Faßbender et al.,
2014), and so forth. These analysis techniques iden-
tify for a given problem frames model and the re-
spective quality in which functional requirements the
quality has to be considered. At this point of our
method, we have all inputs that the analysis tech-
niques need. Using the results of the analysis tech-
niques, we can update the cross-cut relation and check

whether the selected aspects together with the de-
fined cross-cut relation guarantee the intended soft-
ware qualities. In this way, we identify that, for ex-
ample, several qualities are relevant for R1. Privacy
(R29A) is relevant as the consumption data metered
by the smart meters enables one to analyze what the
persons in the household are currently doing. Hence,
the consumption data is an asset which has to be pro-
tected. As result, the security analysis also shows
that the consumption data has to be protected against
eavesdropping (R28A). Maintainability (R31) is also
relevant for R1, as a malfunction can also occur while
receiving consumption data. The compliance anal-
ysis (R29B) reveals and strengthens the importance
of privacy because of different data protection acts.
Additionally, the logging mechanism is not only rel-
evant for maintainability but also for compliance as
several laws require the fulfillment of accountability
requirements whenever there is a contractual relation
between different parties. The already existing as-
pect requirements are sufficient to cover the newly
found relations. This information is used to update
the cross-cut relation table (see Table 1).

4.5 Model Aspect Requirements

To model aspect requirements in a similar way
as base requirements, we extended the UML pro-
file of the UML4PF tool with aspect-oriented con-
cepts. The AORE4PF UML profile is shown in
Figure 5. To differentiate aspect requirements,
the machines that address them, and the diagram
they are represented in, from base requirements
and their machines and diagrams, we introduce
the new stereotypes �Aspect�, �AspectMachine�,
and �AspectDiagram� as specialization of the
stereotypes�Requirement�,�ProblemDiagram�, and
�Machine�, respectively. In addition to problem di-
agrams, an aspect diagram has to contain a set of join
points, which together form a pointcut. These join
points can be domains and interfaces. Hence, we in-
troduced the new stereotype �JoinPoint�, which can
be applied to all specializations of the UML meta-
class NamedElement. During the weaving, join points
are instantiated with domains of the problem dia-
grams the aspect cross-cuts.

To create an aspect diagram, we have to identify
the join points which are necessary to combine the
aspect with the base problems it cross-cuts and to un-
derstand the problem of building the aspect machine.
In most cases, we have a machine, besides the aspect
machine, as join point in an aspect diagram. This
machine will be instantiated during the weaving with
the machine of the problem diagram that the aspect is

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

150



Figure 5: AORE4PF UML Profile.

Figure 6: Aspect diagram for aspect requirement R28.

weaved into. The interface between this join point and
the aspect machine describes how a problem machine
can utilize an aspect. We have to define appropriate
interfaces between the aspect machine and the iden-
tified join points, so that the aspect can be combined
with all base requirements in a uniform way. Besides
the specialized stereotypes for the machine and the
requirement, and the definition of join points for the
later weaving, the process of building an aspect di-
agram is similar to the process of building problem
diagrams. As for problem diagrams, we also create a
sequence diagram for each aspect diagram.

For reasons of space, we will only discuss the as-
pect requirement R28 in detail. R28 covers the preven-
tion against eavesdropping attacks in the smart grid
scenario by encrypting all communication. The cor-
responding aspect diagram is presented in Figure 6. It
contains the aspect machine SMGEavesdropping, which
has access to the public and private keys for the en-
cryption and decryption. The keys are stored in the
KeyStorage. Furthermore, the aspect diagram contains
three domains as join points. The machine SMGRe-
quester will be instantiated by a problem machine and
the interface b describes that the problem machine
is able to send a request to SMGEavesdropping in or-
der to decryptData and encryptData. SMGEavesdropping
returns decryptedData and encryptedData, respectively.
The join points Network and SenderReceiver are added
to refer to the network an attacker may eavesdrop and
to the sender or receiver of the data to be transmitted.

