
Toward Easy Migration of Client-Server Applications to the Cloud

Jianbo Zheng and Weichang Du
Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

Keywords: Cloud Computing, Multi-Tenancy, SaaS, Client-Server Computing.

Abstract: As an emerging model for the delivery of software services, Software as a Service (SaaS) has come to be a
trend in the software industry due to its low investment, flexibility, and accessibility. However, migration of
conventional client-server systems and applications to SaaS may involve complicated processes. This paper
proposes a framework for helping software developers to migrate conventional client-server applications to
SaaS based applications in cloud environments, with multi-tenancy support and without redeveloping or
modifying original application software. The migration framework consists of four components: service
proxy, data proxy, tenant management, and cloud resources management. The four framework components,
together with an original client-server application, can be seamlessly deployed on the cloud as SaaS. The
proposed migration framework has been implemented on the Amazon AWS cloud engine.

1 INTRODUCTION

In recent years, SaaS is rapidly becoming a popular
application model for software vendors seeking to
reduce IT costs and take advantage of SaaS’ inherent
flexibility, quick deployment, and scalability. More
software companies have embraced cloud computing
by planning to or are in process of migrating their
software applications or services from customers’
local IT environments to cloud environments.
However, the migration processes of conventional
applications from local infrastructures to cloud
environments, running as SaaS applications, turn out
to be quite complicated.

Conventionally, many enterprise applications are
based on the client-server model. In this computing
model, software vendors sell installation packages
and licenses to customers and then assist them to
deploy the software on customers’ own local IT
infrastructures. By contrast, in SaaS model, software
is deployed on cloud and provides its services via
networks. Customers no longer have to purchase or
install application software by themselves. Instead,
they subscribe and pay for services on demand. In
SaaS model, software vendors become service
providers and customers become tenants. In SaaS, a
single service instance can serve many tenants at
same time. Moreover, SaaS supports rapidly
onboarding new tenants, which is essential to grow
user base of an application. Thus, how to easily

migrate a conventional client-server application to
cloud has received increasing attention.

Several recent research projects on the issues of
migrating conventional applications to the cloud are
introduced below.

Gartner (Gartner, 2011) analyzes five ways of
migrating existing applications to the cloud: re-host
on IaaS, refactor for PaaS, revise for IaaS or PaaS,
rebuild on PaaS, and replace with SaaS, and gives
advice on how to choose the method.

Chong et al. (Chong and Carraro, 2006) proposes
a SaaS maturity model, which takes configurability,
multi-tenancy efficiency, and scalability as the key
attributes of SaaS and classifies SaaS software as
four maturity levels from level 1 (configurability) to
level 4 (all the four attributes), where a higher level
is distinguished from its immediate lower level by
adding one more attribute.

Guo et al. (Guo et al., 2007) proposes a multi-
tenancy enabling programming model and
framework, consisting of a set of approaches and
common services, to support and speed up multi-
tenant SaaS application development. Cai et al. (Cai
et al., 2010; Cai et al., 2009) proposes an end-to-end
methodology and toolkit for transforming existing
web applications into multi-tenant SaaS applications.
However, using this migration methodology,
developers have to modify the original application
software as well as server configurations. Song et al.
(Song et al., 2011) defines a SaaSify Flow Language

101Zheng J. and Du W..
Toward Easy Migration of Client-Server Applications to the Cloud.
DOI: 10.5220/0004996601010108
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 101-108
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

(SFL) and proposes a SFL tool which would help
convert Java web applications to SaaS applications.

Furthermore, enabling applications to support
multi-tenancy either during application development
or by adapting existing web applications to support
multi-tenancy has also been investigated in
(Mietzner et al., 2008; Wang et al., 2009; Zhang et
al., 2009; Chinchani and Iyer, 2004).

In this paper, we propose a migration framework
named Application to SaaS Framework (A2SF). The
A2SF aims to help software developers or vendors
to transform their conventional client-server
software applications to multi-tenant SaaS
applications without modifying their original
software.

