

Model-Driven Development Versus Aspect-Oriented Programming
A Case Study

Uwe Hohenstein1 and Christoph Elsner2
1Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81730 Muenchen, Germany

2Siemens AG, Corporate Technology, Wladimirstr 3, D-91058 Erlangen, Germany

Keywords: AOP, Aspectj, MDD, XSL-T, Case Study.

Abstract: This case study compares two different technologies – model-driven development (MDD) and aspect-
oriented programming (AOP) – both trying to avoid redundant code, but with very different approaches. A
real industrial software system, the OpenSOA platform, which had already applied a model-driven
XML/XSL-T approach, is used as the basis for implementation and comparison. For evaluation purpose, we
have re-implemented the XSL-T implemented logic with a corresponding AOP implementation in AspectJ.
Taking into account several criteria, our case study indicates that the AOP implementation reveals its
strengths in avoiding redundancy, better testability, and understandability. However, more advanced tooling
could significantly improve the position of MDD for the latter. MDD is in turn the more flexible approach,
allowing generation of arbitrary artefacts the design demands. As the main issue of the case study, to
generate wrapper classes and boilerplate-code, is rather common, we believe that our results have potential
to be transferred to other problem settings. Furthermore, we think that our evaluation criteria will help
guiding others in making technology choices. We also give an outlook on how combinations of MDD and
AOP may leverage the best of both worlds.

1 INTRODUCTION

Model-driven development (MDD) has the goal to
develop software systems on a higher abstraction
level than code (Stahl and Völter, 2006). Given
some high-level form of input, more concrete output
is generated, maybe even source code. Code
generation not only saves time and effort, but also
avoids programming errors and increases
programmer productivity (Smaragdakis et al., 2004).
Moreover, the input has a higher level of abstraction,
is simpler and shorter than the generated code, and
makes concepts more explicit. One basic idea of
MDD is a voluntary self-restriction, i.e., the input
model uses a limited number of concepts that are
defined by a metamodel. Common forms of input
are domain-specific languages (DSL): graphical,
textual, XML, or UML models. A lot of tooling can
be used such as Xtext (Xtext) or MPS (MPS) or
pure::variants (Beuche,2006).

Aspect-orientation programming (AOP) is quite
a different technology that provides new
mechanisms to handle crosscutting concerns
(CCCs). CCCs are those functionalities that are

typically spread across several classes with
conventional programming. Those CCCs usually
cause duplicated and redundant code. This leads to
lower programming productivity, poor quality and
traceability, and a lower degree of code reuse. AOP
provides new constructs to separate crosscutting
concerns. This separation allows for a better
modularization, thereby avoiding the well-known
symptoms of code tangling and code scattering (Tarr
et al., 1999). Aspect-oriented languages such as
AspectJ (Kiczales, 2001)(AspectJ, 2014) support the
separation of concerns by means of special language
constructs. Even other languages such as Scala or
Ruby are starting to offer means for handling CCCs
such as abstractions or metaprogramming.

Both technologies, MDD and AOP, can be used
to avoid redundant code. As (Normén, 2007) states
“code duplications smell badly”, and should be
avoided. However, there are always cases where
they cannot be avoided using conventional
programming languages. While MDD uses a
generative approach, AOP extends an existing
implementation language and modularizes common
code in an aspect.

133Hohenstein U. and Elsner C..
Model-Driven Development Versus Aspect-Oriented Programming - A Case Study.
DOI: 10.5220/0004999901330144
In Proceedings of the 9th International Conference on Software Paradigm Trends (ICSOFT-PT-2014), pages 133-144
ISBN: 978-989-758-037-6
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

In this paper, we compare both technologies in a
real industrial application. The comparison is done
for XML-based code generation and the AspectJ
language in the context of the OpenSOA project
(Strunk, 2007). OpenSOA offers a service-oriented
telecommunication middleware platform. It is an
open service platform for the deployment and
provision of communication services such as
capturing user presence, management of calling
domains, notifications, administration functionality
for the underlying switch technology, and so forth.
An OSGi container builds the technical basis.

A specific challenge within the OpenSOA
framework is that several message-based interfaces
have to be kept consistent. These interfaces are
similar, however, having slight differences.

Since the development team spent about 50% of
its time to create and maintain interface code and
inline documentation, an MDD approach has been
implemented to avoid duplicated code in different
layers and to achieve consistency between several
closely related interfaces and Javadoc comments.
The approach relies on XML input and XSL-T
transformations producing Java code, similar to
(Reichel and Oberhauser, 2004). Although the
approach is very helpful, developing and verifying
XSL-T transformations has resulted to be tedious.

The content of this paper is to evaluate and
compare the usage of AOP in such a typical MDD
scenario. We started to re-implement the OpenSOA
system with the language AspectJ to avoid code
generation and to reduce code – even if it follows a
different paradigm. The AspectJ implementation is a
(non-obvious) alternative to the existing XSL-T
code generation. Moreover, it could easily be
integrated into the project infrastructure in contrast
to other approaches. Using this basis, several facets
of both solutions are compared and discussed.

At first, we compare the classical criterion of
“lines of code”. This is an indicator for the manual
work to be done. “Code” does not only mean
Java/AspectJ code but also writing XSL-T
transformations and XML input in case of MDD:
both comprise effort to be done.

We distinguish two major roles: The
implementer provides the generative infrastructure,
i.e., implements XSL-T scripts or codes aspects in
AspectJ. In contrast, the user applies this
infrastructure by providing XML input or defining
pointcuts, respectively.

The more lines of code have to be written, the
more work has to be done. But the code does not
determine exclusively the effort. Therefore, we
qualitatively and quantitatively evaluate several

other measures. Understandability is a further mean
for complexity and maintenance effort: The easier to
apply, understand, and maintain a concept, the less
effort an implementer or user has. Furthermore,
testability is important for the implementer to check
the correctness of the framework. For instance,
XSL-T could generate code that is not accepted by a
Java compiler. Further investigation criteria are
usability, redundancy avoidance, and completeness
of the approach. Our evaluation criteria have a
strong industrial background and have been chosen
due to their relevance for the involved OpenSOA
software developers.

We use the case study to compare in detail the
weaknesses and strengths of both approaches with
regard to those criteria in order to give some guid-
ance for choosing amongst the technologies and to
make the best of both worlds.

