
On Specifying and Verifying Context-aware Systems

Brahim Djoudi, Chafia Bouanaka and Nadia Zeghib
LIRE Laboratory, University of Constantine 2, Constantine, Algeria

Keywords: Context-Aware Adaptive Systems. Formal Methods. Meta-Programming. Model Checking. Maude.

Abstract: Software systems often need to be adapted for different execution environments, problem sets, and available
resources to maintain and ensure their efficiency and reliability, being thus context-aware. Albeit, many
approaches for context-aware systems specification have been proposed in the literature, the absence or poor
representation of contextual information and its relationships with system entities without affecting system
complexity and consistency usually leads to low-precision and irrelevant results. Moreover, it is difficult to
verify the correctness of existing context models. In this paper, we propose a formal model for context-
aware adaptive systems specification. The model also supports formal verification of the obtained system
model through a set of inherent invariants, where context-aware systems behaviour can be verified
according to system invariants by applying model checking techniques.

1 INTRODUCTION

Context-aware systems development and
verification is a very complex task. A means to
overcome such complexity is to adopt a formal
support for modelling this category of applications,
specifying adaptation scenarios and expressing
global properties. A reasonable and desirable formal
method (Gargantini et al, 2009) to use for this scope
should be powerful enough to capture the principal
models of computation and specification methods,
and endowed with a meta-model-based definition
conforming to the underlying meta-modelling
framework. Additionally, it should be able to work
at different levels of abstraction, and be executable,
in order to validate meta-model semantics.

We adopt Maude (Clavel et al., 2008) as a formal
semantic framework for the definition of a domain
specific language for specifying and verifying
context-aware systems. Our approach exploits
mainly the reflection feature and meta-programming
capability of Maude to enrich it with new
constructors to obtain a domain specific language for
context-aware systems specification, called CTXs-
Maude (for ConTeXt-aware systems using Maude).
The language grammar allows designers to specify
context entities, system components and their
relationships in terms of context states and actions to
be performed whenever such states are reached.

The aim of this paper is to promote the ability to
verify context-aware systems by proposing a formal
model. In particular, our formal model establishes a
clear separation of concerns between system and
context entities. The goal is gained by the definition
of a layered model where functional and context
layers are designed in an entirely independent
manner, only relationships or interactions between
them are established via a set of dynamically
generated adaptation strategies.

To establish interactions between functional and
context layers, we propose a management layer
which formulates context changes impact on system
structure and behaviour. The main role of this layer
is to interpret context changes to generate on the fly
strategies to adapt system functionalities in terms of
variations on system structure and/or behaviour.

To manage interactions between context and
functional components, management layer
manipulates two interfaces implemented as two
Loop-Mode objects; one for functional system state
and the other for context state. It also contains a set
of operations to dynamically generate adaptation
strategies and execute them.

Our proposed modelling methodology also
allows verifying context-aware systems by
presenting a systematic process for designing and
verifying them.

The remainder of the paper is organized as
follows: In section 2, we shows a motivating
scenario using Adaptive Cruise Control (ACC)

181Djoudi B., Bouanaka C. and Zeghib N..
On Specifying and Verifying Context-aware Systems.
DOI: 10.5220/0005000101810188
In Proceedings of the 9th International Conference on Software Paradigm Trends (ICSOFT-PT-2014), pages 181-188
ISBN: 978-989-758-037-6
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

system inspired from (Tran et al., 2012). Section 3 is
dedicated to the presentation of our context-aware
specification framework. Formal analysis of the
ACC example in Section 4. Section 5 is evaluates
the proposed model. A short conclusion and
ongoing work round the paper up.

2 MOTIVATING SCENARIO

All concepts introduced in our model are illustrated
through an example of a context-aware system,
namely Adaptive Cruise Control (ACC) inspired
from (Tran et al., 2012). The system consists of a set
of electronic control units (ECUs) that are
distributed and inter-connected over vehicle network
(e.g., CANbus) to dynamically change driving
conditions; e.g., adaptive cruise control, adaptive
fuel management, adaptive suspensions,… etc. We
will be more particularly interested with the
Adaptive Cruise Control unit. The structure of an
ACC consists of five software components
modelling electronic automotive components:
Controller Component, Engine Control Management
Component (ECM), Radar Component, Weather
Management Unit Component (WMU), and Road
Management Unit Component (RMU).