The rest of the paper is organized as follows:
Section 2 describes the design and implementation
of A2SF and discusses several strategies to
implement A2SF on the Amazon AWS Cloud
platform. Section 3 introduces a case study on the
cloud migration of a real-world client-server
application using A2SF on AWS. Finally, the
concluding remarks and future work are given in
Section 4.

2 FRAMEWORK DESIGN AND
IMPLEMENTATION

2.1 Overview of A2SF

The objective of this research project is to design
and implement a general cloud-based multi-tenancy
framework, namely A2SF, which can be used for
easy migration of conventional client-server
applications to the cloud with none or less
modification of original software.

Figure 1: A2SF overview.

Figure 1 shows an overview of A2SF framework.
The purple parts in the figure are the components of
A2SF, which provide the backbone of the migrated
system, as well as the general migration process.

In Figure 1, the left side is a typical original
client-server application, which has three tiers:
presentation tier, business logic tier, and database
tier. The right side is the migrated SaaS of the
original application. The components between the
left and right sides are the A2SF migration process.
These A2SF components are introduced in details in
the following subsections.

2.2 A2SF Challenges and Functionality

There are three challenges of migrating conventional
client-server applications to the cloud: tenant
management and identification, tenant isolation and
data security, and automatic service scalability.

2.2.1 Tenant Management and
Identification

Usually, a conventional client-server application has
its own client authentication module and
customization module, but not tenant management
module or even the concept of tenant. This implies
that clients of a client-server application usually for
a single company or organization. Whereas, a SaaS
based application should simultaneously support
clients for different companies or organizations, i.e.
different tenants.

For this challenge, A2SF provides a general
tenant management module to manage the tenant
information and configurations. For the tenant
identification aspect, the framework assigns a token
to each tenant, which will be carried in each service
request from clients. Via the token, the tenant
identification module is able to identify which tenant
the service request is from. This module, working
together with the authentication module of the
original application, provides identification and
authentication functionalities for the migrated SaaS
application.

2.2.2 Tenant Isolation and Data Security

As clients from multiple tenants may access the
migrated SaaS application at the same time, the
security of tenant privacy is an essential requirement
to the migrated application. The solution of data
isolation and protection is taken as a high priority
consideration.

In A2SF, multiple approaches of data isolation
are applied. One approach is virtualization-based

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

102

isolation. By this approach, in the migrated SaaS
application, the runtime data and configurations of
different tenants are stored in different virtual
machines. Another approach is application-based
isolation. A2SF provides two types of multi-tenant
awareness layers, which execute the access control
on services and resources (data) in the migrated
SaaS application. In the application level, tenants are
only allowed to access their own services and
resources.

2.2.3 Automatic Service Scalability

A2SF implements the virtualization-based isolation
by dynamically assigning each tenant a virtual
machine and deploying the tenant-customized
application on the virtual machine. However, if
A2SF simply generates a virtual machine for each
tenant, the migrated SaaS application could only
achieve the first level of the SaaS maturity model
(Chong and Carraro, 2006) and would not be able to
have high scalability and reduce the operation cost.

Instead, in the migrated SaaS application by
A2SF, cloud resources are allocated and recycled in
the unit of service instance. In order to have high
scalability, A2SF has a service instance manager
module, which is responsible for generating and
recycling service instances based on the tenant
application management rules.

Figure 2: The solution for the application management.

Figure 2 shows the A2SF solution for the
application management. In this solution, the
original application is divided into two parts. One
part is the utility components, which can be shared
and reused among tenants. The other part is the
tenant privacy related components, for example the
configuration component of the application. In A2SF,
these tenant privacy related components are
protected by the multi-tenant awareness layers.

When the migrated SaaS application needs to
generate an application instance for a returning
tenant, A2SF loads the tenant’s privacy related
components to a shared virtual machine instance and
assign it to the tenant. When the tenant goes off line,
A2SF saves the tenant’s privacy related components
back to the data centre, clear and recycle the
allocated virtual machine instance for future use.