In the following, we present in Section 2 the
project OpenSOA, a telecommunication middleware
(Strunk, 2007), we used for our case study. Section 3
describes the model-driven approach, based upon
XML and XSL-T, which was in productive use. We
present in Section 4 an alternative AspectJ solution,
which could serve the same purpose. Both
approaches are compared in Section 5 using the
above mentioned criteria. Moreover, it summarizes
the limitations of both technologies and discusses
what of our experiences can be generalized beyond
the case study. Section 6 presents some related
work, before Section 7 concludes the discussion.

2 THE OpenSOA FRAMEWORK

The OpenSOA framework consists of six services:
DomainManagement, UserManagement, Resource-
Management, ProfileManagement, Application-
Management, and RoleManagement. These services
offer CRUD functionality, i.e., create, find, update,
and delete operations. There are 93 operations in
total, i.e., 15.5 operations per service in average.

For each of these Services, classes ServiceSkeleton
and ServiceTransSkeleton implement essential
middleware functionality, while a class ServiceImpl
implements the actual business logic. Figure 1
shows the important parts of these classes for the
UserManagement service.

The classes ServiceSkeleton provide the entry point
for service invocations. CRUD operations such as
create expect both a dedicated parameter request
object and a service context in its signature: OpReply

op(OpRequest req, ServiceContext ctx). Depending on
whether persistence in a database is required or not,

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

134

the call either delegates to the method op(params) of
class ServiceTransSkeleton or to op(params,em) of class
ServiceImpl. The parameter em provides an OpenJPA
EntityManager to perform database operations. In
both cases, a list of parameters (denoted as params) is
extracted from the Request parameter by req.get…().
The ServiceSkeleton class catches technical exceptions
and throws various service exceptions such as
AuthorizationException or PersistenceDuplicateEntityException.

The ServiceImpl classes provide a code template to
be filled out with the real business logic.

Classes ServiceTransSkeleton are used only by
services that handle persistence. The class basically
delegates to the ServiceImpl methods, but puts some
logic around by a template mechanism, especially to
let the Impl functionality run in a database session and
transaction. The template is obtained by using the
ServiceSkeleton object and used to execute an
OpenJPACallback. The OpenJPACallback must implement a
doInTransaction method, which invokes the ServiceImpl
method that contains the logic to be executed in a
session and transaction. That is, execute (OpenJPACall-
back) opens an database connection (which is repre-

sented by an EntityManager em in OpenJPA) and starts a
transaction around doInTransaction. Moreover, when a
database operation fails because of connection
problems or database server crashes, a retry is
performed taking a new connection, maybe from a
failover server in order to achieve high availability.

Further classes OpRequest and OpReply are used in
the signatures of ServiceSkeleton For operations Op.

Obviously, similar methods occur in different
classes for one single service, having the same name
but slightly different signatures. This should not be
seen as a deficit of the architecture. A major reason
for choosing the design with different signatures is
to achieve better testability with shorter test cycles,
since ServiceTransSkeleton/Impl can be tested without an
OSGi container. Another reason for this type of
architecture is to have a class ServiceTransSkeleton for a
reusable session and transaction handling.

So, although we consider the architecture
appropriate, a lot of method signatures and also code
parts have to be kept consistent.

public final class UserManagementSkeleton extends Service implements UserManagement {
 private UserManagementTransSkeleton trans = null; ...
 public void create(final CreateUserRequest req, final ServiceRequestContext srvCtx) {
 UserIdentity ret = null;
 try { if (LOG.isDebugEnabled()) LOG.debug("Operation create started: " + req.toString());
 final UserDTO user = req.getUser()
 final boolean returnIdentity = req.getReturnIdentity();
 ret = trans.create(user, returnIdentity, true);
 CreateUserReply reply = new CreateUserReply(ret);
 srvCtx.reply(reply);
 if (LOG.isDebugEnabled()) LOG.debug("Return: " + reply.toString());
 if (LOG.isDebugEnabled()) LOG.debug("Operation create completed successfully");
 } catch (DomainValidationException e) {
 if (LOG.isDebugEnabled()) LOG.debug("missing or wrong arguments.");
 srvCtx.fail(e);
 } catch ...
} }

public final class UserManagementTransSkeleton {
 private UserManagementSkeleton skeleton;
 private UserManagementImpl impl = null;
 public UserIdentity create(final UserDTO user, final boolean returnIdentity, final boolean isValidated) {
 UserIdentity obj = (UserIdentity) skeleton.getOpenJPAConfiguration().getTemplate().execute (
 new OpenJPACallback() { public Object doInTransaction(final EntityManager em) {
 UserIdentity result = impl.create(user,returnIdentity,em,isValidated);
 return result;
 } });
 return obj;
} }

public final class UserManagementImpl {
 private UserManagementSkeleton skeleton = null;
 public com.siemens.project.identity.UserIdentity create(final UserDTO user,final boolean returnIdentity, final EntityManager em,
 final boolean isValidated) {
 if (!isValidated) //---------- validate params
 DomainValidator.validate(user, "user");
 /* business logic to be implemented by the programmer */
} }

Figure 1: Classes ServiceSkeleton, ServiceTransSkeleton and ServiceImpl for the UserManagement service

Model-Driven�Development�Versus�Aspect-Oriented�Programming�-�A�Case�Study

135

3 THE MDD APPROACH

To ease the development and to handle consistency,
an MDD approach has been established in the
project. Its goal is to keep related signatures and
documentation headers of different parts of a single
service consistent.

The basic idea consists of specifying services in
an XML-based description language in one place.
The user has to specify a file Service.xml for each
service. The corresponding meta-model is a pre-
defined XML-Schema. Figure 2 presents such a file.

<service name="UserManagement" persistence="true"
 eventing="false">
 <operation name="create" id="#User01" deprecated=”false”
 transaction="true">
 <description>
 <![CDATA[* <p>Create a new user with all settings from
 UserDTO.</p>
 * <p>The working domain is the user's domain</p>]]>
 </description>
 <return type="com.siemens.project.identity.UserIdentity">
 <description> <![CDATA[returns the identity object of the user
 created.]]>
 </description>
 </return>
 <parameter name="user" type="com.siemens.project.UserDTO">
 <validation nullAllowed="false"/>
 <description> <![CDATA[DTO containing all information about

 the new user.]]>
 </description>
 </parameter>
 <exception type=

 "com.siemens.project.exception.DomainValidationException">
 <description> <![CDATA[if an argument value is invalid

 * that means also null or empty if not explicitly allowed.]]>
 </description>
 <logmessage> <![CDATA[missing or wrong arguments.]]>
 </logmessage>
 </exception>
 <!--other exceptions -->
 </operation>
 <!--other operations -->
<service>

Figure 2: XML sample service description.

