A Service Framework for Multi-tenant Enterprise Application in SaaS
Environments

Chun-Feng Liao, Kung Chen and Jiu-Jye Chen

Department of Computer Science, National Chengchi University, Taipei, Taiwan

Keywords:

Abstract:

Multi-tenant, Schema-mapping, Universal Table, Tenant-specific Storage, SaaS.

In recent years, Software as a service (SaaS), a service model for cloud computing, has received a lot of atten-

tion. As designing a multi-tenant enterprise application in SaaS environments is a non-trival task, we propose
a service framework to deal with three common issues for designing multi-tenant enterprise SaaS applications:
tenant context storage and propagation, schema-mapping, and the integration of ORM framework. A prototype
and a sample SaaS application have been implemented to verify the feasibility of our framework. In addition,
two tenant-specific virtual applications are constructed to demonstrate multi-tenancy. Finally, we conduct a
set of experiments to assess the overheads of making an enterprise application multi-tenant enabled.

1 INTRODUCTION

Over the past few years, a considerable number of
studies have been made on cloud computing. Among
the service models in cloud computing, SaaS (Soft-
ware as a Service) is reported to be the most com-
petitive (Momm and Krebs, 2011). To be econom-
ically scalable, a SaaS application must leverage re-
source sharing to a great extent by accommodat-
ing different tenants of the application while mak-
ing it appear to each that they have the application
all to themselves. Despite the benefits and popular-
ity of multi-tenant SaaS applications, the approach
for implementing such applications is still not well-
studied and documented (Koziolek, 2012). Techni-
cally speaking, SaaS-level multi-tenancy employs a
single application instance to serve multiple tenants.
In other word, tenants of a SaaS application are obliv-
ious to the fact that the resources (e.g. CPU time, net-
work bandwidth, and data storage) are shared among
tenants. For instance, a SaaS application must imple-
ment affinity (how tasks are transparently distributed),
persistence (how data are transparently distributed
and managed), performance isolation, QoS differenti-
ation, and tenant-specific customization (Krebs et al.,
2012). These issues are relatively hard to tackle and
require higher expertise.

Several architectural issues need to be addressed
when implementing a multi-tenant SaaS application,
which can be into two layers, namely, the applica-
tion layer and the data layer. The core issue of the

Liao C., Chen K. and Chen J..

application layer is how to devise a transparent way
to store and to propagate the tenant-specific infor-
mation (or called tenant contexts). Typically, enter-
prise applications tend to store tenant contexts in a
platform-dependent session implementation. How-
ever, if the tenant contexts are stored in this way, then
in order to propagating tenant contexts into a busi-
ness method, either the method signature or the body
of the business method must be modified to access
the platform-specific session implementation. Both
of these approaches involve significant modification
of code and made business methods being tightly cou-
pled on platform-specific API.

In addition, traditional “sticky session” (Galchev
et al., 2007) handling mechanisms are also platform-
specific and require careful configuration in a clus-
tered environment. As nodes in the cloud environ-
ment is usually virtualized, heterogeneous and elas-
tic, it is even harder to devise a platform independent
approach for handling sticky sessions. A more trans-
parent way to store and propagate tenant context is
thus apparently required.

Meanwhile, although it is generally agreed that
the multi-tenant data layer is one of the most impor-
tant concerns (Fang and Tong, 2011), there is also
little investigation on data layer concerns in a multi-
tenant application. There are two inter-related issues
to be addressed in this layer: schema layout manage-
ment and tenant-specific schema customization. In
the design space of the multi-tenant schema layout
management strategy, various alternative approaches

A Service Framework for Multi-tenant Enterprise Application in SaaS Environments.