The ACC unit main role is to control vehicle
speed based on driver pre-set parameters. It is able
to adjust it to maintain a safety time gap with a
preceding vehicle, called target. Thus, the ACC
behaviour is tightly dependent on vehicle speed and
distance from the preceding vehicle. It can be
activated in specific contexts only as target detection
by the radar component. In such situation, the ACC
calculates a decelerating distance to match target
speed and maintain the suitable distance. Then, it
enforces vehicle speed deceleration until a matching
point; the relative speed between the two vehicles
becomes zero, is reached.

3 CONTEXT-AWARE SYSTEMS
SPECIFICATION

The formal model proposed here for context-aware
adaptive software systems specification and
verification focuses on context specification and
system/context interactions modelling with respect
to system consistency and safety.

The model is composed of four layers. The top
layer is a sensing one that collects contextual
information using different sensor types (physical

sensors, virtual sensors, logical sensors). Then, the
context layer operates preliminary data filtering and
interpretation of contextual information. The basic
layer is a functional layer providing system core
functionalities. Dynamic interaction between
functional and context layers is established via the
management layer guarantying dynamic adaptation
in a transparent manner.

3.1 Context Elements Specification

Context model serves to specify contextual entities
relevant to system operation and/or adaptation. A
concrete context is defined as any information
characterized by particular states; considered to be
relevant to user interaction with the application and
having an impact on system structure and/or
behaviour. A context element is identified by its
identity, the sensor provider URL (context sources
ID), and context elements states that specify context
possible values and the corresponding system
adaptation. Each context state is defined by a pair of
attributes: a context value and a set of actions to be
performed on system structure and/or state whenever
the context value is reached. Hence, relationship
with functional system is explicitly and clearly
specified via Actions attribute of a context element.

Since Maude (Clavel et al., 2008) allows
specifying modules with user-definable syntax by
exploiting its reflection and meta-programming
properties, we define a domain specific language;
CTXs-Maude, on top of core Maude introducing
new constructors to allow specifying context-aware
adaptive systems. CTXs-Maude grammar will be
illustrated through the adaptive cruise control (ACC)
system.

A context module in CTXs-Maude includes a set
of context descriptions. It has the following syntax:

CTXmod IdMod is /*Context module.*/

/*Context, States...declaration.*/
endctxm

A context element is defined in CTXs-Maude as
follows:

Context IdContext is
 CTXSensor: /*Sensor URL.*/
 CTXState: /*Context States*/

 State:
 CTXValue -> /*Context Value.*/.
 Actions:
 /*Action declaration.*/.
 endact
 endState
 ...
 endctxState
endctx

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

182

Different relevant contexts affecting ACC system
behaviours can be identified. The ACC controller
behaviour tightly depends on the following context
elements:

 Travelling conditions changes (bends,
whether...),

 Vehicle speed (faster than a maximum speed ,
say 100 km/h),

 A safety time gap, a minimum safety time gap
is of 2 seconds, with a preceding vehicle.

The ACC reaction to context fluctuations
includes three main states: closing zone, coasting
zone and matching zone. Closing zone denotes a
state where the vehicle detects a target and starts
calculating a decelerating distance. Coasting, zone
denotes a state where the vehicle starts decelerating.
Matching zone is gained whenever the relative speed
between the two vehicles becomes zero, i.e., default
time gap is of 2 seconds.

For example, when a vehicle travels in a rainy
condition or through sharp bends, the ACC unit
automatically reduces its speed. It resumes the initial
settings when driving conditions become safe (e.g.,
no rain or sharp turns). Using CTXs-Maude syntax,
the ACC-Context is specified in the following
module:

CTXmod ACC-Context is
 CTXSensor: WMU.
 CTXState:
 State :

 CTXValue -> Rainy .
Actions:
ExeAction invoke
 /IdInstance= CTRL
 /Port= PS

 /Request: ReduceSpeed(Rainy).
endact

 endState

 State :
 CTXValue -> Fine .
 Actions:
 ExeAction invoke
 /IdInstance= ctrl
 /Port= PS
 /Requests: PresetSpeed(Fine).
 endact
 endState

...
 endctxState
 endctx

One pertinent clause in a context declaration is the
Actions one, since it specifies system reaction to
context values changes. Two categories of actions
are defined. The first category acts on system state

by enforcing it to execute specific operations; and is
declared using the keyword ExeAction.

ExeAction /*Action name.*/.
/IdInstance=_ /*Instance identifier.*/.
/Port=_ /*Port identifier.*/.
/Request: _ /*Service call.*/.

