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Abstract: Software systems often need to be adapted for different execution environments, problem sets, and available 
resources to maintain and ensure their efficiency and reliability, being thus context-aware. Albeit, many 
approaches for context-aware systems specification have been proposed in the literature, the absence or poor 
representation of contextual information and its relationships with system entities without affecting system 
complexity and consistency usually leads to low-precision and irrelevant results. Moreover, it is difficult to 
verify the correctness of existing context models. In this paper, we propose a formal model for context-
aware adaptive systems specification. The model also supports formal verification of the obtained system 
model through a set of inherent invariants, where context-aware systems behaviour can be verified 
according to system invariants by applying model checking techniques. 

1 INTRODUCTION 

Context-aware systems development and 
verification is a very complex task. A means to 
overcome such complexity is to adopt a formal 
support for modelling this category of applications, 
specifying adaptation scenarios and expressing 
global properties. A reasonable and desirable formal 
method (Gargantini et al, 2009) to use for this scope 
should be powerful enough to capture the principal 
models of computation and specification methods, 
and endowed with a meta-model-based definition 
conforming to the underlying meta-modelling 
framework. Additionally, it should be able to work 
at different levels of abstraction, and be executable, 
in order to validate meta-model semantics. 

We adopt Maude (Clavel et al., 2008) as a formal 
semantic framework for the definition of a domain 
specific language for specifying and verifying 
context-aware systems. Our approach exploits 
mainly the reflection feature and meta-programming 
capability of Maude to enrich it with new 
constructors to obtain a domain specific language for 
context-aware systems specification, called CTXs-
Maude (for ConTeXt-aware systems using Maude). 
The language grammar allows designers to specify 
context entities, system components and their 
relationships in terms of context states and actions to 
be performed whenever such states are reached. 

The aim of this paper is to promote the ability to 
verify context-aware systems by proposing a formal 
model. In particular, our formal model establishes a 
clear separation of concerns between system and 
context entities. The goal is gained by the definition 
of a layered model where functional and context 
layers are designed in an entirely independent 
manner, only relationships or interactions between 
them are established via a set of dynamically 
generated adaptation strategies.  

To establish interactions between functional and 
context layers, we propose a management layer 
which formulates context changes impact on system 
structure and behaviour. The main role of this layer 
is to interpret context changes to generate on the fly 
strategies to adapt system functionalities in terms of 
variations on system structure and/or behaviour. 

To manage interactions between context and 
functional components, management layer 
manipulates two interfaces implemented as two 
Loop-Mode objects; one for functional system state 
and the other for context state. It also contains a set 
of operations to dynamically generate adaptation 
strategies and execute them. 

Our proposed modelling methodology also 
allows verifying context-aware systems by 
presenting a systematic process for designing and 
verifying them.  

The remainder of the paper is organized as 
follows: In section 2, we shows a motivating 
scenario using Adaptive Cruise Control (ACC) 
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system inspired from (Tran et al., 2012). Section 3 is 
dedicated to the presentation of our context-aware 
specification framework. Formal analysis of the 
ACC example in Section 4. Section 5 is evaluates 
the proposed model.  A short conclusion and 
ongoing work round the paper up. 

2 MOTIVATING SCENARIO  

All concepts introduced in our model are illustrated 
through an example of a context-aware system, 
namely Adaptive Cruise Control (ACC) inspired 
from (Tran et al., 2012). The system consists of a set 
of electronic control units (ECUs) that are 
distributed and inter-connected over vehicle network 
(e.g., CANbus) to dynamically change driving 
conditions; e.g., adaptive cruise control, adaptive 
fuel management, adaptive suspensions,… etc. We 
will be more particularly interested with the 
Adaptive Cruise Control unit. The structure of an 
ACC consists of five software components 
modelling electronic automotive components: 
Controller Component, Engine Control Management 
Component (ECM), Radar Component, Weather 
Management Unit Component (WMU), and Road 
Management Unit Component (RMU). 

The ACC unit main role is to control vehicle 
speed based on driver pre-set parameters. It is able 
to adjust it to maintain a safety time gap with a 
preceding vehicle, called target. Thus, the ACC 
behaviour is tightly dependent on vehicle speed and 
distance from the preceding vehicle. It can be 
activated in specific contexts only as target detection 
by the radar component. In such situation, the ACC 
calculates a decelerating distance to match target 
speed and maintain the suitable distance. Then, it 
enforces vehicle speed deceleration until a matching 
point; the relative speed between the two vehicles 
becomes zero, is reached. 