Working like a load balancer between clients and
service instances, A2SF helps the migrated SaaS
application to allocate and recycle the resources
automatically. In this way, the migrated SaaS
application can partially achieve the 4th level in the
SaaS maturity model without modifying the original
application software.

2.3 A2SF Runtime Architecture

Figure 3 shows the runtime architecture of the A2SF.
The purple modules are the main components of the
framework, which includes the service proxy layer,
tenant manager (including tenant manager interface),
service instance manager, data access layer, and
framework database.

The service proxy layer and data access layer are
the multi-tenant awareness components in A2SF.
The tenant manager provides the tenant information
management service and tenant identification service.
The service instance manager is responsible to
automatically generate and recycle service instances
based on statuses of real-time tenant access.

The framework database stores the A2SF
configuration and tenants’ information, such as
tenant proxy rules, tenant statuses, and logs.

Figure 3: A2SF runtime architecture.

Toward�Easy�Migration�of�Client-Server�Applications�to�the�Cloud

103

2.3.1 Service Proxy Layer

The service proxy layer is responsible for service
access control. In A2SF, tenants are only allowed to
access their own service instances. As shown in
Figure 3, the service proxy layer is the single
entrance of the migrated SaaS application, and all
clients or end users’ service requests are sent to it,
instead of their original local servers.

When the service proxy layer starts up, it loads
all the tenants' proxy rules. After receiving a client
request, the service proxy layer first acquires the
token of the request and identifies the request’s
source by invoking the tenant identification service.
Once the request is identified, the service proxy
layer handles the request based on the tenant's proxy
rules and forwards the request to the proper service
instance. If the request cannot be identified, the
service proxy layer will deny the service request.

As the original client-server application will be
migrated to the cloud as a whole package without
modification, the original communication protocols
as well as the business logic processes between
clients and server do not need to be changed in the
migrated SaaS application as well as the client-side
application.

2.3.2 Tenant Manager

The tenant manager provides the following services:
tenant information management, tenant
identification service, and tenant status service.

Through the tenant manager interface, on one
hand, tenant administrators can manage tenants’
information, customize tenants’ subscribed services,
and review tenants’ usage reports. On the other hand,
the service provider, namely the vendor of the
migrated SaaS application, can manage the tenants’
subscriptions, set the customization rules for the
tenants, and setup the configuration of A2SF
runtime.

The tenant identification service is responsible to
verify the tenant’s token, identify the tenant, and
return the tenant information including the tenant
rules.

The tenant status service is used to obtain the
tenants' current statuses. The tenant manager keeps
all the tenants’ statuses and updates them regularly,
based on the tenants’ service requests. In A2SF, the
tenant status information includes the tenant service
instance status, tenant connection number, tenant
live time, and so on. Based on these statuses, the
tenant manager sends the service instance
management request to the service instance manager,

such as service instance generation request and
service instance recycling request.

2.3.3 Service Instance Manager

The service instance manager is the module to
manage the running service instances in the cloud,
including service instance generation and recycling.
With this module, A2SF implements the allocation
and recycling of the cloud resources.

The service instance is a server side application,
which is composed of a running virtual machine
instance and the customized application image
deployed on the instance. In A2SF, each online or
live tenant who has clients or end-users to access the
migrated SaaS application is assigned a customized
service instance. Whether or not to generate a
service instance is controlled by the tenant manager.
As discussed in the previous section, the tenant
manager keeps the tenants’ statuses and updates
them regularly. When a tenant status matches its rule
of generating or recycling the service instance, the
tenant manager will invoke the services provided by
the service instance manager, to generate or
terminate the service instance for the tenant.