DOI: 10.5220/0004995300050013

In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 5-13

ISBN: 978-989-758-036-9

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

ICSOFT-EA 2014 - 9th International Conference on Software Engineering and Applications

form a continuum between the isolated data style and
the shared data style (Chong and Carroro, 2011). As
pointed out by Aulbach et al., the shared data style
provides very good consolidation but lacks schema
extensibility (Aulbach et al., 2008). Many shared data
style assumes that either each tenant has a dedicated
set of tables and have the same schema or all ten-
ants are consolidated in one set of tables but share an
identical schema. Among commonly used schema-
mapping techniques, Universal Table seems to be a
promising shared data style since it is possible to pre-
serve extensibility at the same time. Essentially, a
Universal Table is a generic structure that has virtu-
ally no schema attached to it. Although it is com-
monly held that Universal Table layout would incur
a large amount of performance overhead, it is the ap-
proach adopted by SalesForce.com, which is a suc-
cessful SaaS vendor best known for its CRM service
that supports more than 55,000 tenants (Weissman
and Bobrowski, 2009). However, it is not clear how
the Froce.com SaaS applications leased by tenants
transparently transform the query statements for the
logical schema to the ones for the physical schema.

As the above-mentioned design issues, applica-
tion layer or data layer, are cross-cutting concerns of
a multi-tenant application, they should be modular-
ized so that developers are able to implement, deploy,
and integrate to such customizations to the applica-
tions with minimal additional programming and con-
figuration efforts. A general approach is to devise a
middleware-level facility that supports transparently
tenant context management, automatic mapping of
multiple single-tenant logical schemas to one multi-
tenant physical schema in the database, and flexi-
ble customization of tenant-specific logical schemas.
Hence, we propose a middleware-level service frame-
work that addresses these issues.

Specifically, our objective is to design a service
framework that provides: 1) a platform indepen-
dent tenant context management service that stores
and propagates tenant contexts based on the thread-
specific storage pattern (Schmidt et al., 1996); 2) a
data service that implements multi-tenant Universal
Table schema layout; 3) a multi-tenant ORM (object-
relational mapping) customization service that en-
ables the customization of tenant-specific domain ob-
jects and their mappings to the underlying schema
layout. On top of this service framework, we con-
struct a simple SaaS application, ShoppingForce.com,
to demonstrate the feasibility of our approach. Fi-
nally, we also present results of the performance as-
sessments of this work.

Tenant’s Virtual Tenant’s Virtual Tenant’s Virtual
Application A Application B Application C

Multi-tenant SaaS Application

Tenant Context Service Multi-Tenant ORM Service

Multi-Tenant Schema-Mapping Service

Multi-Tenant Service Frameworkj/\;

Universal Table Schema Layout

Figure 1. Overall architecture of the proposed service
framework.

2 RELATED WORKS

As mentioned, the design issues of multi-tenant en-
terprise applications fall into two groups: the ap-
plication layer and the data layer. In the applica-
tion layer, several challenges arise when transform-
ing these applications into multi-tenant ones: 1) how
to obtain tenant-specific information (or called ten-
ant contexts), 2) where to store the tenant contexts,
and 3) how to propagate tenant contexts among com-
ponents (Bezemer and Zaidman, 2010). Several ap-
proaches have been proposed to deal with the first is-
sues mentioned above, including intercepting filters
(Cai etal., 2010), aspects (Wang and Zheng, 2010), or
contexts (Truyen et al., 2012). What seems to be lack-
ing, however, is an appropriate mechanism for storing
and propagating of tenant contexts.

In the data layer, Pereira and Chiueh mentioned
the concepts of a multi-tenant query rewriting en-
gine in the future work section (Pereira and Chiueh,
2007) . Li proposes a heuristic-based query rewrit-
ing mechanism for transforming queries to the log-
ical schema to HBase, which is an implementation
of BigTable (Li, 2010). Aulbach et al. survey sev-
eral schema-mapping techniques, including Universal
Table (Aulbach et al., 2008). The data architecture
used by Force.com (Weissman and Bobrowski, 2009)
falls into the category of Universal Table, which is the
foundation of our data layer design.

Several attempts have been made to provide a
common platform for multi-tenant enterprise applica-
tions. However, the objectives of these attempts either
focus on isolation issues (Azeez et al., 2010), admin-
istration issues (Strauch et al., 2012), or only provide
conceptual discussion (Shimamura et al., 2010). This
paper concentrates the issue of tenant context and data
management and realize our approach as a service
framework.

A Service Framework for Multi-tenant Enterprise Application in SaaS Environments

Client |

| HttpRequestHandler || BusinessLogic | | Data | | Yiew | | Session |

T
| 1: showSpecialOfferf) |

| 2: tenantContext = getTenantContext()

******** T

|

|

|

|

|

|

5 businessMethod?{tedantContext, .} | |
i |
|

|

|

|

|

6 getData(tdnantContext, ..)