3 CONTEXT-AWARE SYSTEMS 
SPECIFICATION 

The formal model proposed here for context-aware 
adaptive software systems specification and 
verification focuses on context specification and 
system/context interactions modelling with respect 
to system consistency and safety.  

The model is composed of four layers. The top 
layer is a sensing one that collects contextual 
information using different sensor types (physical 

sensors, virtual sensors, logical sensors). Then, the 
context layer operates preliminary data filtering and 
interpretation of contextual information. The basic 
layer is a functional layer providing system core 
functionalities. Dynamic interaction between 
functional and context layers is established via the 
management layer guarantying dynamic adaptation 
in a transparent manner. 

3.1 Context Elements Specification 

Context model serves to specify contextual entities 
relevant to system operation and/or adaptation. A 
concrete context is defined as any information 
characterized by particular states; considered to be 
relevant to user interaction with the application and 
having an impact on system structure and/or 
behaviour. A context element is identified by its 
identity, the sensor provider URL (context sources 
ID), and context elements states that specify context 
possible values and the corresponding system 
adaptation. Each context state is defined by a pair of 
attributes: a context value and a set of actions to be 
performed on system structure and/or state whenever 
the context value is reached. Hence, relationship 
with functional system is explicitly and clearly 
specified via Actions attribute of a context element.  

Since Maude (Clavel et al., 2008) allows 
specifying modules with user-definable syntax by 
exploiting its reflection and meta-programming 
properties, we define a domain specific language; 
CTXs-Maude, on top of core Maude introducing 
new constructors to allow specifying context-aware 
adaptive systems. CTXs-Maude grammar will be 
illustrated through the adaptive cruise control (ACC) 
system. 

A context module in CTXs-Maude includes a set 
of context descriptions. It has the following syntax: 

 
CTXmod IdMod is /*Context module.*/ 

/*Context, States...declaration.*/ 
endctxm 
 

A context element is defined in CTXs-Maude as 
follows: 
 

Context IdContext is  
  CTXSensor: /*Sensor URL.*/ 
    CTXState: /*Context States*/ 
 
      State:  
        CTXValue -> /*Context Value.*/. 
        Actions:   
           /*Action declaration.*/.  
        endact  
      endState  
  ...  
 endctxState  
endctx 
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Different relevant contexts affecting ACC system 
behaviours can be identified. The ACC controller 
behaviour tightly depends on the following context 
elements: 

 

 Travelling conditions changes (bends, 
whether...),  

 Vehicle speed (faster than a maximum speed , 
say 100 km/h ),  

 A safety time gap, a minimum safety time gap 
is of 2 seconds, with a preceding vehicle.  

 

The ACC reaction to context fluctuations 
includes three main states: closing zone, coasting 
zone and matching zone. Closing zone denotes a 
state where the vehicle detects a target and starts 
calculating a decelerating distance. Coasting, zone 
denotes a state where the vehicle starts decelerating. 
Matching zone is gained whenever the relative speed 
between the two vehicles becomes zero, i.e., default 
time gap is of 2 seconds.   

For example, when a vehicle travels in a rainy 
condition or through sharp bends, the ACC unit 
automatically reduces its speed. It resumes the initial 
settings when driving conditions become safe (e.g., 
no rain or sharp turns). Using CTXs-Maude syntax, 
the ACC-Context is specified in the following 
module: 

 
CTXmod ACC-Context is 
 CTXSensor: WMU.     
  CTXState: 
  State :  

  CTXValue  ->  Rainy  . 
Actions:  
ExeAction invoke  
  /IdInstance= CTRL        
  /Port= PS  

    /Request: ReduceSpeed(Rainy). 
endact  

  endState 
 
  State : 
   CTXValue  ->  Fine  . 
     Actions: 
   ExeAction invoke  
    /IdInstance= ctrl    
    /Port= PS  
    /Requests: PresetSpeed(Fine). 
   endact  
  endState 

... 
 endctxState 
 endctx 
 

One pertinent clause in a context declaration is the 
Actions one, since it specifies system reaction to 
context values changes. Two categories of actions 
are defined. The first category acts   on system state 

by enforcing it to execute specific operations; and is 
declared using the keyword ExeAction.  
 