This XML input is taken for generating code by
means of several XSL-T scripts. In particular, the
documentation and the Javadoc description of
parameters are generated in a consistent manner.
The XML input specifies an XML element <service>
with a certain name. An attribute persistence=true
controls the persistence infrastructure for using the
OpenJPA persistence framework to access a DBS.
Similarly, eventing=true prepares an eventing
mechanism in the business logic.

Each <service> element specifies <operation>s with
<parameter> types, <return> type, and <exception>s in
XML. Several XML attributes affect the code
generation:
 deprecated=true lets @deprecated occur in the Javadoc

behind a parameter.

 transaction=true adds a session and transaction
management. We call such an operation
transactional in the following.

 Parameters can be validated by specifying a
<validation> such as nullAllowed or emptyAllowed; checks
are added on parameter values, e.g., whether null
or empty strings are allowed.

 A <description> can be added to most XML parts to
be used in Javadoc documentation.

3.1 XSL-T Scripts for Code Generating

There are three basic XSL-T transformations that are
responsible for generating the code for the three
types of classes mentioned before:
 TransSkeleton.xsl generates the complete code for

ServiceTransSkeleton classes.
 Skeleton.xsl generates the complete code for

ServiceSkeleton classes.
 Impl.xsl generates the code frames for ServiceImpl

classes, which have to be completed with
business logic by programmers.
The overall principle of generation is straight-

forward. Each service in Service.xml results in three
Java classes ServiceTransSkeleton, ServiceImpl, and
ServiceSkeleton.

Each XSL-T implementation simply transforms
XML elements and attributes to Java code and
produces the classes. Each <operation> results in a
corresponding Java method in each class, however,
having slightly different signatures and
implementations for the classes. The <parameter>s
describe the signature of methods.

The <description> is used for adding a consistent
documentation including Javadoc. <description> can
occur at several levels (<operation>, <exception>,
<parameter>).

Details about the output generated from the
XSL-T scripts are described in the following. Figure
3 presents an excerpt of a script to generate a
signature with documentation. These lines show how
verbose and unreadable the XSL-T code is.

3.2 Classes Serviceimpl

The Java code for ServiceImpl classes and its methods
are directly derived from the XML specification.
ServiceImpl is the only class that is not fully generated.
The user has to implement the business logic. Some
specific points are (cf. Fig. 1):
 Signature changes: The create method obtains two

additional parameters EntityManager em and boolean
isValidated if transaction=true and<validation nullAllowed=
"false"/>, respectively, are specified for any

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

136

<xsl:param name=”svc_name”/>
<xsl:template match=”//service”>
 <xsl:text>/* * </xsl:text>
 <xsl:value-of select=”$svc_name”/>
 <xsl:text>Skeleton.java * * Copyright (c) 2008 Siemens... */
 ...
 <xsl:for-each select=”operation”>
 <xsl:text /* * Operation definition for message based service
interface. * *
 @param req the service method’s request object. *
 @param srvCtx the service methos’s context object. *
 </xsl:text>
 <xsl:if test=@deprecated=”true”>
 <xsl:text> * @deprecated </xsl:text>
 </xsl:if>
 <xsl:text>*/ public void </xsl:text> <xsl:value-of select=”@name”/>
 <xsl:text (final </xsl:text> <xsl:value-of select=”@name”/>
 <xsl:text Request req, final ServiceRequestContect srvCtx) {
 </xsl:text>
 <xsl:if test=”return/@type != ‘void’”>
 <xsl:value-of select=”return/@type”/> <xsl:text ret;/>
 ...
 </xsl:if>
 </for-each>
 ...
</xsl:template>

Figure 3: XSL-T excerpt from Skeleton.xsl.

operation. The first parameter em enables the
method to use OpenJPA’s EntityManager
functionality. The second parameter allows in-
vokers to switch a parameter validation on or off.

 Additional code fragments: The validation of
parameters of the form “if (!isValidated)…“, if turned
on by <validation>, is added at the beginning of the
method. For instance, nullAllowed=false checks
whether a parameter is null, then throwing a
DomainValidationException.

 import statements: All required imports are
generated, according to what classes are used.

 JavaDoc: The informal <description> text occurs in
comments, particularly Javadoc @param and
@return clauses are filled with the operation’s
<description> text as well as @throws for <exception>
specifications. This avoids checkstyle warnings,
which are reported in quality metrics. If an
operation is marked with deprecated=true, then
@deprecated will be added in Javadoc.

3.3 Classes Servicetransskeleton

This type of class is only required for persistent
classes, i.e., services that are specified as
persistence=true. Their methods are allowed to access
the database via OpenJPA. In contrast to ServiceImpl
classes, the generated classes possess a complete
implementation. The following points are specific:
 Signature changes: The signatures differ since

there is no parameter em.
 Again, headers with Javadoc are generated,

taking into account the different signature.

 The same holds for import statements.
 Code variants: The XML service description

controls the code generation. For example, if
transaction=true is specified for a method, OpenJPA
is used to execute the database statements, and a
session and transaction template is put around
the logic, which also takes care of a retry in case
connection problems.

3.4 Classes Serviceskeleton

The ServiceSkeleton classes are completely generated
according to the XML service specification, which
controls the code generation. We again mention
some specific points:
 Signature changes: Compared to the other

classes, signatures are changing again, e.g.,
operations possess a Request-object, which
bundles parameter values instead of having
individual parameters. This means that the
parameters for invoking trans.create must be
extracted from such a Request. Depending on the
context, the right list of parameters is filled in.

 The relevant import statements are added, too.
Again, headers with Javadoc are generated,
taking into account the different signature.

 Additional class fields: If persistence=true is set for
a service, then the class is prepared to use
OpenJPA by providing an internal field OpenJPA-
Configuration openJPAConf with get/set methods.
Similarly, if eventing=true is specified for a service,
the class is prepared for handling events by
adding a field EventingComponent myEC with get/set
methods. Any class with a transactional method
also obtains an internal field ServiceTransSkeleton
trans.