The second category acts on system structure to
modify its actual configuration; it uses keywords
CptAction, PrtAction...; for adding new instances,
ports, connections, removing an existing one and so
on. For adding a new instance, the following syntax
is used:

CptAction Actionid /*Action Name.*/.
 /Component (_)/*Component Type.*/
 Set IdInstance =_. /*Instance id.*/

Actions clause depends tightly on functional
system adaptation strategies. Each action declaration
type corresponds to a structural/functional
adaptation (Actionid) strategy, to be presented in
the next section. As an example of actions, a target
vehicle detection by the radar component implies the
execution a CalculSpeed service:

Actions :

 ExeAction invoke
 /IdInstance = CTRL /Port = PS

 /Request: CalculSpeed (Closing).
 endact

The above ExeAction declaration corresponds
to the ACC unit reaction. It consists of invoking the
CalculSpeed service which is parameterized with
closing state, on CTRL component via its PS port. In
the same way, other actions and strategies are used
and interpreted by the management layer to generate
on the fly adaptation strategies.

Sometimes, system functionalities and adaptation
actions execution are triggered by a conjunction of
two or more different contexts. This situation is
defined in CTXs-Maude via high level or composed
contexts.

HighCTX IdContext is /* High Context*/
 HCTXState StateID: /*High States */
 BCTXStates : /*Basic Context States*/
 basic ContextID1 '/ ContextValue 'and
 basic ContextID2 '/ ContextValue '.
 Actions:
 /*Action declaration.*/.
 endact
 endHCTXSt
...
endHctx

An example of a high level context represents the
controller component reactivation whenever the
minimum safety requirements are reached in despite

On�Specifying�and�Verifying�Context-aware�Systems

183

of a break being already applied by the driver. Such
situation is specified by a high level context as
follows:

HighCTX VitalSafety is
 HCTXState matchSpeed :

BCTXStates :
Radar / Target-Detected and
VehiclesSpeed / >>Radar.TargetSpeed
and TimeGap / 2seconds .
Actions:

 CptAction resume /Component
 (Controller)set IdInstance = ctr

ExeAction invoke
/IdInstance= CRTL /Port= PS
/Request: ReduceSpeed (Matching).

 endact
 endHCTXSt
 endHctx

VitalSafety context expresses the fact that, even
though the driver has applied a break to take full
control on its vehicle, if the radar detects a preceding
vehicle with a running speed inferior of the actual
speed of the vehicle, the Controller unit might be
reactivated to reduce vehicle speed. After achieving
a minimum time gap of 2 seconds, the Controller is
automatically reactivated. Such high level context is
declared in CTXs-Maude by specifying two distinct
actions. The first one reactivates the Controller if it
is deactivated by executing the resume functional
strategy responsible of activating the CRTL blocked
component. The second action matches the vehicle
speed by invoking the ReduceSpeed (Matching)
service on the resumed component.

The proposed syntax of context components
allows declaring and handling most of anticipated
and unanticipated changes; giving the user a large
flexibility in specifying his application context and
the corresponding system reaction.

3.2 Functional Elements Specification

The system model is viewed as a set of components
that provide system core functionalities. Functional
components are defined and grouped in CTXs-
Maude in a component module as follows:

cmod idMod is /*Component module .*/
 /* ports declaration.*/
 /* Components declaration.*/
 /* Architecture declaration.*/
endcm

A component comprises a set of inner and outer
ports. Each port contains a set of interfaces for
services required or provided by the component. In
CTXs-Maude, an input port specifies services
provided by the component. The implementation of
these operations is defined in a Maude module

attached to the port and implementing the
corresponding services.

The various ports are considered bidirectional;
the same port is used for sending requests and
receiving responses. A connection is established
between two instances of components whenever one
component is providing the service and the other is
requesting it. A component is defined by its inner
and outer ports.

A configuration is an instance of a predefined
architecture, containing components instances that
are created dynamically from components types
already declared in the architecture.

3.3 Managing Context/System
Interactions

Management layer principal role consists of
interpreting and using context changes to generate
adaptation strategies to adapt system functionalities
in terms of variations on application structure and/or
behaviour.

To ensure context/system independence, a strict
separation of concerns is adopted. The only way to
establish interaction channels between instances of
functional and context models are realized via
dynamically generated adaptation strategies. These
strategies are parameterized with actions declared in
the context module declared with respect to CTXs-
Maude. Thus, a generic format of on the fly
strategies adaptation strategies is defined.