Figure 7: Sequence diagram for aspect requirement R28.

Hence, we can have two different scenarios for the as-
pect of preventing eavesdropping. The first scenario
is concerned with the decryption of data a problem
machine received from a sender, and the second sce-
nario is concerned with the encryption of data a prob-
lem machine shall send to a receiver. The sequence
diagram for the first scenario is shown in Figure 7.
The sequence diagram shows that when the machine
SMGRequester receives data from some sender over a
network, it asks the aspect machine SMGEavesdrop-
ping to decrypt the received data (aspect requirement).
Then the aspect machine retrieves the needed public
key from the KeyStorage to decrypt the data in order to
send it back to the machine SMGRequester (specifica-
tion). The sequence diagram for the second scenario
is built in a similar way, but left out due to space lim-
itations.

Note that the modularization of the prevention
against eavesdropping into an aspect allows us to eas-
ily change the encryption mechanism if a better and
newer mechanism is available, so that we are able to
encrypt communications and data by the safest and
best encryption mechanisms possible.

4.6 Weave Requirements

For each base requirement, we now create a sequence
diagram that describes how the aspect requirements
have to be weaved into it to address the cross-cut re-
lation. The basis for the weaving sequence diagram is
the sequence diagram of the requirement. The behav-
ior of the sub-machine is extended with the invocation
of the aspects given by the row of the base require-
ment in the cross-cut relation table (see Table 1).

The cross-cut relation (see Table 1) is not suffi-
cient to weave the aspect requirements into the base
requirement. The reason is that the cross-cut relation
does not define how and when an aspect has to be in-
tegrated into the base problem. We create a table for
each base requirement that defines how the aspects
are integrated into the base problem. A row in the ta-
ble consists of a message of the sequence diagram of
the base requirement, a keyword, and the aspect that
shall be weaved into the requirement. For this paper,
we use the keywords before and after, but we plan to
extend this list, to provide more possibilities to inte-
grate aspects into problems. The keyword describes
whether the aspect has to be integrated before or after
the message. If multiple aspects shall be integrated
before or after a message, we have to define the order
in which the aspects are integrated. Table 2 shows the
refined cross-cut relation for base requirement R17A.

Because of the aspect requirement R28 all commu-
nications have to be encrypted to prevent eavesdrop-

Aspect-oriented�Requirements�Engineering�with�Problem�Frames

151



Figure 8: Weaved sequence diagram for R17A.

Table 2: Refined Cross-cut relation table for R17A.
Message Key Aspect Sequence Diagram
forward-
Update-
Firmware

after Eavesdropping[WAN/Network, Authorized-
ExternalEntity/Sender, SMGFirmware-
Storage/SMGRequester]

storeNew-
Firmware

before Logging[SMGFirmwareStorage/SMG-
Requester]

ping attacks. This implies that all external messages
that a sub-machine receives have to be decrypted.
For R28 we express this in the first row of Table 2.
The row defines that after the message forwardUpdate-
Firmware was received by the sub-machine the se-
quence diagram Eavesdropping of aspect requirement
R28 shall be integrated. Additionally, it is defined
that the join points Network, Sender, and SMGRequester
are instantiated with the domains WAN, AuthorizedEx-
ternalEntity, and SMGFirmwareStorage. In this way, we
addressed the concern that external messages have to
be decrypted in the base requirement R28.

The refined cross-cut relations are used to auto-
matically generate the weaving sequence diagrams
from the sequence diagrams of the problem and as-
pect diagrams. These automatically generated se-
quence diagrams have then to be adjusted, such that
the overall behavior satisfies the weaving require-
ment. The generated sequence diagram is shown in
Figure 8. For the sake of readability, we highlighted
the messages from the integrated aspect specifications
using a bold font. The other messages are the mes-
sages from the problem specification, which form the
basis of the weaving sequence diagram. In accor-
dance with Table 2, the sequence diagrams Eaves-
dropping is integrated after the message forwardUpdate-
Firmware and the sequence diagrams Logging before
the message storeNewFirmwareBase. The latter ad-
dresses the concern that the event of a successful
firmware verification shall be logged (aspect require-
ment R17B). For the presented example, we do not
need further adjustments because it already addresses
the combination of the base requirement with its as-
pect requirements adequately.