ExeAction /*Action name.*/.  
/IdInstance=_ /*Instance identifier.*/. 
/Port=_ /*Port identifier.*/. 
/Request: _ /*Service call.*/. 
 

The second category acts on system structure to 
modify its actual configuration; it uses keywords 
CptAction, PrtAction...; for adding new instances, 
ports, connections, removing an existing one and so 
on. For adding a new instance, the following syntax 
is used: 

 
CptAction Actionid /*Action Name.*/. 
 /Component (_)/*Component Type.*/ 
 Set IdInstance =_. /*Instance id.*/ 

 

Actions clause depends tightly on functional 
system adaptation strategies. Each action declaration 
type corresponds to a structural/functional 
adaptation (Actionid) strategy, to be presented in 
the next section. As an example of actions, a target 
vehicle detection by the radar component implies the 
execution a CalculSpeed service: 

 
Actions : 

 ExeAction invoke  
 /IdInstance = CTRL  /Port = PS 

    /Request: CalculSpeed (Closing). 
 endact 
 

The above ExeAction declaration corresponds 
to the ACC unit reaction. It consists of invoking the 
CalculSpeed service which is parameterized with 
closing state, on CTRL component via its PS port. In 
the same way, other actions and strategies are used 
and interpreted by the management layer to generate 
on the fly adaptation strategies. 

Sometimes, system functionalities and adaptation 
actions execution are triggered by a conjunction of 
two or more different contexts. This situation is 
defined in CTXs-Maude via high level or composed 
contexts. 

HighCTX IdContext is /* High Context*/ 
 HCTXState StateID: /*High States */ 
  BCTXStates : /*Basic Context States*/ 
  basic ContextID1 '/ ContextValue 'and  
  basic ContextID2 '/ ContextValue '.  
     Actions:  
       /*Action declaration.*/.   
     endact  
  endHCTXSt  
...  
endHctx 

An example of a high level context represents the 
controller component reactivation whenever the 
minimum safety requirements are reached in despite 
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of a break being already applied by the driver. Such 
situation is specified by a high level context as 
follows: 
 
HighCTX  VitalSafety is    
  HCTXState matchSpeed  :   

BCTXStates :  
Radar / Target-Detected and   
VehiclesSpeed / >>Radar.TargetSpeed 
and TimeGap / 2seconds .  
Actions:  

     CptAction resume  /Component 
    (Controller)set IdInstance = ctr 

ExeAction invoke  
/IdInstance= CRTL /Port= PS 
/Request: ReduceSpeed (Matching). 

   endact   
  endHCTXSt  
 endHctx 
 

VitalSafety context expresses the fact that, even 
though the driver has applied a break to take full 
control on its vehicle, if the radar detects a preceding 
vehicle with a running speed inferior of the actual 
speed of the vehicle, the Controller unit might be 
reactivated to reduce vehicle speed. After achieving 
a minimum time gap of 2 seconds, the Controller is 
automatically reactivated. Such high level context is 
declared in CTXs-Maude by specifying two distinct 
actions. The first one reactivates the Controller if it 
is deactivated by executing the resume functional 
strategy responsible of activating the CRTL blocked 
component. The second action matches the vehicle 
speed by invoking the ReduceSpeed (Matching) 
service on the resumed component. 

The proposed syntax of context components 
allows declaring and handling most of anticipated 
and unanticipated changes; giving the user a large 
flexibility in specifying his application context and 
the corresponding system reaction. 

3.2 Functional Elements Specification 

The system model is viewed as a set of components 
that provide system core functionalities. Functional 
components are defined and grouped in CTXs-
Maude in a component module as follows: 
 
cmod idMod is /*Component module .*/ 
 /* ports declaration.*/ 
 /* Components declaration.*/ 
 /* Architecture declaration.*/ 
endcm 

 

A component comprises a set of inner and outer 
ports. Each port contains a set of interfaces for 
services required or provided by the component. In 
CTXs-Maude, an input port specifies services 
provided by the component. The implementation of 
these operations is defined in a Maude module 

attached to the port and implementing the 
corresponding services.  

The various ports are considered bidirectional; 
the same port is used for sending requests and 
receiving responses. A connection is established 
between two instances of components whenever one 
component is providing the service and the other is 
requesting it. A component is defined by its inner 
and outer ports. 