 Code variants: Transactional methods such as
create basically delegate to trans.create. Non-
transactional methods directly delegate to the
ServiceImpl class.
There are six exception types that can be
specified for a method by means of <exception>:
DomainValidationException, AuthorizationException, Domain-
PersistenceException etc. Every specified exception
is caught, logged and re-thrown. Special database
exceptions DataAccessException and Persistence-
Exception are handled for transaction=true. In
particular, several subtypes of PersistenceException
are distinguished in order to throw service-
specific exceptions such as UserDuplicateEntity-
Exception or UserEntityNotFoundException.The
<logmessage> element for <exception> is used as text
in LOG.debug().

Model-Driven�Development�Versus�Aspect-Oriented�Programming�-�A�Case�Study

137

4 AspectJ APPROACH

The most popular AO language is certainly AspectJ
(AspectJ, 2014). AspectJ programming is essentially
done by adding aspects to Java source code. The
main purpose of aspects is to concentrate cross-
cutting functionality. To this end, an aspect can
intercept certain points of the program flow, called
join points, and add logic by advices. Examples of
join points are method and constructor calls or
executions, attribute accesses, and exceptions.

Join points are syntactically specified by means
of pointcuts. Pointcuts identify join points in the
program flow by means of a signature expression. A
specification can determine exactly one method by
describing the complete signature including final,
private, static, return and parameter types etc. Or it can
use wildcards to select several methods of several
classes by * MyClass*.get*(.., String). A star “*” in names
denotes any character sequence. Hence, get* means
any method that starts with “get”. A type “*” denotes
any type. Parameter types can be fixed or left open (..).

The following aspect has a before advice that
adds logic before executing those methods that are
captured by the pointcut myPC:
aspect MyAspect {
 pointcut myPC():
 execution(*MyClass*.get*(..));
 before() : myPC() { // advice:
 Java code to be executed before myPC join points }
}

4.1 General Principle

Using AspectJ, we re-implemented the software
system. We were able to replace the code generation
with a pure homogeneous language approach. There
is no XML input and no XSL-T transformation. It is
just AspectJ code.

The basic idea is to let developers start with
manually writing the ServiceImpl classes instead of
Service.xml descriptions, including Javadocs and the
business logic. The signatures in ServiceImpl now need
to be specified as required, i.e., including em and
isValidated parameters (which are added by XSL-T, cf.
Section 3.2, if specified). This has to be done only
once in the Impl classes.

AspectJ is used to add all the missing parts for
the whole implementation. The aspects are described
in more detail in the subsequent subsections.

4.2 One Transskeletonaspect

A TransSkeletonAspect aspect is responsible for
implementing the functionality of TransSkeleton classes
(see Section 3.4 and Figure 1), which provide the

session and transaction handling. Instead of
specifying transaction=true for specific methods, a
pointcut executeInTx() determines the transactional
methods to which the logic of doInTransaction() should
be applied, i.e., all public methods of Impl classes that
possess an EntityManager parameter:
pointcut executeInTx(EntityManager em)
 : execution(public *com.siemens.project.*Impl.*(..)) && args(em);

A single around advice can then add the logic:
Object around(EntityManager em) : executeServiceInTx(em) {
 Object ret = null;
 EntityManagerFactoryImpl emf = openJPAConf.getEMFactory();
 em = emf.getEntityManager();
 ... retry loop around ...
 EntityTransaction tx = em.getTransaction();
 ret = proceed(em); /* exec Impl-method instead of
 doInTransaction(em) */
 ... commit or rollback on tx
 return ret;
}

The advice obtains an EntityManager em, starts and
ends a new transaction, invoking the intercepted
method with proceed() in between, and putting the
redo logic around (not shown here). Hence, the logic
is done in a central place and becomes much easier
since we get rid of the complicated OpenJPACallback
template mechanism as shown in Figure 1 and
explained in Section 2. Please note this code is now
defined once and no longer part of every
transactional method. The pointcut defines where the
code has to be executed.

4.3 Skeletonaspect for each Service

In principle, there is no need for Skeleton classes since
it is possible to put the logic around the Impl methods.
However, we are faced with the problem that the
Skeleton methods are invoked from outside. More-
over, the signatures refer to service-specific
OpRequest and OpReply objects. Thus, we are forced to
keep the Skeleton classes. However, we are able to
factor out common functionalities in aspects. The
following code remains to be written for the user
management service, for example:
public class UserManagementSkeleton extends Service {
 private UserManagementImpl impl = null;
 private UserManagementTransSkeleton trans = null;
 public void create(final CreateUserRequest req,
 final ServiceRequestContext srvCtx) {
 if (LOG.isDebugEnabled()) {

 LOG.debug("Op create started");
 } // -> added by single before advice
 UserDTO user = req.getUser();
 boolean id = req.getReturnIdentity();
 UserIdentity ret = impl.create(user,id,true);
 CreateUserReply reply = new CreateUserReply(ret);
 srvCtx.reply(reply);
 if (LOG.isDebugEnabled()) {

 LOG.debug("Op create succeeded");
 } // -> added by after return advice

 return ret;
} }

This is basically the Skeleton-method without

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

138

logging functionality (see the strikethrough) and
exception handling, both being extracted into
aspects. In the original code, a method of the Trans-
Skeleton or Impl is invoked inside depending on the
transactional setting. Here, we call the Impl-method
directly since the TransSkeleton behaviour (if
necessary) is put around by means of an aspect.
Thus, the reference TransSkeleton trans is no longer
needed.

It remains to manually specify the signature, un-
pack parameters from a CreateUserRequest, and invoke
methods impl.op of ServiceImpl classes.

If persistence is required, get/set methods for
OpenJPAConfiguration and a corresponding internal field
need to be added. This can simply be implemented
in a dedicated superclass Persistence:
public class Persistence {
 private OpenJPAConfiguration openJPAConf = null;
 public OpenJPAConfiguration getOpenJPAConfiguration()
 { return this.openJPAConf; }
 public void setOpenJPAConfiguration (OpenJPAConfiguration conf)
 { this.openJPAConf = conf; }
}

The following statement puts the Persistence
superclass on top of persistent Skeleton classes and let
derived classes inherit the above functionality:
declare parents: UserManagementSkeleton, ... : Persistence

Similarly, another superclass Eventing and a declare
parents statement are added if eventing is enabled.
Please note there is no problem with multiple
inheritance: Aspects can add two superclasses,
Persistence and Eventing, to a Skeleton class.