4.7 Analyze Interactions

For reasons of space, we do not go into detail for this
step. Alebrahim et al. provide methods for interac-
tion analysis using problem frames. In (Alebrahim
et al., 2014b) functional requirements are treated, and
(Alebrahim et al., 2014a) describes how to analyze
quality requirements for interactions. Both works use
the smart grid as a case study. Hence, we re-used the
methods and results also for this work. The results are
documented in Table 1 using bold I.

5 VALIDATION

To validate our method, we applied it to the crisis
management system (CMS) (Kienzle et al., 2010) that
Kienzle et al. proposed as a case study for aspect-
oriented modeling. We derived an informal scenario
description and the textual use case descriptions from
the original as input for our method5. The method was
executed by a requirements expert, who did not know
the case beforehand. From the information provided
to the requirements analyst, he identified 13 base re-
quirements that he modeled using 10 problem dia-
grams, 8 aspect requirements that he modeled using
5 aspect diagrams, and 6 quality requirements.

The effort spent for conducting our method on
the CMS is summarized in Table 3. It took 5 hours
to classify the requirements. Note that for the case
study this step was done manually. The reason was
that tools such as, for example, OntRep (Moser et al.,
2011) or EA-Miner (Sampaio et al., 2007) require
some additional input like training documents or an
existing ontology. But unfortunately, such inputs
were not available. Hence, the first step can be sped
up significantly using these tools. Another big block

5For the inputs and the results see http://imperia.uni-
due.de/imperia/md/content/swe/aore4pf cms report.pdf

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

152



Table 3: Effort spent (in person-hours/minutes) for conducting the method.

Number of items

Ø per item 11min 36min 7min 7min 34min 23min 6min
Total 5h 00min 6h 3min 45min 1h 15min 2h 51min 3h 53min 1h 45min

Classify 
Requirements

Model Base 
Requirements

Identify 
Underlying 
Qualities

Analyze 
Completeness

Model Aspect 
Requirements

Weave 
Requirements

Analyze 
Interactions

27 
requirements

10 base 
requirements

6 aspect 
requirements

10 base 
requirements

5 aspect 
requirements

10 base 
requirements

16 functional 
requirements

Table 4: Requirements identified.

1)
 F

un
ct

io
na

l

2)
 A

va
ila

bi
lit

y

3)
 R

el
ia

bi
lit

y

4)
 P

er
si

st
en

ce

5)
 R

ea
l-T

im
e

6)
 S

ec
ur

ity

7)
 M

ob
ili

ty

8)
 S

ta
tis

tic
 L

og
gi

ng

9)
 M

ul
ti-

A
cc

es
s

10
) 

S
af

et
y

11
) 

A
da

pt
ab

ili
ty

12
) 

A
cc

ur
ac

y

13
) 

M
ai

nt
ai

na
bi

lit
y

14
) 

P
er

fo
rm

an
ce

15
) 

S
ca

la
bi

lit
y

S
u

m

S
am

e 
C

la
ss Identified 100% 33% 50% 0% 0% 67% 0% 0% 0% 75% 0% 0% 30%

Partly 0% 0% 0% 0% 0% 33% 0% 0% 0% 0% 0% 0% 3%

Not Identified 0% 0% 0% 0% 0% 0% 33% 0% 0% 25% 0% 75% 13%

O
th

er
 C

la
ss Identified As 13) 2) 1) 14) 1) 1) 15) 1) 1)