A configuration is an instance of a predefined 
architecture, containing components instances that 
are created dynamically from components types 
already declared in the architecture. 

3.3 Managing Context/System 
Interactions 

Management layer principal role consists of 
interpreting and using context changes to generate 
adaptation strategies to adapt system functionalities 
in terms of variations on application structure and/or 
behaviour. 

To ensure context/system independence, a strict 
separation of concerns is adopted. The only way to 
establish interaction channels between instances of 
functional and context models are realized via 
dynamically generated adaptation strategies. These 
strategies are parameterized with actions declared in 
the context module declared with respect to CTXs-
Maude. Thus, a generic format of on the fly 
strategies adaptation strategies is defined.  

Management layer is the core layer of our 
framework. It is responsible for parsing and 
interpreting context values and forwarding their 
impacts on system structure and behaviour. 
Management layer is composed of two interfaces 
(see Figure 1), one for context input/output and the 
other for functional data acquisition to capture 
system current state in order to perform the suitable 
adaptation actions if needed, and a set of operations 
and rules responsible of generating and executing 
adaptation strategies. 

 

Figure 1: Management layer structure. 
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Context and/or system state changes are used as 
triggers to evaluate conditions of adaptation. 
Management layer uses specific adaptation strategies 
to establish relations between context level and 
functional level in an abstract manner. On the fly 
strategies are generated automatically from 
interpreting context actions which represent system 
reaction to contextual change and are applied on 
functional system state. 

To achieve the required reconfiguration on the 
considered system according to context changes, 
management layer first accesses to context 
declaration module to obtain the set of adaptation 
actions to be performed on system configuration.  
checkCtx and checkValue operations take as 
arguments context tuple and context specification 
module (CTXs-Maude module) and check if the 
newly introduced context identifier and the 
corresponding context value exist in the context 
module declaration. If the verification succeeds, the 
corresponding context actions declarations of 
context state clause are returned. 
   After interpreting context actions and based on 
system state, an on the fly adaptation strategy to be 
applied on functional system state is generated. This 
is the role of ActionProcessing action. It takes 
as arguments context actions declaration and system 
state. It recursively applies adaptation actions on the 
current system state to accomplish the desired 
adaptation operations. The newly obtained system 
state and outputs are raised to the Context-Loop and 
placed in the corresponding slots.  

As an example of on the fly strategies generation 
and execution, we consider the situation where the 
vehicle is actually traveling on sharp bends. As soon 
as sensing layer detects a road shape modification 
(bends), context interpreter layer transmits a pair of 
values, context identifier and its value, to the 
management layer in the following format: 

 
’Context:’RoadStat ’/Value:’Sharp-bends 
  
The management layer generates the corresponding 
on the fly strategy that invokes the ACC 
ReduceSpeed service. The later systematically 
reduces vehicle speed (see Figure 2). 
 

 

Figure 2: A strategy application result. 

Whenever a break is applied, the ACC 
component might be disengaged regardless its 

current state allowing the driver to take full control 
on its vehicle.  However, the controller might be 
reactivated automatically if VitalSafety context is 
reached to maintain safety purposes (see Figure 3). 

 

 

Figure 3: CTRL component deactivation and resume 
strategies. 

4 CONTEXT-AWARE SYSTEMS 
VERIFICATION 

Model Checking (Gagnon et al, 2008) is a formal 
verification technique to be applied on a system 
abstract model to determine whether a series of 
properties are satisfied by the considered system. 
According to Gallardo & al (Gallardo and al, 2002), 
model checking is one of the most useful results of 
research in formal methods to increase software 
quality. A model checker is an automatic tool that 
confronts two descriptions of system behaviour, one 
being considered as the required behaviour and the 
other the actual design (Gallardo et al, 2002). The 
main usefulness of such a technique is the fact that 
the automatic tool, upon encountering an error state, 
returns a counterexample illustrating the path taken 
to reach that state.  

In the present work, we deal with reachability, 
safety and liveness properties verification through 
the modelling of the ACC system. 
Intuitively, reachability property verifies whether a 
certain system state is reachable from a given initial 
state. Safety properties (Tran et al., 2012) ensure that 
nothing bad will ever occur, whereas liveness 
properties stipulate that something good will 
eventually happen.  The Maude search command is 
used to check that our ACC formal model satisfies 
the considered properties, or violates them by 
furnishing a useful counterexample. 