H
tenant specific view |

Figure 2: In traditional HTTP Session approach, all method signatures throughout the call sequences have to be modified.

3 DESIGN

In this section, we will present the design of the pro-
posed multi-tenant service framework for enterprise
applications. As depicted in Fig.1, The service frame-
work provides three core services that are common
for multi-tenant enterprise applications, namely, the
Tenant Context Service, the Multi-Tenant ORM Ser-
vice, and the Multi-Tenant Schema-Mapping Service.
A multi-tenant SaaS application, which is able to
host several tenant-specific virtual applications, can
be built on top of the service framework. The detailed
mechanisms of the three core services will be intro-
duced in the following sub-sections.

3.1 Tenant Context Management

A key characteristic of a multi-tenant SaaS applica-
tion is that it must provide tenant-specific user in-
terfaces, business logics and data to a certain extent.
To realize tenant-specific customization of an appli-
cation, some artifacts, usually called isolation points,
have to be isolated for different tenants (Cai et al.,
2010). To implement tenant-specific customization,
program logics in the isolation points must have ac-
cess to tenant contexts. Therefore, it is important to
find a way for storing and propagating tenant contexts
among the isolation points spreading in a multi-tenant
SaaS application. If the clients of a SaaS application
are Web-based, then a common approach is to store
tenant contexts in a platform-dependent HTTP ses-
sion implementation. Essentially, an HTTP session
is an abstraction of a shared storage which is acces-
sible through a specific sequence of user-system in-
teractions. For instance, the shopping cart in an e-
commerce web site is usually stored in an HTTP ses-
sion.

However, the above-mentioned approach leads to
several problems. First, the approach is not applica-
ble to non-web-based clients. Second, if not care-
fully designed, the HTTP session can be unstable and
brittle due to the sticky session problem, proxy farm
problem, or net quasar problem (Joines et al., 2003).
Most importantly, the multi-tenant processing logic
will be "polluted” by platform-specifics of the un-
derlying HTTP implementation. Taking Java-based
Web application as an example, the multi-tenant pro-
cessing logic must use a Servlet API to access ten-
ant contexts, causing the logic being dependent on the
Servlet API. Moreover, the method signatures for user
interfaces, business logics and data access have to be
modified to propagate tenant contexts (see Fig. 2).
To minimize the efforts of migrating an single-tenant
application into multi-tenant ones, it is preferable to
avoid significant modification of code or being tightly
coupled with some platform specific API.

Thread-specific storage is a design pattern that al-
lows multiple threads to access a logically global but
physically local for each individual thread (Schmidt
et al., 1996). Internally, a thread-specific storage is
essentially a globally accessible list of maps, where
the maps are indexed by thread IDs. Hence, program
logics in a specific thread t can only access one of the
map, that is, the map indexed by t. It is reported that
thread-specific storage is more efficient, reusable and
portable (Schmidt et al., 1996). However, if it is not
carefully designed, it can lead to an obscure system
structure because of the use of a (logically) global ob-
ject. As aresult, it is important to store and propagate
tenant contexts in a thread-specific storage through
an uniform API. Based on this observation, we de-
vise a platform independent mechanism that allows
the program logic to access tenant contexts, stored in
a tenant-specific storage, from user interfaces, busi-

ICSOFT-EA 2014 - 9th International Conference on Software Engineering and Applications

Client | | HtipRequestHandler | | BusinessLogic | |

T T
| 1: showSpecialOffer()

T
|
2: businessMethod1(..J

3 getDatal..)
>

6 getDatal

(-] 7 accoss tenant cohtext)
|

K m
5: businessMethod2(..) |
|
i i
|
|
e A
,,,,,,,,, L |
U tenantspecificview | !

Figure 3: In the tenant specific storage approach, only isolation points are modified.

ness logics and data without depending on the HTTP
session, as shown in Fig.3.