Identified 0% 67% 50% 100% 67% 0% 67% 100% 100% 0% 25% 25% 45%

Partly 0% 0% 0% 0% 33% 0% 0% 0% 0% 0% 75% 0% 10%

A
g

g
re

g
at

ed Identified 100% 100% 100% 100% 67% 67% 67% 100% 100% 75% 25% 25% 75%

Partly 0% 0% 0% 0% 33% 33% 0% 0% 0% 0% 75% 0% 13%

Not Identified 0% 0% 0% 0% 0% 0% 33% 0% 0% 25% 0% 75% 13%

of effort is the modeling of base and aspect require-
ments. Here the tool support already helps to speed up
the modeling, but is subject for further improvement.
Note that the modeling steps do not only include the
modeling itself, but also the analysis and improve-
ment of the original requirements, which make the
requirements more precise and unambiguous. There-
fore, parts of the effort spend on the modeling steps
are unavoidable even when using another method or
notation. And the modeling itself pays off as it allows
the usage of the broad spectrum of methods and tools
which need problem frame models as input. For ex-
ample, the analysis of completeness uses these mod-
els and takes about an hour for different kinds of qual-
ities. The weaving of aspects is quite time consuming
right now. Here the tool support is on an experimen-
tal level, but the observations taken during the case
study imply that a full fledged tool support will signif-
icantly drop the effort. The interaction analysis takes
round about two hours, which is significantly below
the effort of doing such an analysis without a prob-
lem frame model (see (Alebrahim et al., 2014b) for
further information). All the effort spent sums up to
21,5 person hours, which is significant but reasonable
with regards to the results one gets. And compared
to efforts other authors report, the effort spent for our

method seems to be even low. For example, Landuyt
et al. (Landuyt et al., 2010) report an effort spent for
their method of 170 hours for the requirements engi-
neering related activities,

To asses the sufficiency of the method and the
used tools, the requirements and qualities found
within our method were compared to the original doc-
ument as described by Kienzle et al. Table 4 shows
the comparison. Overall, the results are satisfying as
most requirements were found and classified in the
correct class (30%) or in another, also correct, class
(45%). The high amount of requirements classified
differently are due to specific classes given in the orig-
inal documents. For example, persistence and statis-
tical logging were completely described as functional
requirements in the documents but treated as quali-
ties. For such requirements it is a more general dis-
cussion if they are quality requirements or not. Hence,
we accepted both views as correct. For some specific
qualities, such as mobility or accuracy, the overall ob-
servation cannot be acknowledged. The reasons are
subject to further investigations.

To asses the aspects identified, we compared the
results of our method to the results given in other pub-
lications considering requirements engineering using
the same scenario (Landuyt et al., 2010; Mussbacher

Aspect-oriented�Requirements�Engineering�with�Problem�Frames

153



Table 5: Aspects identified.

Found and separated 83% 75%
Found and not separated 17% 25%
Not Found 0% 0%

Not Mentioned 38% 25%

Landuyt et al., 2010 Mussbacher et al.,2010

et al., 2010). The result of the comparison is shown in
Table 5. Overall, our results are very similar. The
result of applying our method includes all require-
ments which are treated as aspects in the other works.
And most of these found requirements are also sepa-
rated as aspects by our method (Row “Found and sep-
arated”). Only a minor number was not treated as as-
pect (Row “Found and not separated”), but a detailed
investigation showed that both views on these require-
ments are reasonable. The indicator, “Found and sep-
arated”, computes as ((requirement present as aspect
in both documents ) / (requirements present as aspect
in the publication at hand)). In respect, “Found and
not separated”, computes as ((requirement present in
both documents but not as aspect in our results) /
(requirements present as aspect in the publication at
hand)). Some of the aspects our method found were
not mentioned in the other works (Row “Not Men-
tioned”). This indicator computes as ((requirements
only present in our result) / (all requirements present
in our results)). Reasons for the missing requirements
might be that they were not reported due to lack of
space or that they were not found.