The Maude search command (Clavel et al, 2008) 
allows exploring system state space, following a 
breadth-first strategy in different ways, to verify 
whether the given property is violated or not. The 
model checking result is either no state violates the 
considered invariant or a state violating it together 
with the sequence of rewrites being executed from 
the initial state to attain such state that is a 
counterexample. The search command syntax 
conforms to the following general scheme: 

Maude>... 
Maude> Start vehicle decelerating to 

 avoid vehicle deviation  

Maude> Instance ctrl Stopped  
Maude> ... 
Maude> Instance ctrl Resumed  
Maude> ctrl maintain save relative 
      speed between vehicles  
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search in (ModId ) :  
(Term-1) (SearchArrow) (Term-2)  

   such that (Condition)   
. 

Where: 
 

 The module ModId specifies where the search 
command takes place. It can be omitted; 
 Term-1 is the starting term; 
 Term-2 is the pattern that has to be reached; 
 SearchArrow is an arrow indicating the form 

of the rewriting proof from Term-1 until Term-2. 
There are different arrow forms : 

– =>1 means a rewriting proof consisting of    
exactly one step, 
– =>+ means a rewriting proof consisting of one 
or more steps, 
  – =>* means a proof consisting of none,   one, 
or more steps, and 
  – =>!  Indicates that only canonical final states 
are allowed, that is, states that cannot be further 
rewritten.  
 Condition specifies an optional property that 

has to be satisfied by the reached state; the 
syntactic form of the condition is the same as the 
one of conditions for conditional equations and 
memberships. 

The key question in the ACC system is whether 
the adaptive behaviour can be applied but still 
maintaining critical safety requirements. We are 
interested here with the following invariants.  

a. The controller disengages whenever the driver 
applies a Break Event (safety). 

b. If a preceding car is detected, the controller 
cannot react since it is deactivated; otherwise 
the controller reduces the car speed (liveness). 

c. After an Apply-break event, the critical safety 
state can always be reached and the controller 
might be reactivated automatically 
(reachability property). 

To achieve the required verification on the 
considered system according to context changes, our 
runtime environment implements context changes 
handling in a module called CTXMod.maude 
providing a set of context adaptation strategies to be 
performed on system configuration according to 
contextual situations.  One initial state corresponds 
to the state where the driving conditions are suitable 
as straight path road.  We can now verify the 
reachability of a state where the controller 
disengages after a user apply break.  

By executing the search command (see Figure 4), 
Maude model checker finds three states where the 

controller is always blocked after an apply break. 
Thus, invariant (a) is verified. 

 

 

Figure 4: Maude console shows verification result. 

However, if a preceding car is detected, the 
controller cannot react since it is deactivated.  

To verify that our model satisfies the invariant 
(b) (see Figure 5), we attempt to verify the negation 
of such invariant. From an initial state where the 
controller is blocked due to a break event, is it 
possible to attain a state where the controller is 
activated and controls the car speed. 

 

Figure 5: Maude console shows verification result. 

No solution is found by the search command. 
Thus, there are no states violating the negation of 
our invariant. 

To ensure safety property or invariant (c), the 
controller might be reactivated automatically when 
critical safety requirements are in place. This 
invariant is verified by the next search command. 

Maude>... 
Maude>  search in CTXMod: 
['Context:'UserPrefrence'/Value: 
'ApplyBreak'., <ContextModule; 
...Ctrl 'Controller BLOKED ...>, 
Output]=>* [CTX,< CtxModule; SysConfig , 
Output] such that 
CTX = 'Context: 'Radar 

'/Value 'Target-Detected '. 
And 
SysConfig=...Ctrl 'Controller   EXECUTED 
... 
No solution. 
Maude>...

Maude>  search in CTXMod:  
['Context:'RoudStat'/Value:'Straight-path 
,< ContextModule; SysConfig >,  
Output] =>*[CTX,< CtxModule ; SysConfig , 
Output] such that  
CTX == 'Context:'UserPrefrence   

'/Value: 'ApplyBreak '. 
And  
SysConfig ==...Ctrl 'Controller BLOKED… 
states: 3  rewrites: 70 in 2675208203ms 
cpu (716ms real) (0 rewrites/second)     
Solution 1 (state 2) 
states: 3  rewrites: 79 in 2675208203ms 
cpu (33ms real) (0 rewrites/second) 
 
CTX --> 'Context: 'UserPrefrence '/Value: 
'ApplyBreak '. 
... 
LI -->  'ecm 'ECM EXECUTED..., 'Ctrl 
       'Controller BLOKED... 
No more solutions. 
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Table 1: Comparison of current context-aware adaptive systems. 