A single SkeletonAspect aspect keeps all these declare
parents statements and also concentrates the logging
functionality in corresponding before/afterReturning
advices:
public class SkeletonAspect {
 declare parents: ... /* as above */
 private static final Logger LOG
 = Logger.getLogger(SkeletonAspect.class);
 before() : call(public * com.siemens.project.impl.*Skeleton.*(..)) {
 if (LOG.isDebugEnabled())
 LOG.debug("Operation " + thisJoinPoint.getSignature()

 + " started");
 }
 afterReturning() { Log.debug() for successful operation ... }
}

4.4 Aspect for Exception Handling

Another aspect takes care of exception handling,
which was originally part of Skeleton classes. This
aspect defines several advices. Each advice adds a
further try-catch block around the invocation of Impl
methods:
public aspect ExceptionAspect {
 Object around() :
 call(... any Skeleton method with a DomainValidationException ...) {

 Object ret = null;
 ServiceRequestContext srvCtx = (ServiceRequestContext)

 thisJoinPoint.getArgs()[1];
 try {
 ret = proceed();
 } catch(DomainValidationException e) {
 if (LOG.isDebugEnabled())
 LOG.debug ("missing or wrong arguments.");
 srvCtx.fail(e);
 }
 return ret;
 } // ... for other exceptions
}

The ServiceRequestContext, which is used to signal a
failure, is obtained by accessing the second
parameter of the joinpoint by means of
thisJoinpoint.getArgs()[1].

DataAccessException and PersistenceException, which
are thrown in case of transactional methods
(transaction=true), are handled similarly, however,
transforming exception types:
catch (PersistenceException e) {
 if (e instanceof PersistenceDuplicateEntityException) {
 if (LOG.isDebugEnabled())
 LOG.debug("Domain entity already exists in the database.");
 srvCtx.fail(new DomainDuplicateEntityException
 (e.getMessage()));
 } else if ... other exceptions ...
}

4.5 Validation Logic

Validation logic such as
if (!isValidated) DomainValidator.validate(user,“user”)
is inserted whenever a validation is required. This
adds a check for nullness for the given parameter
name in the method of the Impl class. In XSL-T, this
is specified for an operation by means of
<parameter name="user" type="com.siemens.project. UserDTO">
<validation nullAllowed="false"/>

The same behaviour can be achieved by a before
advice that adds the nullness check before method
execution. The problem is how to get the parameter
object to be checked, i.e., user above. As the kinds of
validation checks the programmer would like to
perform is known in advance, we can simplify the
code by only referring to the position of the
parameter in the signature. For example, we provide
pointcuts validateNotNullAtPositioni that allow for adding a
check for a certain position i. An advice can access
the parameter at this position:
public aspect ValidationAspect {
 pointcut validateNotNullAtPos0 (Object o, boolean isVal) :
 execution(...) && args(o,..,isVal);
 before(Object o, boolean isVal) : validateNotNullAtPos0(o, isVal) {
 if (!isVal) {
 MethodSignature sig = (MethodSignature)
 thisJoinPointStaticPart.getSignature();
 String name = sig.getParameterNames()[0];
 DomainValidator.validate(o,name);
} } }

Model-Driven�Development�Versus�Aspect-Oriented�Programming�-�A�Case�Study

139

The parameter name, to be added to Domain-
Validator.validate, is obtained by means of reflection
(MethodSignature); the isValidated parameter always
occurs last and can simply be bound to a variable isVal.

To make code more readable, an annotation
@Validate(“user”,nullAllowed=“false”) can mark every method
to be validated: An aspect intercepts any usage of
this annotation and inserts the validation logic. This
makes usage easier.

5 COMPARISON

We compare the originally existing MDD with the
new AOP approach with regard to several
comparison criteria. The criteria have been selected
due to their relevance for the OpenSOA developers.
At first, we investigate the classical quantitative
criterion of “lines of code”. This is a measurement
for the manual work to be done. “Code” here does
not only mean Java or AspectJ code but also XSL-T
transformations and XML input in case of MDD:
This comprises effort to be done as well. Further,
qualitatively evaluated, criteria are usability,
understandability, testability (which all affect
development time), and redundancy. We took those
criteria without any weights since they all together
have an impact on development time and cost. We
asked the developers but did not obtain a precise
weighting.

Please also note we ignored performance since
the performance is mostly affected by database
accesses. Anyway, the types of pointcuts we use are
very simple and usually do not cause performance
issues.

The results are partially subjective in the sense
that the assessment of the original MDD infrastruc-
ture is done by the involved software developers.

5.1 Lines of Code

The XSL-T approach requires XML input files
Service.xml. That is the specification effort for a user to
apply the infrastructure for the six services
ApplicationManagement, DomainManagement etc.
All these XML files have 4339 lines in total.

To provide the generative infrastructure, the
implementer has to implement three XSLT scripts:
TransSkeleton.xsl (220 lines), Skeleton.xsl (499 lines), and
Impl.xsl (384 lines). We have mentioned briefly the
classes Request/Reply for Skeleton operations. These are
generated as well by XSL-T scripts RequestObject.xsl
(205 lines) and ReplyObject.xsl (113 lines). These are
1421 lines for code generation.

In total, 5760 (= 4339 + 1421) lines are required
for the XSL-T approach.

In the AspectJ solution, an implementer has to
code advices in AspectJ, while a user applies this
infrastructure by defining pointcuts or placing
annotations.

The user has to manually implement a class
ServiceImpl. From a logical point of view, the
specification parts in Service.xml are directly put into
code in ServiceImpl.java; These are 1208 lines for 93
methods without business logic (which we do not
count in either approach).

The infrastructure is given by aspects. One
aspect TransSkeletonAspect handles the transactional
behaviour for transactional methods. The decision
which methods are transactional is done by means of
method pointcuts. An around advice puts the
transactional logic around the relevant methods of
Impl-classes. This aspect has 259 lines.

A SkeletonAspect aspect adds Persistence and Eventing
super classes by means of two declare parents
pointcuts. Moreover, the aspect introduces logging
with before/afterReturning advices. This aspect requires
12 lines of code. The two new superclasses Persistence
and Eventing have 17 lines (9 and 8 lines).