We could not asses our completeness analysis
quantitatively as the other works using the scenario
stick to the original requirements. But the qualitative
investigation of the completeness analysis showed
reasonable results. This observation is also true for
the cross cut relations. We also compared the weaved
specification with sequence diagrams or state ma-
chines given by the original document and works in
(Kienzle et al., 2010). Here we observed that the
specifications produced by our method were at least
as good as the chosen assessment artifacts. Again,
the interaction analysis could not be assessed quan-
titatively due to missing benchmarks. But the found
interactions seemed to be real problems which have
to be resolved in a real case.

6 RELATED WORK

There are many works considering early aspects
(Rashid, 2008; Yu et al., 2004; Jacobson and Ng,
2004; Whittle and Araujo, 2004; Sutton and Rou-
vellou, 2002; Moreira et al., 2005; Grundy, 1999).
Most of these approaches deal with goal-oriented ap-

proaches and use-case models. But goal or use-
case models are of a higher level of abstraction
than problem frames. Additionally, goal and use-
case models are stakeholder-centric, while problem
frames are system-centric. Therefore, refining func-
tional requirements taking into account more de-
tail of the system-to-be and analyzing the system-
to-be described by the functional requirements is re-
ported to be difficult for such methods (Alrajeh et al.,
2009). Recently, there were papers which reported a
successful integration of goal- and problem-oriented
methods (Mohammadi et al., 2013; Beckers et al.,
2013). Hence, one might benefit from integrating
goal-models in our method.

Conejero et al. (Conejero et al., 2010) present a
framework alike the method presented in this paper.
Their process also starts with unstructured textual re-
quirements. Then different tools and modeling nota-
tions are used along the frame work to identify and
handle aspects. In difference to our process, they do
not consider a completeness or interaction analysis
and especially for the modeling of aspects they lack
tool support.

Only few approaches consider the integration
of early aspects in the problem frames approach.
Lencastre et al. (Lencastre et al., 2008) also inves-
tigated how early aspects can be integrated into prob-
lem frames. Their method to model aspects in the
problem frames approach differs from ours. For an
aspect, the authors first select a problem frame as PF
Pointcut Scenario. This pointcut scenario defines into
which problems the aspect can be integrated. The
pointcut scenario is then extended to the PF Aspec-
tual Scenario, which is similar to our aspect diagrams,
with the difference that the pointcut always has to be
a problem frame. This reduces flexibility, because an
aspect (e.g., logging of all system events) may have to
be integrated into different problem diagrams.

7 CONCLUSIONS

In this paper, we presented the AORE4PF method
which integrates aspect-orientation and the problem
frames approach. We extended the UML4PF profile
with stereotypes that allow us to create aspect dia-
grams. We further introduced a structured methodol-
ogy to separate aspects from requirements, to model
aspects, and to weave aspects and requirements to-
gether. We considered both the static and the be-
havioral view on the requirements, aspects, and their
weaving. We exemplified our method using a smart
grid scenario from the NESSoS project as case study
and validated it using a crisis management system.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

154



The contributions of this work are 1) the integra-
tion of aspects into the problem frames approach, 2)
a structured way of separating base, quality and as-
pect requirements, starting from a textual description,
3) the detection of implicit qualities given by aspects,
4) identification of all base requirements relevant for a
quality and the related aspects, 5) a structured method
to weave base and aspect requirements, and 6) the in-
tegration of an interactions analysis between the re-
sulting requirements. The AORE4PF method is 7)
tool-supported in most steps.

For future work, we plan to improve the tool sup-
port and provide an integrated tool chain. Addition-
ally, we plan to integrate our new model elements into
more already existing methods and analyses based on
UML4PF to cover a broader spectrum of qualities.

ACKNOWLEDGEMENTS

Part of this work is funded by the German Research
Foundation (DFG) under grant number HE3322/4-2.

REFERENCES

Alebrahim, A., Choppy, C., Faßbender, S., and Heisel, M.
(2014a). Optimizing functional and quality require-
ments according to stakeholders’ goals. In System
Quality and Software Architecture. Elsevier. to appear.

Alebrahim, A., Faßbender, S., Heisel, M., and Meis, R.
(2014b). Problem-based requirements interaction
analysis. In Requirements Engineering: Foundation
for Software Quality, volume 8396 of LNCS, pages
200–215. Springer.