3.2 Multi-tenant Schema-mapping

This section describes the design of the proposed
Universal-Table-based multi-tenant schema-mapping
service. Before examining the detailed mechanisms,
it is helpful to introduce the overall data architecture
and design issues of Universal Table. Essentially,
Universal Table is a generic storage consisting of a
GUID (Global Unique Identifier), a tenant ID, and a
fixed number of generic data columns (i.e. the Data
Table in Fig.4). The metadata of logical tables (ob-
jects), logical columns (fields), logical relationship,
logical primary keys, and logical index information of
records are stored in Objects, Fields, Relationships,
Uniquefields, and Index, respectively (see Fig.4). In
the sequel, we follow the convention in (Weissman
and Bobrowski, 2009) and use the term objects and
tables as well as fields and columns interchangeably.

Consider a hypothetical e-commerce SaaS appli-
cation, ShoppingForce.com, that enables its tenants
to sell products and to process orders on-line. Since
different tenants have their own unique needs in de-
scribing their products, ShoppingForce.com allows its
tenants to create their own customized schemas for
their products. Fig. 5 illustrates the scenario. Here
we have two product tables (i.e. Product]_g, and
Product/_g,,, where | denotes "logical” schema and
t denotes tenant id). The data in the two logical tables
will be stored together into a universal table (i.e. the
Shared Table) via the schema mapping service.

We now turn to the design of our Universal-Table-
based multi-tenant schema-mapping service. At the
core of the service is a set of query rewriting rules
that specify the transformations from logical queries
to physical queries via relational algebra. Due to
space limitation, the reader is referred to our previous

Fields
fieldsld
tenantld
objectld
fieldName Data Index
PEERDQ dataGuid tenantld
ieldNum
objectld
1 itld
isindex enan i
Object objectld
ESE name dataGuid
objectid valuel stringValue
tenantld value numvyalue
value2 dateValue
objectName
Associations ‘ Uniguefields
associationld Relationships dataGuid
tenantld
tenartld relationid objectid
objectld -
targetObjectid ?a[a%ﬂd fle!dNum
fieldld enan S stringValue
FieldNum tSOWC:)b Je;d nurmvalue
targetFieldid argetobec datavalue
targetFieldMNum

Figure 4: The data architecture of Universal Table schema-
mapping.

Product._, Product,_g,,
i Jrame. Jorece {descron Wialnamepe
1231 Koi 200 a large fish AJ-208 Finch SL-11

Multi-Tenant Schema-Mapping Service

Shared Table

(....) Product 667 1231 Koi 200 a large fish
(....) Product 604 AJ-208 Finch SL-11 NULL

Figure 5: Example of Universal Table schema-mapping.

work for detailed specification of those query rewrit-
ing rules (Liao et al., 2012). In the following, we
sketch the overall query rewriting mechanism via an
example of transforming a projection statement. Let
us assume that a tenant, whose id is 667, has submit-
ted a projection statement:

SELECT price, description FROM Product.

This projection statement will be rewritten to a form
that selects physical fields from the shared table,

A Service Framework for Multi-tenant Enterprise Application in SaaS Environments

Data. Firstly, the statement will be represented by
the following algebraic form:

E)< price;description> [667](Product);

where p denotes the projection operation that selects
subscripted fields, e.g., price, description, from a log-
ical table specified by its name and a tenant id anno-
tation, e.g., Product and 667.

Secondly, we look up the objectld from the Ob-
jects table via the logical table name, (Product), and
the tenant id, 667. This is specified by using the object
name transformation function x°®J€t(Product;667),
which is assumed to return 1 in this example. With
the physical object id and tenant id, we can select all
the rows of the tenant’s Product data from the shared
table Data, which is specified by the following equa-
tion.

Sob jectld=1/tenantid=667(Data): 1)

Thirdly, given the objectld, we may obtain the
mapping between logical field names and physical
field names using the Fields table. We specify the
mapping via the field name transformation func-
tion x"eld(Product;n¢;667), where the logical field
names id, name, price, and description are obtained
by substituting n¢ by valuel, value2, value3, and
valued, respectively. As a result, the logical table
Product can be reconstructed by appending a rename
operation, r, and a projection operation in front of the
expression in (1):

[667](Pr0d UCt) = r(id ;name; price;description)
P<valuel;value2;value3;value4> 2)
Sobjectld=1~tenantid=667 (Data):

Note that the projection operation
P<valuelvalue2value3yvaluea> 1S required since the
Data table has additional fields to keep track of
metadata of a record such as GUID, objectld and
tenantld fields of the Data table, as depicted in Fig.5.