For each Service, a ServiceSkeleton class must be
implemented due to external usage. These are 93
methods with about 8 lines in average, which sums
up to 744 lines.

An ExceptionAspect adds exception handling. It
comprises 2 lines for the aspect declaration itself and
12 lines for each of 6 the exception types. Handling
transactional exceptions requires additional 21 lines.
This sums up to 95 lines.

One ValidationAspect handles the validation code for
at most two positions: 8 * 2 positions à 13 lines.
These are additional 208 lines.

Hence, the AspectJ approach requires 2543 lines
thus saving more than 3600 lines, i.e., nearly 60%.

Unfortunately, this calculation does not consider
the 94 Request and 57 Reply classes for Skeleton
operations. In the XSL-T approach, these 10418 and
4176 lines of code, respectively, are generated. But
in the AspectJ approach, there is no mean to produce
or to avoid these classes: We have to manually
implement those 14594 lines of code: The
previously calculated advantage of AspectJ is lost!

However, the classes contain a lot of trivial
comments (28 lines for Request and 15 lines for
Reply classes in average), i.e., 3487 lines could be
left out. Since the classes are simple JavaBeans with
a constructor, a get-method, and toString method,
specifying the attributes is enough; Eclipse or any
other IDE can generate the code by a mouse-click.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

140

This requires additional time to handle the IDE, but
reduces the lines of code by further 735 lines (94*6
+ 57*3). But the AOP approach still requires 10372
lines for handling Request/Reply-classes.

5.2 Understandability

There is another point that concerns the development
time for providing the infrastructure: under-
standability. It also affects the evolution of the
system.

XSL-T is quite different from an object-oriented
programming language such as Java, since it defines
a set of rules that apply to a given XML document
recursively. Reading those rules and understanding
the overall behaviour is not easy even if one is
familiar with XML and XPath. In particular, the
rule-base approach makes it difficult to write or to
extend XSL-T scripts. Moreover, programmers must
handle a couple of unintuitive and error-prone
details of XSL-T, such as a special handling of zero-
parameter methods or leaving out a “,” after the last
parameter in parameter lists. Other MDD
frameworks such as (Xtend2,XPand) provide a
better support.

These drawbacks are not present in the AspectJ
approach. Indeed, its major advantage is its homo-
geneity: There is one language to learn, AspectJ,
which extends well-known Java by a few constructs
such as pointcuts and advices the semantics of which
is clear and understandable. Advices, in turn, are
implemented in pure Java. Having a little knowledge
about AspectJ, it should be no problem to
understand the advices we have presented.

The disadvantage is that some conceptual points
cannot be handled appropriately. One example is
adding validation logic, which becomes less intuitive
because we cannot directly handle the parameter
position (cf. subsection 4.6). Furthermore, we cannot
generate Skeleton and Request/Reply classes easily.
These parts must be hand-coded. And finally, import
statements must be added manually or generated by
using IDE support. In contrast, those parts are
completely generated in the XSL-T approach.

5.3 Testability

Testability is the major disadvantage of the XSL-T
approach. Since code is generated, syntactical
correctness is not immediately visible. Thus, the
effort to check correctness is high. Several cycles of
generating code, compilation, testing, and debugging
are necessary in order to check ultimate correctness.
Moreover, debugging of XSL-T is very limited.

Moreover, the correct behaviour must be proven

by unit testing. This means particularly that any
variation within XML service descriptions has to be
checked and unit tested. This is difficult and
increases complexity with the number of possible
combinations. One possible but challenging
approach is to generate unit tests as part of the
XML-based generation. However, also because of
the complexity of the XSL-T language, only manual
testing of main use cases was performed for
OpenSOA. The (inappropriate) strategy, we noticed
in practice, is thus to let developers generate code
and detect problems during tests; having their
feedback, implementers can fix the problems. In
turn, a new rollout of the MDD infrastructure is
required, leading to slow turn-around cycles for
bugfixing.

Using AspectJ, syntactical correctness is
immediately given for both the infrastructural
advices and the pointcuts thanks to special plug-ins
such as AJDT for the Eclipse IDE. As a direct
consequence of the integrated language approach
and corresponding compiler support, any syntax
errors in wildcards or aspects are detected by a
compiler. The plugin also issues a warning if a
pointcut does not match any joinpoint in the code
base. Only the correct behaviour has to be checked,
but can be achieved by running unit tests in an
ordinary Java IDE. Moreover, debugging AspectJ is
similar to Java code thanks to IDE support.

5.4 Usability

In the XSL-T approach, it is very straightforward to
write input .xml files. Moreover, an XML schema
exists and indicates any syntactical errors in input
files. Only the code generator has to be started to
produce Java code.

In AspectJ, applying “code generation” means to
specify corresponding pointcuts, e.g., to apply
exception handling or the transaction template to
methods. Despite not being part of the ordinary Java
language, pointcuts are easy to understand. In fact,
we only use a small subset of AspectJ pointcuts,
more or less using obvious wildcard expressions in
the sense of “all method of a Service class”. Anyway,
the simplest way is to enumerate methods. Applying
aspects is mostly a one-line pointcut. Moreover,
excellent support of the Eclipse AJDT plugin let one
determine the effect of aspects immediately, e.g.,
where an advice will be inserted. Using annotations
to apply an aspect certainly yields to a better
separation of infrastructure and usage.

Model-Driven�Development�Versus�Aspect-Oriented�Programming�-�A�Case�Study

141

5.5 Redundancy

The XSL-T transformations are partially redundant
because the redundancy of signatures moves from
code to XSL-T scripts: Generating similar classes
Impl, Skeleton, TransSkeleton etc. with similar methods
requires similar XSL-T transformations.
Furthermore, the exception handling in the generated
code is crosscutting and scattered around classes in
the final outcome.

AspectJ, from its nature, has a much better
separation of concerns for handling the transaction
skeletons and exception handling. The overall
redundancy is less. There are no longer several
similar classes, it is essentially the Impl Java class; the
logic of other generated classes becomes part of
aspects. However, there are some limitations. For
instance, the Skeleton methods have to be manually
written (with IDE support for generating import’s).
Even if some common logic can again be
concentrated in aspects, e.g., by putting superclasses
on top of classes, we cannot avoid these classes.

5.6 Completeness

The XSL-T approach allows for generating code
including Javadoc comments and import statements.