Alrajeh, D., Kramer, J., Russo, A., and Uchitel, S. (2009).
Learning operational requirements from goal models.
In IEEE 31st International Conference on Software
Engineering, pages 265–275. IEEE Computer Soci-
ety.

Baniassad, E. and Clarke, S. (2004). Finding as-
pects in requirements with Theme/Doc. In Early
Aspects: Aspect-Oriented Requirements Engi-
neering and Architecture Design, pages 15–22.
http://trese.cs.utwente.nl/workshops/early-aspects-
2004/workshop papers.htm.

Beckers, K., Faßbender, S., Heisel, M., and Meis, R.
(2014). A problem-based approach for computer
aided privacy threat identification. In Privacy Tech-
nologies and Policy, volume 8319 of LNCS, pages 1–
16. Springer.

Beckers, K., Faßbender, S., Heisel, M., and Paci, F. (2013).
Combining goal-oriented and problem-oriented re-
quirements engineering methods. In Availability, Reli-
ability, and Security in Information Systems and HCI,
volume 8127 of LNCS, pages 178–194. Springer.

Boehm, B. W. and Papaccio, P. N. (1988). Understanding
and controlling software costs. IEEE Transactions on
Software Engineering, 14(10):1462–1477.

Cavusoglu, H., Mishra, B., and Raghunathan, S. (2004).
The effect of internet security breach announce-
ments on market value: Capital market reactions for
breached firms and internet security developers. In-
ternational Journal of Electronic Commerce, 9(1):70–
104.

Conejero, J. M., Hernandez, J., Jurado, E., and van den
Berg, K. (2010). Mining early aspects based on syn-
tactical and dependency analyses. Science of Com-
puter Programming, 75(11).

Côté, I., Hatebur, D., Heisel, M., and Schmidt, H. (2011).
UML4PF - a tool for problem-oriented requirements
analysis. In Proceedings of the 19th IEEE Interna-
tional Requirements Engineering Conference, pages
349–350. IEEE Computer Society.

Faßbender, S. and Heisel, M. (2013). From problems
to laws in requirements engineering using model-
transformation. In ICSOFT ’13, pages 447–458.
SciTePress.

Faßbender, S., Heisel, M., and Meis, R. (2014). Functional
requirements under security pressure. In ICSOFT ’14.
SciTePress. to appear.

Firesmith, D. (2003). Specifying good requirements.
Journal of Object Technology, 2(4):77–87.
http://www.jot.fm/issues/issue 2003 07/column7.

Grundy, J. C. (1999). Aspect-oriented requirements engi-
neering for component-based software systems. In
Proceedings of the IEEE International Symposium on
Requirements Engineering, pages 84–91, Washington,
DC, USA. IEEE Computer Society.

Hatebur, D. and Heisel, M. (2010). A UML profile for re-
quirements analysis of dependable software. In Com-
puter Safety, Reliability, and Security, volume 6351 of
LNCS, pages 317–331. Springer.

Hofmann, H. and Lehner, F. (2001). Requirements engi-
neering as a success factor in software projects. IEEE
Software, 18(4):58–66.

Jackson, M. (2001). Problem Frames. Analyzing and
structuring software development problems. Addison-
Wesley.

Jackson, M. and Zave, P. (1995). Deriving specifications
from requirements: an example. In ICSE, USA, pages
15–24. ACM Press.

Jacobson, I. and Ng, P.-W. (2004). Aspect-Oriented Soft-
ware Development with Use Cases. Addison-Wesley
Professional.

Khansa, L., Cook, D. F., James, T., and Bruyaka, O. (2012).
Impact of HIPAA provisions on the stock market value
of healthcare institutions, and information security
and other information technology firms. Computers
& Security, 31(6):750 – 770.