Management layer is the core layer of our
framework. It is responsible for parsing and
interpreting context values and forwarding their
impacts on system structure and behaviour.
Management layer is composed of two interfaces
(see Figure 1), one for context input/output and the
other for functional data acquisition to capture
system current state in order to perform the suitable
adaptation actions if needed, and a set of operations
and rules responsible of generating and executing
adaptation strategies.

Figure 1: Management layer structure.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

184

Context and/or system state changes are used as
triggers to evaluate conditions of adaptation.
Management layer uses specific adaptation strategies
to establish relations between context level and
functional level in an abstract manner. On the fly
strategies are generated automatically from
interpreting context actions which represent system
reaction to contextual change and are applied on
functional system state.

To achieve the required reconfiguration on the
considered system according to context changes,
management layer first accesses to context
declaration module to obtain the set of adaptation
actions to be performed on system configuration.
checkCtx and checkValue operations take as
arguments context tuple and context specification
module (CTXs-Maude module) and check if the
newly introduced context identifier and the
corresponding context value exist in the context
module declaration. If the verification succeeds, the
corresponding context actions declarations of
context state clause are returned.
 After interpreting context actions and based on
system state, an on the fly adaptation strategy to be
applied on functional system state is generated. This
is the role of ActionProcessing action. It takes
as arguments context actions declaration and system
state. It recursively applies adaptation actions on the
current system state to accomplish the desired
adaptation operations. The newly obtained system
state and outputs are raised to the Context-Loop and
placed in the corresponding slots.

As an example of on the fly strategies generation
and execution, we consider the situation where the
vehicle is actually traveling on sharp bends. As soon
as sensing layer detects a road shape modification
(bends), context interpreter layer transmits a pair of
values, context identifier and its value, to the
management layer in the following format:

’Context:’RoadStat ’/Value:’Sharp-bends

The management layer generates the corresponding
on the fly strategy that invokes the ACC
ReduceSpeed service. The later systematically
reduces vehicle speed (see Figure 2).

Figure 2: A strategy application result.

Whenever a break is applied, the ACC
component might be disengaged regardless its

current state allowing the driver to take full control
on its vehicle. However, the controller might be
reactivated automatically if VitalSafety context is
reached to maintain safety purposes (see Figure 3).

Figure 3: CTRL component deactivation and resume
strategies.

4 CONTEXT-AWARE SYSTEMS
VERIFICATION

Model Checking (Gagnon et al, 2008) is a formal
verification technique to be applied on a system
abstract model to determine whether a series of
properties are satisfied by the considered system.
According to Gallardo & al (Gallardo and al, 2002),
model checking is one of the most useful results of
research in formal methods to increase software
quality. A model checker is an automatic tool that
confronts two descriptions of system behaviour, one
being considered as the required behaviour and the
other the actual design (Gallardo et al, 2002). The
main usefulness of such a technique is the fact that
the automatic tool, upon encountering an error state,
returns a counterexample illustrating the path taken
to reach that state.

In the present work, we deal with reachability,
safety and liveness properties verification through
the modelling of the ACC system.
Intuitively, reachability property verifies whether a
certain system state is reachable from a given initial
state. Safety properties (Tran et al., 2012) ensure that
nothing bad will ever occur, whereas liveness
properties stipulate that something good will
eventually happen. The Maude search command is
used to check that our ACC formal model satisfies
the considered properties, or violates them by
furnishing a useful counterexample.

The Maude search command (Clavel et al, 2008)
allows exploring system state space, following a
breadth-first strategy in different ways, to verify
whether the given property is violated or not. The
model checking result is either no state violates the
considered invariant or a state violating it together
with the sequence of rewrites being executed from
the initial state to attain such state that is a
counterexample. The search command syntax
conforms to the following general scheme:

Maude>...
Maude> Start vehicle decelerating to

 avoid vehicle deviation

Maude> Instance ctrl Stopped
Maude> ...
Maude> Instance ctrl Resumed
Maude> ctrl maintain save relative
 speed between vehicles

On�Specifying�and�Verifying�Context-aware�Systems

185

search in (ModId) :
(Term-1) (SearchArrow) (Term-2)

 such that (Condition)
.