In contrast, the AspectJ solution is not able to
handle necessary import statements. The AO
approach simply relies on IDE support such as
“Organize import” functionality; which however
often is just a mouse-click. Similarly, comments and
Javadocs have to be manually added. From a logical
point of view, those parts move from Service.xml to
ServiceManagementImpl.java, i.e., put directly into code.
In the XSL-T approach, Javadoc is generated into
several classes, but this is not necessary here: There
will be only one Java class, besides additional
aspects.

5.7 Comparison Summary

The results we obtained with our case study indicate
that AspectJ reveals its major strengths in avoiding
redundancy and better testability, while MDD with
XSL-T is a more complete and flexible approach. In
fact, XSL-T allows for generating arbitrary artefacts
the design demands, whereas AspectJ cannot
provide this functionality and would require changes
in the design. AOP in turn is better understandable
and readable, however, we see that other MDD tools
offer more advanced and integrated features.

Table 1 provides a rough summary of the
comparison results.

Table 1: Summary of comparison results.

 AspectJ - AOP XSLT - MDD
Lines of Code - (requires add.

 OO classes)
o (duplicated
 XSLT code)

Under-
standability

+ (straight
 forward)

- (complex
 syntax/semantic)

Testability + (directly
 testable)

o (difficult for
 generated code)

Usability o/+ (reasonable) - (difficult)
Redundancy + (nearly not

 redundant)
o (partially
 redundant)

5.8 Limitations and Generality

As our case study focuses on a specific software
framework, our study cannot serve as an extensive
guide for the selection among the technologies for
arbitrary use cases and software projects.
Nevertheless, we think that our case study results
can be of value for practitioners being in the
situation to choose among them.

 As our problem of generating wrapper classes
and boilerplate-code is rather common, we believe
that our results have potential to be transferred to
other problem settings. Furthermore, we think that
the dimensions our evaluation is based on will help
others to guide their decision making when choosing
amongst the technologies or to take benefit from the
best of both worlds.

Whereas in our solution, understandability
speaks in favour of AOP, we see that more advanced
and integrated tooling could significantly improve
the position of MDD here. More advance generator
languages, for example Xtend2 (Xtend2), provide a
more straight forward generation approach, without
recursive generation rules, but with mature editor
support and even debugging functionality.

6 RELATED WORK

There are several case studies and a large body of
papers that either only evaluate the benefits and
liabilities of MDD (e.g., Kapteijns et al., 2009,
Lussenburg et al., 2010) or AOP (e.g., Kästner et al.,
2007). For example, (Kästner et al., 2007) take the
Berkeley DB as a case study and refactored the code
into 38 features. While other studies, e.g., (Lee,
2006), suggested that features of a product line be
implemented by aspects, they find that AspectJ is
not suitable to implement most of their features.
Even if this work is not a comparison, it shows
deficiencies of the language AspectJ, not necessarily
of AO or AOP, with respect to their case study. In

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

142

contrast, (Hohenstein, 2005) shows how to
successfully apply aspects to implement a
persistence framework, which is usually controlled
by code generation based upon annotations or XML.

Our work, in contrast, aims at a comparison of
AOP with MDD, in order to support the selection
among the technologies. Only few work exists that
explicitly makes such a comparison. (Stein and
Hanenberg, 2006) argue that AOSD and MDD are
alike since both adapt an input system in order to
receive an augmented output system, however, using
different approaches, weaving and transformation,
respectively. They discuss the technical differences
by means of an example. (Kaboré and Beugnard,
2007) compares AOP and MDD with regard to a
better separation of concerns. They only investigate
how to describe and how to apply both, concluding
that a model-driven approach offers more flexibility.

(Liu et.al, 2006) use a heart pacemaker product
line to elaborate on modelling crosscutting
variability with AO. They state that AO can benefit
the MDD of product lines. The study identifies
desired characteristics of AO modelling techniques
for product lines and proposes similar evaluation
criteria to ours such as feasibility, degrees of
variability, evolution, tool support, and cost,
however, miss to investigate those in their case
study.

(Anastasopoulos and Muthig, 2004) use a mobile
phone software product line to systematically
evaluate AOP as a product line technology. Their
result is that AOP is especially suitable for
variability across several components. The study
discusses several factors and the effort for various
activities: implementing reusable code, reacting to
evolutionary changes, reusing code, resolving
variations, and testability. Our study discusses
similar points, however, at a deeper level using a
real industrial case study.

Indeed, there is further significant work on
combining AOP and MDD. For instance,
(Henthorne and Tilevich, 2007) notices that the
generated code is not always adequate for a task at
hand, and mentions following in-house coding
conventions and missing import features as
examples. These are particular problems we handle.
Generating AspectJ code helps to give flexibility.

 (Pinto et al., 2009) combine both approaches by
describing an MDD approach that generates aspect-
oriented models. That is, aspects are part of the
outcome. This is especially useful to handle unanti-
cipated variabilities by means of aspects as the
MDD/AOP approach of (Völter and Groher, 2007)
illustrates. In our work, we explicitly compare the

two technologies, to avoid increasing the overall
technical complexity and dependencies of the
developed software, in our case, the OpenSOA
framework.

7 CONCLUSION

In this paper, we compared two completely different
approaches, model-driven development (MDD) and
aspect-oriented programming (AOP) with AspectJ,
by means of a real industrial software system and
thus investigating several criteria. While MDD, here
applying XSL-T, is straight forward and well-
understood for code generation, the usage of AOP is
not so obvious, but can serve the same purpose in a
different manner (Stein and Hanenberg, 2006).

We achieved some interesting results during an
aspect-oriented re-implementation of the original
XSL-T system. AOP is principally able to handle
code generation and has some advantages over XSL-
T: AspectJ is better understandable and usable,
especially from an implementer’s point of view.
There is a huge advantage for testing, in particular,
checking the syntactic and semantic correctness. We
also notice a better separation of concerns and
avoidance of redundancy, for instance, if logic is put
around existing code (transactional skeleton) or
after/before (logging). The most striking limitations
appear if new classes have to be introduced. This is
the main reason why the pure AspectJ-based
solution requires more lines of code (LoC).