Now that we have reconstructed the logical table
Product from Data, we can apply arbitrary query op-
erations to it:

P<price;description>[667](Product) =
P<price;description>
r(id;name; price;description) (3)
p<value1;value2;value3;value4>
Sobjectld=1"tenantld=667 (Data):

Then, the physical form of the tenant-aware logical
projection statement can be derived as follows:

SELECT price, description FROM (
SELECT valuel AS id, value2 AS name,
value3 AS price, value4 AS description
FROM Data
WHERE objectld=1 AND tenantld=667).

«interface» «interface»
CustomObject CustomRelationship

getld() getld()

getName() getMasterObjectld()
getTenantld()
getCustomFields()
getCustomRelationships()
setld()

setName()

setTenantld()
addCustomFields()
addCustomRelationship()

getMasterObjectName()
getDetailObjectld()
getDetailObjectName()
setld()
setMasterObjectid()
setMasterObjectName()
setDetailObjectld()
setDetailObjectName()

Fot bt F ot f bt
AR+

Figure 6: The structure of CustomObject and CustomRela-
tionShip.

Finally, it is important to point out that the rewrit-
ing rules are realized in MultiTenantDataServiceFa-
cade, as shown in Fig.7, which is the facade for the
adapters to the ORM framework. This design made
the implementation of rewriting rules easier to be in-
tegrated with the ORM framework, which will be ex-
plained in detail in the next section.

3.3 Multi-tenant Object-relational
Mapping

Because of the difficulties arising from object-
relational impedance mismatch (Ambler, 2003),
contemporary enterprise applications typically ac-
cess database through an Object-Relational Mapping
(ORM) framework. However, the SQL rewriting
mechanisms introduced in the previous section do
not deal with the interoperability issues with ORM.
Hence, in this section, we propose an transparent
approach for integrating SQL rewriting mechanisms
into an ORM framework.

Generally speaking, the first step of ORM design
is to define the mappings between object fields and
database fields. Such mappings are usually specified
by the annotations in the source code. To be consis-
tent with the annotation-based convention, we use the
annotation @MultiTenantCapable to indicate that the
annotated object is going to be mapped to a multi-
tenant database. For instance, to annotate the Prod-
uct to be multi-tenant capable, the only additional ef-
fort is to add an @MultiTenantCapable annotation, as
shown below:

@MultiTenantCapable
Public class Product {...}.

Except the annotation, no additional modification is
required from the developer’s point of view.

We are now ready to introduce the underlying
techniques of the proposed approach. In order to
map user-customized domain objects into Universal
Table schema layout, metadata information such as
class name, field name and relationship has to be ex-
tracted and then attached to the mapping object. As
depicted in Fig.6, we defined two general interface,
namely, CustomObject, CustomField and CustomRe-

ICSOFT-EA 2014 - 9th International Conference on Software Engineering and Applications

MultiTenantDataServiceFacade
=] + transformSQL()
ORM Framework +insert))
”””” + update()
+ delete()
+ isMultiTenant()
+ performMapping()
I
|
CustomObjectMapper
CustomizationHandler - - - - - - - - - }J———- - - - = TenantContextHolder
+ mapCustomFields()
]
i
i

<<interface>>
CustomField

I
i
i
<<interface>>
CustomObject >

<<interface>>
CustomRelationship

Figure 7: The overall design of multi-tenant ORM.

lationship, to store the metadata information men-
tioned above. At runtime, the system periodically
checks any newly added user-customized domain ob-
jects. If the annotation @MultiTenantCapable is ob-
served, then the annotated object will be enhanced to
implement the CustomObject and related interfaces
on the fly by a bytecode rewriting mechanism to be
sketched below. In particular, the implementation of
the mappings between user-customized domain ob-
jects and the underlying schema layout is dynamically
generated and injected into the bytecode of these ob-
jects.