Where:

 The module ModId specifies where the search
command takes place. It can be omitted;
 Term-1 is the starting term;
 Term-2 is the pattern that has to be reached;
 SearchArrow is an arrow indicating the form

of the rewriting proof from Term-1 until Term-2.
There are different arrow forms :

– =>1 means a rewriting proof consisting of
exactly one step,
– =>+ means a rewriting proof consisting of one
or more steps,
 – =>* means a proof consisting of none, one,
or more steps, and
 – =>! Indicates that only canonical final states
are allowed, that is, states that cannot be further
rewritten.
 Condition specifies an optional property that

has to be satisfied by the reached state; the
syntactic form of the condition is the same as the
one of conditions for conditional equations and
memberships.

The key question in the ACC system is whether
the adaptive behaviour can be applied but still
maintaining critical safety requirements. We are
interested here with the following invariants.

a. The controller disengages whenever the driver
applies a Break Event (safety).

b. If a preceding car is detected, the controller
cannot react since it is deactivated; otherwise
the controller reduces the car speed (liveness).

c. After an Apply-break event, the critical safety
state can always be reached and the controller
might be reactivated automatically
(reachability property).

To achieve the required verification on the
considered system according to context changes, our
runtime environment implements context changes
handling in a module called CTXMod.maude
providing a set of context adaptation strategies to be
performed on system configuration according to
contextual situations. One initial state corresponds
to the state where the driving conditions are suitable
as straight path road. We can now verify the
reachability of a state where the controller
disengages after a user apply break.

By executing the search command (see Figure 4),
Maude model checker finds three states where the

controller is always blocked after an apply break.
Thus, invariant (a) is verified.

Figure 4: Maude console shows verification result.

However, if a preceding car is detected, the
controller cannot react since it is deactivated.

To verify that our model satisfies the invariant
(b) (see Figure 5), we attempt to verify the negation
of such invariant. From an initial state where the
controller is blocked due to a break event, is it
possible to attain a state where the controller is
activated and controls the car speed.

Figure 5: Maude console shows verification result.

No solution is found by the search command.
Thus, there are no states violating the negation of
our invariant.

To ensure safety property or invariant (c), the
controller might be reactivated automatically when
critical safety requirements are in place. This
invariant is verified by the next search command.

Maude>...
Maude> search in CTXMod:
['Context:'UserPrefrence'/Value:
'ApplyBreak'., <ContextModule;
...Ctrl 'Controller BLOKED ...>,
Output]=>* [CTX,< CtxModule; SysConfig ,
Output] such that
CTX = 'Context: 'Radar

'/Value 'Target-Detected '.
And
SysConfig=...Ctrl 'Controller EXECUTED
...
No solution.
Maude>...

Maude> search in CTXMod:
['Context:'RoudStat'/Value:'Straight-path
,< ContextModule; SysConfig >,
Output] =>*[CTX,< CtxModule ; SysConfig ,
Output] such that
CTX == 'Context:'UserPrefrence

'/Value: 'ApplyBreak '.
And
SysConfig ==...Ctrl 'Controller BLOKED…
states: 3 rewrites: 70 in 2675208203ms
cpu (716ms real) (0 rewrites/second)
Solution 1 (state 2)
states: 3 rewrites: 79 in 2675208203ms
cpu (33ms real) (0 rewrites/second)

CTX --> 'Context: 'UserPrefrence '/Value:
'ApplyBreak '.
...
LI --> 'ecm 'ECM EXECUTED..., 'Ctrl
 'Controller BLOKED...
No more solutions.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

186

Table 1: Comparison of current context-aware adaptive systems.

 Reuse
Context

Modelling
System-Context
Relationships

Properties
Verification

User
Conformance

AURA (Garlan et al., 2002) NS PS NS NS NS

SOCAM (Gu et al., 2004) NS PS NS NS NS

MDD (Ayed et al., 2007) PS S S PS S

Tran et al. (Tran et al., 2012) PS PS PS S PS
Ranganathan and Campbell

(Ranganathan and Campbell, 2008)
PS PS PS S PS

Dhaussy et al. (Dhaussy et al. ,2012) PS PS PS PS NS

Our Approach S S S S S

Figure 6: Critical Safety property verification.

5 DISCUSSION

Compared to existing approaches, our model has the
following advantages. Primarily, the proposed
framework design can perform adaptive behaviour
for context-aware systems but still maintaining
system invariant. The separation of concerns
between context model elements and system ones
reduces the design complexity and increases model
reusability and maintainability. The introduced
CTX-Maude specification language supports
hierarchical structures modelling by composing both
context elements and functional components.
The Management runtime layer allows users to
select adaptation actions to be applied without caring
about how these actions are implemented and
executed. Therefore, the software system can
perceive execution context changes and make the
adequate actions in a transparent manner without
any user attention. This feature gives users great
facility and flexibility when using CTXs-Maude.