XSL-T has advantage if several code generators
are producing several output files based upon the
same input file. This leads to the mentioned LoC
advantage. Thus, XSL-T is more extensible and has
potential for creating further classes, in particular
Request/Reply classes in this case study. Finally,
XSL-T results in a rather weak understandability.
This, however, seems to be a consequence of the
technology choice than of the MDD approach in
general. By using MDD approaches with more
intuitive languages and mature IDE support based
around Eclipse Ecore (e.g., (Xtext, Xtend2)), we
believe the implementation and the evaluation would
improve in this category. In particular, there are
tools available that can be used to produce Java
code, at least classes and method signatures as a
model. This can build a basis to take the Java
ServiceImpl file as input and produce Request and
Reply classes. Indeed, (Heidenreich et al., 2009)
even developed an Ecore metamodel for Java 5.0
together with a parser and printer, so that plain Java
statements could be produced.

Model-Driven�Development�Versus�Aspect-Oriented�Programming�-�A�Case�Study

143

A combination of XSL-T and AspectJ also seems
to be a promising approach to combine the
advantages of each technology. This particularly fits
smoothly to the existing implementation. That is
why we intend to investigate the combination of
both approaches, i.e., following (Henthorne and
Tilevich, 2007) to generate aspects within the code
to get the best out of both worlds.

REFERENCES

Anastasopoulos, M., Muthig, D., 2004. An Evaluation of
Aspect-Oriented Programming as a Product Line
Implementation Technology. In ICSR 2004.

AspectJ. Eclipse AspectJ Homepage.
http://eclipse.org/aspectj/, visited 2014-03-18.

Beuche, D., 2006. Variant management with
pure::variants. Technical report, pure-systems GmbH,
2006. http://www.pure-systems.com/fileadmin/down-
loads/pv-whitepaper-en-04.pdf, visited 2014-05-25.

Groher, I., Krüger, C., Schwanninger, C., 2008. A Tool-
Based Approach to Managing Croscutting Feature
Implementations. 7th Int. Conf. on AOSD, Brussels
2008.

Hohenstein, U., 2005. Using Aspect-Orientation to Add
Persistency to Applications. Proc. of Datenbank-
systeme in Business, Technologie und Web (BTW),
Karlsruhe 2005.

Heidenreich, F. Johannes, J. Seifert, M. Wende, C., 2009.
Closing the Gap Between modelling and Java. In Proc.
of 2nd Int. Conf. on Software Language Engineering,
Springer, Lecture Notes in Computer Science, 2009.

Henthorne, C., Tilevich, E., 2007. Code Generation on
Steroids: Enhancing Code Generators via Generative
Aspects. 2nd Int. Workshop on Incorporating COTS
Software into Software Systems: Tools and
Techniques (IWICSS’07).

Kästner, C., Apel, S., Batory, D., 2007. A Case Study
Implementing Features Using AspectJ. In Proc. Int.
Software Product Line Conference (SPLC), Kyoto
2007.

Kaboré, C., Beugnard, A., 2007. Interests and Drawbacks
of AOSD compared to MDE – A Position Paper. 3rd
Workshop on Aspects and Models, at 21st ECOOP
2007.

Kapteijns, T., Jansen, S., Houet, H., Barendse, R., 2009. A
Comparative Case Study of Model Driven
Development vs Traditional Development: The
Tortoise or the Hare. In CTIT Proc. of 5th European
Conf. on Model Driven Architecture, 2009.

Kiczales, G. et al., 2001: An overview of AspectJ. Proc. of
15th ECOOP , 2001.

Lee, K., 2006. Combining Feature-Oriented Analysis and
Aspect-Oriented Programming for Product Line Asset
Development. In Proc. Int. Software Product Line
Conference, 2006.

Liu, J., Lutz, R. Rajan, H., 2006: The Role of Aspects in
Modeling Product Line Variabilities. In Proc. of 1st
Workshop on Aspect-Oriented Product Line
Engineering, GPCE, Portland (Oregon) 2006.

Lussenburg, V., van der Storm, T., Vinju, J., 2010.
Mod4J: A Qualitative Case Study of Model-Driven
Software Development. In: Model Driven Engineering
Languages and Systems. Warmer Lecture Notes in
Computer Science Volume 6395, 2010.

 Mezini. M. Ostermann, K., 2004. Variabilility
Management with Feature-Oriented Programming
and Aspects. In Proc. of 12th Int. Symp. On
Foundations of Software Engineering (FSE), Newport
Beach (CA), 2004.

MPS. JetBrains :: Meta Programming System.
http://www.jetbrains.com/mps/, visited 2014- 05-25.

Normén, F., 2007. Remove code smell with AOP.
http://weblogs.asp.net/fredriknormen/archive/2007/11/
29/remove-code-smell-with-aop.aspx, visited 2014-
05-25.

Pinto, M., Fuentes, L. Fernández, L., Valenzuela, J., 2009.
Using AOSD and MDD to Enhance the Architectural
Design Phase. In: Proc. OTM’09.

Reichel, C. Oberhauser, R., 2004. XML-Based
Programming Language Modeling: An Approach to
Software Engineering. In: SEA 2004.

Smaragdakis, Y., Huang, S., Zook, D. 2004. Program
Generators and the Tools to Make Them. In SIGPLAN
Symp. on Partial Evaluation and Semantics-Based
Program Manipulation, ACM Press 2004.

Strunk, W., 2007. The Symphonia Product-Line. Java and
Object-Oriented (JAOO) Conf, Arhus, Denmark, 2007

Stein, D., Hanenberg, S., 2006. Why Aspect-Oriented
Software Development and Model-Driven Develop-
ment are not the Same – A Position Paper. Electr.
Notes Theor. Comput. Sci. 163(1), 2006.

Stahl, T. Völter, M., 2006: Model-Driven Software
Development. Wiley&Sons, 2006.

Tarr, P., Osher, H., Harrison, W., Sutton, S., 1999: N
Degrees of Separation: Multi-Dimensional Separation
of Concerns. In 21st Int. ICSE 1999.

Völter, M., Groher, I., 2007: Product Line Implementation
using Aspect-Oriented and Model-Driven Software
Development. In: 11th Int. Software Product Line
Conference (SPLC), Kyoto (Japan) 2007.

Xtend2. Eclipse Xtend 2 Homepage. http:
//www.eclipse.org/Xtext/#xtend2, visited 2014-03-18.

Xtext. Eclipse Xtext Homepage. http://www.eclipse.
org/Xtext/, visited 2014- 05-25.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

144