 Reuse 
Context 

Modelling 
System-Context 
Relationships 

Properties 
Verification 

User 
Conformance 

AURA (Garlan et al., 2002) NS PS NS NS NS 

SOCAM  (Gu et al., 2004) NS PS NS NS NS 

MDD (Ayed et al., 2007) PS S S PS S 

Tran et al.  (Tran et al., 2012) PS PS PS S PS 
Ranganathan and Campbell 

(Ranganathan and Campbell, 2008)   
PS PS PS S PS 

Dhaussy et al. (Dhaussy et al. ,2012) PS PS PS PS NS 

Our Approach S S S S S 
 

 

Figure 6: Critical Safety property verification. 

5 DISCUSSION 

Compared to existing approaches, our model has the 
following advantages. Primarily, the proposed 
framework design can perform adaptive behaviour 
for context-aware systems but still maintaining 
system invariant. The separation of concerns 
between context model elements and system ones 
reduces the design complexity and increases model 
reusability and maintainability. The introduced 
CTX-Maude specification language supports 
hierarchical structures modelling by composing both 
context elements and functional components.  
The Management runtime layer allows users to 
select adaptation actions to be applied without caring 
about how these actions are implemented and 
executed. Therefore, the software system can 
perceive execution context changes and make the 
adequate actions in a transparent manner without 
any user attention. This feature gives users great 
facility and flexibility when using CTXs-Maude. 

Additionally, model checking techniques provide 
a very good guide of system design correcteness. 
The experimental results of Adaptive Cruise Control 

safety critical requirements verification reflect that 
the proposed model ensure system invariant. 

Table 1 resumes a comparative study that we 
have realized on some significant works on context-
aware pervasive systems specification and 
verification and highlights our contribution 
maincharacteristics, where S means that the 
requirement is satisfied, NS for non-satisfied 
requirement and PS for partially satisfied 
requirement. 

6 CONCLUSION 

In this paper, we have proposed a generic formal 
model for context-aware adaptive systems 
specification and verification that establishes a clear 
separation of concerns between system entities and 
context ones. A layered model is defined where 
functional system and context layers are designed in 
an entirely independent manner. Only relationships 
between the two layers are established via a core 
layer. The later is responsible of specifying context 
changes impact on system functionalities in terms of 
variations on application structure and behaviour, by 
applying different reconfiguration strategies. These 
strategies are parameterized by context values 
changes and the associated actions on system 
structure, giving the Management layer a high level 
of genericity and reusability.  

We have adopted Maude as a semantic 
framework for the proposed model and exploited its 
reflection and meta-programming capabilities to 
enrich it with context-awareness concepts. We have 
also implemented our model by proposing a runtime 
environment for context-aware systems execution. 
The runtime environment exploits two Loop-Mode 
objects to manage context and system states. 
Interactions between the two loops are realized via 
ascend and descent operations and strategies.  

Maude>... 
Maude>  search in CTXMod: 
['Context:'UserPrefrence'/Value: 
'ApplyBreak'., <ContextModule; 
...Ctrl 'Controller BLOKED ...>, 
Output]=>* [CTX,< CtxModule; SysConfig , 
Output] such that 
CTX = 'Context: 'Radar 

'/Value 'Target-Detected '. 
And 
SysConfig=...Ctrl 'Controller   EXECUTED 
... 
No solution. 
Maude>... 
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Model validation is realized via the formal 
verification of reachability, safety and liveness 
properties of a concrete system, the ACC controller 
for instance. A set of formal properties expressing 
reachability, safety and liveness requirements have 
been defined and verified using Maude model 
checker.  

As future work, we intend to complement our 
framework for context-aware systems development 
with necessary editors for designing, executing and 
verifying the considered systems. We aim to 
facilitate the design and readability of systems by 
associating graphical representations to the algebraic 
specifications defined by CTXs-Maude. 
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