A. Service Instance Generation Steps

When the service instance receives a service
instance generation request for a returning tenant,
firstly, the service instance manager obtains an
available virtual machine from the cloud. Secondly,
the service instance manager deploys the original
application on the virtual machine. Thirdly, the
service instance manager customizes the original
application by loading the tenant’s private data to
the virtual machine from the data centre and initiates
the application. Finally, the service instance
manager sends the result and service instance
information to the tenant manager to update the
tenant’s statuses.

B. Service Instance Recycling Steps

When the service instance manager receives a
service instance recycling request for an off-line
tenant, firstly, the service instance manager stops the
application. Secondly, the service instance manager
collects the tenant’s local private data on the virtual
machine instance and saves it to the data centre.
Finally, the service instance manager clears the
tenant’s local private data, terminates the virtual
machine instance, and sends the result to the tenant
manager to updates the tenant’s status.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

104

In order to perform the above steps, the service
instance manager module wraps the standard
operations of the IaaS services (launch, start, stop,
and terminate a virtual machine), as well as the
remote controlling operations or commands (copy,
move, service start, service stop and so on) on the
virtual machine.

Moreover, the virtual instance launching time
may be too long for an application that needs quick
responding. So in order to shorten the generation
time of service instances, A2SF also implements a
virtual pool managed by the service instance
manager, to always keep a number of spare virtual
machines that are waiting to host generated service
instances.

2.3.4 Data Access Layer

The data access layer is responsible for the data
access control between service instances and the
database, to assure that tenants are only allowed to
access their own data.

Generally speaking, an application has two
essential parts, programming code and user data.
The programming code is the common part and can
be shared with all tenants, while the user data are
tenants' private data which are protected under the
access control. Furthermore, the user data can be
categorized into local data and remote data. The
local data are stored in local files. For instance, the
configuration file is a typical example of local data.
The remote data is usually stored in a database.

The data access layer stores the local data in the
A2SF’s data storage (such as S3 in the Amazon
Cloud), initializes local data before the service
instance runs, and stores and clears it after the
service instance stops.

The data access layer provides two ways to deal
with the remote data. One way is to implement a
data proxy server, which means that all data accesses
go through the data proxy server first. This method
is for those applications whose data connection
configurations are hard coded. The other way is to
treat the data connection configuration file as
tenant’s private local data. This method is only
suitable for those data connection configurations that
are separated from the code and can be easily
replaced.

2.4 Migration Process

Generally, the process to migrate a client-server
application to SaaS using A2SF consists of three
steps: analyze the original application, create a

migration package, and deploy the package to the
cloud.

2.4.1 Analyze the Original Application

Before starting to integrate the A2SF components
and the original application, the software vendor
needs to analyze the original application to identify
the tenant privacy related components of the original
application and separate them from utility or
sharable components.

2.4.2 Create a Migration Package

Based on the analysis of the original application, a
migration package can be created to integrate the
A2SF components and the original application
software together to be ready for deployment to the
cloud.

The migration package consists of A2SF
components of service proxy server, tenant manager,
service instance manager, data proxy server, as well
as A2SF script templates, plus the original
application software.

An A2SF script is an executable batch file to be
created for each tenant for the tenant’s application
customization and data protection. There are two
types of script templates. An initializing script will
be executed in the application generation. When an
application instance needs to be generated, the
initializing script will install the application first,
then customize the application, copy the tenant’s
private data files from the A2SF data centre to this
application instance, and launch the application
instance. A context-saving script is to be executed
during the application recycling. After the tenant
goes off line, the context-saving script will stop the
tenant’s application instance, save the tenant’s
current context, copy the tenant’s private data files
to the data centre, and clear the tenant private data in
the application instance. Using the script templates,
A2SF runtime can automatically generate the
concrete scripts for each subscribed tenant,
according information provided by the tenant during
subscription time.

2.5 A2SF Implementation

A prototype of A2SF has been implemented on
Amazon AWS cloud platform. Figure 4 shows the
organization of the implementation. Three Amazon
cloud services were applied to the prototype: EC2
service, S3 service, and RDS service. All the
framework components were running on the
Amazon Linux operation system.