Kienzle, J., Guelfi, N., and Mustafiz, S. (2010). Crisis man-
agement systems: A case study for aspect-oriented
modeling. In Katz, S., Mezini, M., and Kienzle, J., ed-
itors, Transactions on Aspect-Oriented Software De-
velopment VII, volume 6210 of LNCS, pages 1–22.
Springer.

Aspect-oriented�Requirements�Engineering�with�Problem�Frames

155



Kreutzmann, H., Vollmer, S., Tekampe, N., and Abromeit,
A. (2011). Protection profile for the gateway of a
smart metering system. Technical report, BSI.

Landuyt, D., Truyen, E., and Joosen, W. (2010). Discovery
of stable abstractions for aspect-oriented composition
in the car crash management domain. In Transac-
tions on Aspect-Oriented Software Development VII,
volume 6210 of LNCS, pages 375–422. Springer.

Lencastre, M., Moreira, A., Araújo, J., and Castro, J.
(2008). Aspects composition in problem frames. In
Proceedings of the 16th IEEE International Require-
ments Engineering Conference, pages 343–344. IEEE
Computer Society.

Mohammadi, N. G., Alebrahim, A., Weyer, T., Heisel, M.,
and Pohl, K. (2013). A framework for combining
problem frames and goal models to support context
analysis during requirements engineering. In Avail-
ability, Reliability, and Security in Information Sys-
tems and HCI, volume 8127 of LNCS, pages 272–288.
Springer.

Moreira, A., Arajo, J., and Rashid, A. (2005). A concern-
oriented requirements engineering model. In Pastor,
O. and Falco e Cunha, J., editors, Advanced Infor-
mation Systems Engineering, volume 3520 of LNCS,
pages 293–308. Springer.

Moser, T., Winkler, D., Heindl, M., and Biffl, S. (2011).
Requirements management with semantic technology:
An empirical study on automated requirements cate-
gorization and conflict analysis. In Advanced Infor-
mation Systems Engineering, volume 6741 of LNCS,
pages 3–17. Springer.

Mussbacher, G., Amyot, D., Araújo, J., and Moreira, A.
(2010). Requirements modeling with the aspect-
oriented user requirements notation (AoURN): A case
study. In Transactions on Aspect-Oriented Software
Development VII, volume 6210 of LNCS, pages 23–
68. Springer.

OPEN meter project (2009). Requirements of AMI. Tech-
nical report, OPEN meter project.

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules. Communications of the
ACM, 15(12):1053–1058.

Rago, A., Marcos, C., and Diaz-Pace, J. A. (2013). Uncov-
ering quality-attribute concerns in use case specifica-
tions via early aspect mining. Requirements Engineer-
ing, 18(1):67–84.

Rashid, A. (2008). Aspect-oriented requirements engineer-
ing: An introduction. In Proceedings of the 16th IEEE
International Requirements Engineering Conference,
pages 306–309. IEEE Computer Society.

Sampaio, A., Rashid, A., Chitchyan, R., and Rayson, P.
(2007). Ea-miner: Towards automation in aspect-
oriented requirements engineering. In Transactions
on Aspect-Oriented Software Development III, vol-
ume 4620 of LNCS, pages 4–39. Springer.

Sutton, Jr., S. M. and Rouvellou, I. (2002). Modeling of
software concerns in cosmos. In Proceedings of the
1st International Conference on Aspect-oriented Soft-
ware Development, AOSD ’02, pages 127–133, New
York, NY, USA. ACM.

Whittle, J. and Araujo, J. (2004). Scenario modelling with
aspects. IEE Proceedings Software, 151(4):157–171.

Willis, R. (1998). Hughes Aircraft’s Widespread Deploy-
ment of a Continuously Improving Software Process.
AD-a358 993. Carnegie-Mellon University.

Yu, Y., Cesar, J., Leite, S. P., and Mylopoulos, J. (2004).
From goals to aspects: Discovering aspects from re-
quirements goal models. In Proceedings of the 12th
IEEE International Requirements Engineering Con-
ference, pages 38–47. IEEE Computer Society.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

156