Additionally, model checking techniques provide
a very good guide of system design correcteness.
The experimental results of Adaptive Cruise Control

safety critical requirements verification reflect that
the proposed model ensure system invariant.

Table 1 resumes a comparative study that we
have realized on some significant works on context-
aware pervasive systems specification and
verification and highlights our contribution
maincharacteristics, where S means that the
requirement is satisfied, NS for non-satisfied
requirement and PS for partially satisfied
requirement.

6 CONCLUSION

In this paper, we have proposed a generic formal
model for context-aware adaptive systems
specification and verification that establishes a clear
separation of concerns between system entities and
context ones. A layered model is defined where
functional system and context layers are designed in
an entirely independent manner. Only relationships
between the two layers are established via a core
layer. The later is responsible of specifying context
changes impact on system functionalities in terms of
variations on application structure and behaviour, by
applying different reconfiguration strategies. These
strategies are parameterized by context values
changes and the associated actions on system
structure, giving the Management layer a high level
of genericity and reusability.

We have adopted Maude as a semantic
framework for the proposed model and exploited its
reflection and meta-programming capabilities to
enrich it with context-awareness concepts. We have
also implemented our model by proposing a runtime
environment for context-aware systems execution.
The runtime environment exploits two Loop-Mode
objects to manage context and system states.
Interactions between the two loops are realized via
ascend and descent operations and strategies.

Maude>...
Maude> search in CTXMod:
['Context:'UserPrefrence'/Value:
'ApplyBreak'., <ContextModule;
...Ctrl 'Controller BLOKED ...>,
Output]=>* [CTX,< CtxModule; SysConfig ,
Output] such that
CTX = 'Context: 'Radar

'/Value 'Target-Detected '.
And
SysConfig=...Ctrl 'Controller EXECUTED
...
No solution.
Maude>...

On�Specifying�and�Verifying�Context-aware�Systems

187

Model validation is realized via the formal
verification of reachability, safety and liveness
properties of a concrete system, the ACC controller
for instance. A set of formal properties expressing
reachability, safety and liveness requirements have
been defined and verified using Maude model
checker.

As future work, we intend to complement our
framework for context-aware systems development
with necessary editors for designing, executing and
verifying the considered systems. We aim to
facilitate the design and readability of systems by
associating graphical representations to the algebraic
specifications defined by CTXs-Maude.

REFERENCES

Gargantini, A., Riccobene, E., Scandurra, P., 2009. 'A
semantic framework for metamodel-based languages.',
Autom. Softw. Eng. Vol 16, pp. 415-454.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Marti-Oliet,
N., Meseguer, J. & Talcott, C., 2008. 'Maude Manual
(version 2.4).

Tran, M. H., Colman, A. W., Han, J. & Zhang, H., 2012.
Modeling and Verification of Context-Aware Systems.
in. ‘APSEC’, IEEE, pp. 79-84.

Gagnon, P., Mokhati, F., Badri, M., 2008. 'Applying
Model Checking to Concurrent UML Models.’
Journal of Object Technology , Vol 7, pp. 59-84.

del Mar Gallardo, M., Merino, P. & Pimentel, E. (2002),
'Debugging UML Designs with Model Checking.',
Journal of Object Technology, Vol 1, pp. 101-117 .

Garlan, D., Siewiorek, D.P., Smailagic, A., Steenkiste,P.
2004. Projet Aura: Towards Distraction-Free
PervasiveComputing. IEEE Pervasive Computing. Vol
1, pp. 22–31.

Gu, T.; Pung, H. K. & Zhang, D. Q. (2004), A middleware
for building context-aware mobile services, in
'Vehicular Technology Conference, 2004. VTC 2004-
Spring. . IEEE Press, Vol 5, pp. 2656-2660.

Ayed, D., Delanote, D., Berbers, Y. 2007. MDD approach
for the development of context-aware applications. In
Proceedings of the 6th international and
interdisciplinary conference on Modeling and using
context, Springer, pp.15-28.

Dhaussy P., Roger T. C., and Frédéric Boniol F., 2012.
Context Aware Model-Checking for Embedded
Software. In Embedded Systems - Theory and Design
Methodology, pp. 167–184.

Ranganathan, A., Campbell, R. H., 2008. Provably Correct
Pervasive Computing Environments, in ‘PerCom’,
IEEE Computer Society, pp. 160-169.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

188