Toward�Easy�Migration�of�Client-Server�Applications�to�the�Cloud

105

Figure 4: Main components of the A2SF prototype.

3 CASE STUDY

In this section, a case study of migration of a real-
world client-server application to SaaS on Amazon
cloud using A2SF is presented, to show the
migration process and the migrated SaaS services
with the A2SF prototype.

3.1 SugarCRM Application

In order to find a typical and representative real-
world client-server application for this case study,
we searched for a popular open source CRM
application. SugarCRM is one of the most popular
customer relationship management applications
currently. It is implemented in the PHP
programming language and supports multiple types
of databases including MySQL.

3.2 Migration of SugarCRM to SaaS

3.2.1 Analyze Application

We analyze the SugarCRM application from the
following three aspects.

A. Separate Tenant Privacy Related
Components

As discussed in previous sections, the components
of the original client-server application should be
classified into three types: utility components, local
private components, and remote private components.
We need to identify the tenant’s privacy related
components in SugarCRM software and separate
them from the utility components.

A2SF provides different migration solutions for
the different types of components. Utility
components are deployed on the virtual machine
image (in the Amazon cloud, it is also called as AMI)
once for all the tenants. The local private
components are saved in the bucket of Amazon S3
named by tenant id and tenant name. The remote
private components are stored in a MySQL instance
in the Amazon RDS.

After installing SugarCRM on an experiment
environment, we classified the components of
SugarCRM as shown in Table 1:

Table 1: The classification of SugarCRM components.

Type Components

Local private
components

Folders: custom, upload, cache,
data, modules;
Files: .htaccess, sugarcrm.log,
config.php, config_override.php

Remote private
components

The database “sugarcrm”

Utility components
The rest of components of
SugarCRM

B. Determine the Types of Cloud Services

For this case study, the basic types of cloud services
are enough for the migrated SaaS application. For
example, from the Amazon cloud services, we chose
the micro type virtual machine instance for both the
service proxy server and service instance server. We
chose the micro type database instance and the basic
S3 storage as the data centre.

3.2.2 Create a Migration Package

In the next step, we integrated the A2SF components
and the SugarCRM software to create a migration
package.

Firstly, we updated the A2SF script templates by
our Amazon Security Credentials and the list of
private components.

Secondly, a customized AMI (Amazon Machine
Image) was created for generating SugarCRM
service instances, in which the data proxy server, the
A2SF scripts, the target application SugarCRM, and
the running environments were already deployed.
The AMI ID of the A2SF was updated by the A2SF
management centre. Thus when a new or returned
tenant comes, the service proxy server can easily and
quickly launch a new SugarCRM service instance
and customized it for the new tenant based on the
AMI. Table 2 shows the contents of the created
migration package for SugarCRM to SaaS on
Amazon cloud.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

106

Table 2: Contents of SugarCRM migration package.

Component Description
Service proxy
server

 Java jar file to run on the portal
server VM as the service entrance.

Management
centre

Java war file to be deployed to
Tomcat server running on the portal
server VM

Data proxy
server

Java jar file to be pre-deployed in the
AMI, and run as the local MySQL
proxy server VM.

Script
template

Bash script file to be instantiated by
tenant subscriptions

Customized
AMI

EC2 VM machine image file with
pre-deployed data proxy server image

 Database
Pre-defined MySQL database for
A2SF framework.

SugarCRM
Application

Original client-server application

SugarCRM
DB Creation
Script

SugarCRM’s database creation script
file to be executed when a new
tenant’s subscription is approved.

3.2.3 Deploy the Package

In this stage, the migration package was deployed
and ran on the Amazon cloud. Figure 5 shows the
deployment of the migrated SaaS SugarCRM
application.