Figure 7 displays the overall structure of how
the proposed mechanism adapts to an existing ORM
framework. There is a class called MultiTenantSer-
viceFacade that serves as a unified entry point so that
the proposed mechanism is more portable to differ-
ent ORM frameworks. The SQL rewriting rules pre-
sented in the previous section in are implemented in
the insert, update, delete methods of MultiTenantSer-
viceFacade. The object-relational mapping tasks are
delegated to CustomObjectMapper, which uses Cus-
tomizationHandler to interact with user-customized
domain objects. It is worth mentioning that, due
to the use of thread specific storage pattern, Custo-
mObjectMapper and CustomizationHandler are able
to obtain the reference to tenant contexts in situ with-
out any parameter passing.

Currently, we implement the proposed design
based on JavaAgent (Aarniala, 2005), as the bytecode
transformation tool and DataNucleus’s JDO (Rus-
sell, 2010) implementation, as the underlying ORM
framework. DataNucleus (Miller et al., 2010) is de-
signed based on OSGi platform (Hall et al., 2011) so
that our extension can be easily integrated into it as a
bundle. The main transforming logic is implemented
in a specific class called MTAClassFileTransformer
which is initialized by JavaAgent and is hooked in
JVM. Before the annotated classes are loaded, JVM

10

will delegate to MTACIassFileTransformer so that it
has a chance to modify the bytecode.

4 EVALUATION

This section presents the preliminary results of the
feasibility study and performance evaluation of our
approach.

4.1 Feasibility

We studied the feasibility of the proposed service
framework by developing a Java-based prototype. To
verify the prototype, we also implemented a simple
SaaS application called ShoppingForce.com on top of
the service framework. The SaaS application is able
to access the underlying tenant context management,
ORM, and schame-mapping services.

In the application layer, we realize the thread-
specific storage via a static member variable, which is
realized by the ThreadLocal class provided by JDK.
Tenant contexts belonging to different threads are
isolated by ThreadLocal. In other words, although
thread-specific storage seems to be global to the sys-
tem, when a thread accesses it by calling the getCon-
text method, only the tenant context that is specific
to the calling thread is returned. In the data layer,
to access the physical schema, the application uses
JDOQL (JDO Database Query Language) (Russell,
2010) and manipulates JDO API. Then, The JDOQL
is translated internally to SQL statements and then
used as the inputs of the proposed rewriting schemes.

To create a virtual application, the tenant applies
for an account on-line and a tenant profile is then
generated accordingly. We have created two differ-
ent on-line shopping applications hosted on Shop-
pingForce.com. Sometimes, a tenant needs to modify
default virtual schema such as adding tenant-specific
columns. In such case, ShoppingForce.com provides
a set of schema customization pages which can be ac-
cessed from the account management page, as shown
in Fig. 8.

4.2 Performance

To test the performance of the tenant-aware schema
layout management service in the data layer, we con-
ducted experiments in a stand-alone switched net-
work. In the network, the test client and the test server
are deployed on two separate PCs with Intel Core i7
3.4-GHz processor with 4G bytes memory. For the
test client, we use Apache JMeter 2.9 (Halili, 2008), a

A Service Framework for Multi-tenant Enterprise Application in SaaS Environments

PixelDot

Productid ProductName UnitPrice
Nikon 131

Sony NEX-6UB,

Sony NEX-7 Add Field

a Obympus £.PLS -
Ficld Name Field Type

LIR30 08 35 38 4

Canon EOS M

I be
R £ Bt Productid label

image E
textbox B

rich text -1

textbox j)

OK | | Cancel

PixelDot

roductld uctName UnitPrice
delete 3 Nikon 171

delete 2 Sony N

delete 1 Sony NE

deete 4 Olympus E
deete 5 Canon EOS d Name
deete € Fujfim X.P. s Product

OK | | Cancel

Figure 8: The object customization and relationship customization pages in ShoppingForce.com.

well-known open source and general-purpose perfor-
mance measurement platform, which can be used to
simulate arbitrary load types on the server or network
to test overall performance under different load types.
The service framework and the database is deployed
on the test server, where the database is MySQL Com-
munity Server 5.7 with InnoDB engine running on
Ubuntu Linux 12.04.