Firstly, we created a new virtual machine from
Amazon EC2 as the portal server and a database
named “a2sf” in the MySQL instance of Amazon
RDS. The portal server is the entrance of the
migrated system, as well as the host of the service
proxy server and the A2SF management centre.

Figure 5: Deployment of the migrated SugarCRM SaaS.

After the portal server running, we accessed the
A2SF management centre and updated the
application information. As shown in Figure 6,

currently, the application information includes the
application name, the virtual machine image id
(AMI ID), and the A2SF scripts.

Figure 6: Screenshot of updating application’s
information.

After starting up all the components in the cloud,
the clients or end users of different tenants can
access the migrated SugarCRM SaaS from their web
browsers on different client computers, where we
use client computers’ IP addresses as tenants’ tokens
to identify which tenants the clients belong to.

4 CONCLUDING REMARKS

In this paper we proposed a framework named A2SF
for migrating conventional client-server applications
to multi-tenant SaaS applications. Migrations based
on A2SF are relatively easy because no need to
modify the original software and the simple
migration process. The runtime architecture of A2SF
for multi-tenant SaaS is simple and effective, though
it is little conservative compared to other proposed
multi-tenant SaaS systems. The proposed A2SF
framework has been implemented on Amazon EC2
cloud computing engine with a real-world migrated
CRM application. Future work includes performance
evaluation and improvement of A2SF and
implementations on other cloud platforms.

REFERENCES

Cai, H., Wang, N., & Zhou, M. J. (2010, July). A
transparent approach of enabling SaaS multi-tenancy
in the cloud. In Services (services-1), 2010 6th world
congress on (pp. 40-47). IEEE.

Cai, H., Zhang, K., Zhou, M. J., Gong, W., Cai, J. J., &
Mao, X. (2009, September). An end-to-end

Toward�Easy�Migration�of�Client-Server�Applications�to�the�Cloud

107

methodology and toolkit for fine granularity SaaS-
ization. In Cloud Computing, 2009. CLOUD'09. IEEE
International Conference on (pp. 101-108). IEEE.

Chinchani, R., & Iyer, A. (2004). HNQ, and S.
Upadhyaya. A Target-Centric Formal Model for
Insider Threat and More. Technical Report 2004-16,
University of Buffalo, US.

Chong, F., Carraro, G. (2006). Architecture strategies for
catching the long tail. MSDN Library, Microsoft
Corporation, 9-10.

Gartner, “Gartner Identifies Five Ways to Migrate
Applications to the Cloud” 16 May 2011. [Online].
Available:http://www.gartner.com/it/page.jsp?id=1684
114

Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., & Gao, B.
(2007, July). A framework for native multi-tenancy
application development and management. In E-
Commerce Technology and the 4th IEEE International
Conference on Enterprise Computing, E-Commerce,
and E-Services, 2007. CEC/EEE 2007. The 9th IEEE
International Conference on (pp. 551-558). IEEE.

Mietzner, R., Leymann, F., & Papazoglou, M. P. (2008,
June). Defining composite configurable SaaS
application packages using SCA, variability
descriptors and multi-tenancy patterns. In Internet and
Web Applications and Services, 2008. ICIW'08. Third
International Conference on (pp. 156-161). IEEE.

Song, J., Han, F., Yan, Z., Liu, G., & Zhu, Z. (2011, July).
A SaaSify tool for converting traditional web-based
applications to SaaS application. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on
(pp. 396-403). IEEE.

Wang, D., Zhang, Y., Zhang, B., & Liu, Y. (2009,
December). Research and implementation of a new
SaaS service execution mechanism with multi-tenancy
support. In Information science and engineering
(icise), 2009 1st international conference on (pp. 336-
339). IEEE.

Zhang, X., Shen, B., Tang, X., & Chen, W. (2010, July).
From isolated tenancy hosted application to multi-
tenancy: Toward a systematic migration method for
web application. In Software Engineering and Service
Sciences (ICSESS), 2010 IEEE International
Conference on (pp. 209-212). IEEE.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

108