For the experiments, we set up a imaginary sce-
nario, in which there are 100 tenants and each tenant
stores 100,000 records in both a Universal Table im-
plementation and a Private Table implementation. In
the Universal Table implementation, there are respec-
tively 10 million, 10 million, and 5 million records
stored in the Indexes, UniqueFields, and Relation-
ships table. For each tests, based on the above sce-
nario settings, several concurrent threads that issue
query requests to the service framework. After a re-
quest is finished, the JMeter platform gathers the re-
sponded results and reports the turnaround time. We
performed experiments for Selection, Projection, and
Join statements of Private Table and Universal Table
implementations, respectively. When performing the
tests, built-in cache mechanism of query processer is
turned off to better reflect the actual overheads in-
duced by the transformed SQL.

A summary of experimental results for Private Ta-
ble and Universal Table is shown in Table 1. Com-
pared to the Private Table implementation, which
serves as a baseline, there is a great performance
penalty for multi-tenant-ifying” the database. The
main reason is that schema-mapping involves over-
heads of additional database access since all meta
information of logical-physical mapping has to be
stored in physical storage. However, we believe that

Table 1: Average turnaround time of queries on Private Ta-
ble and Universal Table schema layouts. (in milliseconds).

Operation Private Universal Universal
Type Table Table Table
(Baseline) (SQL) (ORM)
Select 0.4469 5.1793 14.0067
Insert 1.3823 13.7154 14.4246
Delete 0.5264 10.2565 16.0911
Update 0.5238 9.1029 15.3657

the overhead is acceptable for most enterprise SaaS
applications because the worst turnaround time of
query operations is still less than 20ms. Moreover,
the performance can be improved significantly if the
built-in cache mechanism of query processor is turned
on. It is also worthy to point out that the turnaround
time for ORM implementation is a bit slower than the
direct SQL implementation. This result reflects the
trade-offs between code maintainability (via the use
of ORM framework) and performance.

5 CONCLUSION

In this paper, we have investigated the design of a
multi-tenant service framework for developing enter-
prise SaaS applications. The service framework ad-
dresses three essential design aspects, namely, tenant
context storage and propagation, schema-mapping,
and the integration of ORM framework, of enter-
prise SaaS applications. We have also presented a
prototype implementation of the proposed approach
and conducted performance evaluations to assess the
overheads. In addition, a sample multi-tenant SaaS

11

ICSOFT-EA 2014 - 9th International Conference on Software Engineering and Applications

application, the ShoppingForce.com and two tenant-
specific virtual applications are also constructed to
demonstrate the feasibility of the service framework.

Moving ahead, further research is clearly required
to investigate approaches for enhancing the security
aspect of the proposed framework. Essentially, multi-
tenancy promotes resource sharing, which unavoid-
ably trades a certain amount of security for the lower
service costs. Fortunately, security issues caused by
resource sharing can be significantly reduced if the
multi-tenant SaaS application is deployed on a mid-
dleware platform that employs advanced access con-
trol and program monitoring mechanisms for inter-
cepting unauthorized accesses to a shared resource.
Hence we shall look into those mechanisms and in-
vestigate how to leverage them to prevent unautho-
rized data accesses, such as checking tenant ID’s. On
a different front, we are going to explore more trans-
parent ways, such as aspect-oriented programming or
dependency injection, to help developers transform a
single tenant enterprise application into a multi-tenant
one based on the proposed service framework with
less efforts.

ACKNOWLEDGEMENTS

This work is partially sponsored by Ministry of Sci-
ence and Technology, Taiwan, under grant 102-2221-
E-035-039 and 102-2627-E-002-001.

REFERENCES

Aarniala, J. (2005). Instrumenting java bytecode. In Sem-
inar work for the Compilerscourse, Department of
Computer Science, University of Helsinki, Finland.

Ambler, S. (2003). Agile database techniques: Effective
strategies for the agile software developer. John Wiley
& Sons.

Aulbach, S., Grust, T., Jacobs, D., Kemper, A., and Rit-
tinger, J. (2008). Multi-tenant databases for software
as a service: Schema-mapping techniques. In Pro-
ceedings of the 2008 ACM SIGMOD International
Conference on Management of Data.

Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana,
P., Leelaratne, D., Weerawarana, S., and Fremantle, P.
(2010). Multi-tenant soa middleware for cloud com-
puting. In Cloud computing (cloud), 2010 ieee 3rd
international conference on. IEEE.

Bezemer, C.-P. and Zaidman, A. (2010). Challenges
of reengineering into multi-tenant saas applications.
Delft University of Technology, Tech. Rep. TUD-
SERG-2010-012.

12

Cai, H., Wang, N., and Zhou, M. J. (2010). A transparent
approach of enabling saas multi-tenancy in the cloud.
In Proceedings of IEEE World Congress on Services.

Chong, F. and Carroro, G. (2011). Architec-
ture strategies for catching the long tail. In
Available at: http://msdn.microsoft.com/en-
us/library/aa479069.aspx.

Fang, S. and Tong, Q. (2011). A comparison of multi-tenant
data storage solutions for software-as-a-service. In
Proceedings of the 6th International Conference on
Computer Science and Education(ICCSE 2011).

Galchev, G., Fleischer, C., Luik, O., Kilian, F., and Stanev,
G. (2007). Session handling based on shared session
information. US Patent App. 11/322,596.

Halili, E. H. (2008). Apache Jmeter: a practical beginner’s
guide to automated testing and performance measure-
ment for your websites. Packt Publishing.

Hall, R., Pauls, K., and McCulloch, S. (2011). OSGi in Ac-
tion: Creating Modular Applications in Java. Man-
ning Publications Company.

Joines, S., Willenborg, R., and Hygn, K. (2003). Perfor-
mance Analysis for Java Web Sites. Addison Wesley.

Koziolek, H. (2012). . The sposad architectural style for
multi-tenant software applications. In Proceedings of
the 9th Working IEEE/IFIP Conferences on Software
Architecture.

Krebs, R., Momm, C., and Konev, S. (2012). Architec-
tural concerns in multi-tenant saas applications. In
Proceedings of the International Conference on Cloud
Computing and Service Science (CLOSER12).

Li, C. (2010). Transforming relational database into hbase:
A case study. In Software Engineering and Service
Sciences (ICSESS), 2010 IEEE International Confer-
ence on. IEEE.

Liao, C.-F., Chen, K., and Chen, J.-J. (2012). Toward a
tenant-aware query rewriting engine for universal ta-
ble schema-mapping. In Cloud Computing Technol-
ogy and Science (CloudCom), 2012 IEEE 4th Inter-
national Conference on.

Miller, F., Vandome, A., and John, M. (2010). DataNucleus.
VDM Publishing.

Momm, C. and Krebs, R. (2011). A qualitative discussion
of different approaches for implementing multi-tenant
saas offerings. In Proceedings of Software Engineer-
ing 2011, Workshop.

Pereira, J. and Chiueh, T. C. (2007). SQL Rewriting Engine
and its Applications, Technical Report. Stony Brook
University.

Russell, C. (2010). Java Data Objects 2.0. JSR 243 Specifi-
cation.

Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann,
F. (1996). Pattern-Oriented Software Architecture,
Patterns for Concurrent and Networked Objects, vol-
ume 2. John Wiley & Sons.

Shimamura, H., Soejima, K., Kuroda, T., and Nishimura, S.
(2010). Realization of the high-density saas infras-
tructure with a fine-grained multitenant framework.
NEC Technical Journal, 5(2).

A Service Framework for Multi-tenant Enterprise Application in SaaS Environments

Strauch, S., Andrikopoulos, V., Séez, S. G., Leymann, F.,
and Muhler, D. (2012). Enabling tenant-aware ad-
ministration and management for jbi environments.
In Service-Oriented Computing and Applications
(SOCA), 2012 5th IEEE International Conference on.
IEEE.

Truyen, E., Cardozo, N., Walraven, S., Vallejos, J., Bain-
omugisha, E., Gunther, S., D’Hondt, T., and Joosen,
W. (2012). Context-oriented programming for cus-
tomizable saas applications. In Proceedings of ACM
Symposium on Applied Computing.

Wang, H. and Zheng, Z. (2010). Software architecture
driven configurability of multi-tenant saas application.
In Proceedings of International Conference on Web
Information Systems and Mining.

Weissman, C. D. and Bobrowski, S. (2009). The design of
the force.com multitenant internet application devel-
opment platform. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management
of Data.

13

