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Abstract: The verbose nature of XML requires data compression, which makes it more difficult to efficiently imple-
ment querying. At the same time, the renewed industrial and academic interest in Column-Oriented DBMS
(column-stores) resulted in improved efficiency of queries in these DBMS. Nevertheless there has been no
research on relations between XML compression and column-stores. This paper describes an existing XML
compressor and shows the inherent similarities between its compression technique and column-stores. Effi-
ciency of compression is tested using specially designed benchmark data.

1 INTRODUCTION

The eXtensible Markup Language, XML (XML,
2013), is one of the most popular data encoding and
exchange formats for the storage of large collections
of semi-structured data, including scientific databases
such as the Universal Protein Resource (The UniProt
Consortium, 2013), OpenStreetMap (OSM) (OSM,
2014) a collaborative project to create a map of the
world, Wikipedia (Wikipedia: The Free Encyclope-
dia, 2014), and even bibliographic databases, such as
DBLP (The DBLP Computer Science Bibliography,
2014). Some of these systems use relational DBMS
back-ends and are referred to as XML Databases
(not to be confused with XML Database engines,
which use XML documents as the fundamental
unit of storage). The advantage of using DBMS
back-end includes the support for ACID, scalability
and transaction control but extends to XML-related
functionality, e.g., updates (Müldner et al., 2010) and
parallel implementations (Müldner et al., 2012).

For XML documents, the verbose nature of XML
to support human readability may result in very large
datasets (in hundreds of gigabytes), necessitating data
compression. The compression rate can boosted by
using XML conscious compressors, i.e., compressors
aware of specific syntactical features. In various
applications of XML, not only efficient compres-
sion/decompression is needed, but also efficient
implementation of XML queries.

Column-Oriented Database Systems (column-
stores) have seen a resurgence in academia and

industry. A column-store is a relational database,
with each attribute of a table (often represented as a
column) stored in a separate file (or region in stor-
age). If pages are laid out horizontally then to answer
queries there is a lot of additional and unnecessary
data being brought into memory, including all the
columns, while in column-stores only columns that
are necessary are fetched. In addition, storing data in
columnar fashion increases the similarity of adjacent
records on disk, and so provides the opportunity for
compression; for other benefits see (Abadi et al.,
2013).

This paper examines the inherent relationship
between many types of XML-conscious compressors
and column-stores, and shows that XML compressors
and column-store are trying to solve very similar
architectural issues with respect to storage and
retrieval in the columnar environment. A specific
example of an XML-conscious compression system,
called XSAQCT is presented, see (Müldner et al.,
2009) and see (Müldner et al., 2014) for theoretical
background. XSAQCT requires the same functional-
ity as a column-store, i.e., using similar path-based
compression that resembles column-based compres-
sion in column-stores (while ignoring things such as
SQL Joins).

Contributions. There are two main contributions
of this paper: (1) the discussion of the relationships
between XML compression and column-stores; (2)
the analysis of results of testing the compression
ratio using special benchmark data in form of an
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XML corpus consisting seven files with various
characteristics (for results of tests showing efficiency
of queries see (Fry, 2011) and (Müldner et al., 2010)).

Organization. This paper is organized as follows.
Section 2 describes related work in the area of column
stores, XML compression, and a basic features of an
XML compressor XSAQCT. Section 3 discusses the
relationships between column stores and XML com-
pression, and presents modifications of XSAQCT to
satisfy these relationships, and Section 4 provides an
overview of our architecture, the benchmark data, ex-
perimental results of testing, and analysis of results.
Finally, Section 5 gives conclusions and future work.

2 RELATED WORK

2.1 Column-stores

There is a large body of research on using a standard
relational DBMS as a back-end for the XML DBMS,
e.g., (Florescu and Kossmann, 1999). In general,
XML elements are stored in relations, while XML
attributes, parent/child and sibling order information
are stored as attributes. By vertically partitioning
a relational database into a collection of columns
that are stored separately, queries can read only the
these attributes that are needed, rather than having
to read entire rows and discard unneeded attributes
only when they are in memory. We focus on na-
tive column-stores providing both a columnar storage
layer and an execution engine (integrated with a tra-
ditional row-oriented execution engine), tailored for
operating on one column-at-a-time with late tuple re-
construction (for joins and multi-selects), rather than
column-stores with columnar storage only, recombin-
ing tuples automatically when brought into memory.

In the past few years, a number of industrial so-
lutions have been introduced to handle workloads on
large scale datasets stored using a Column-stores, for
example: Redshift (Amazon, 2014), CStore (Stone-
braker et al., 2005), VectorWise (Zukowski et al.,
2012), and IBM DB2 (Raman et al., 2013). For a
column-store to achieve performance similar to tradi-
tional row stores, column-store architectures (Abadi
et al., 2013) generally apply Vectorized Processing,
Late Materialization, and Compression.

2.2 XML Compression

This section first recalls various types of XML com-
pressors and then describes their use to support
queryability and updates. By an “XML Compressor”,

we always mean an XML-conscious compressor.
XML compressors are called queryable if queries

can be processed with minimal or no decompression,
otherwise they are non-queryable. XML compressors
are called permuting, if the structural part, i.e., its
markups and the data part of the XML document are
separated during the encoding process. Finally, XML
compressors can be classified based on the availabil-
ity of an XML schema, (XML Schema, 2013) as
Schema-based compressors, for which both the en-
coder and decoder must have access to the shared
schema; and Schema-less compressors, which do not
require the availability of the schema. For schema-
less compressors, it is difficult to take advantage of
specific compression techniques that work only on
specific data types and allow direct operations on the
compressed data. An absence of an XML Schema im-
plies that there is no direct information indicating the
data type, thus we have to assume that each data type
is a CLOB (Character Large Object). Furthermore,
it becomes even more difficult to take advantage of
specific compression techniques that work only on
specific data types and allow direct operations on the
compressed data (e.g., a Run-Length encoding on In-
tegers).

Formally, given an input document D, a permut-
ing XML compressor Px(D) outputs a triple <P,M,S>,
where P represents the model of the XML struc-
ture, S represents the storage of XML contents (of-
ten represented as a set of distinct containers, i.e.,
S = {S1, . . . ,Sn}), and M maps elements in P to ele-
ments in S (M : P→ S). With respect to data compres-
sion, the goal of the mapping M is to use information
from the model P to organize the storage S containers
to reduce information entropy as much as possible;
often by exploiting the mutual information defined by
the partitioning strategy used by M. A variety of en-
coding schemes can be applied to the storage S, rang-
ing from lightweight compression schemes operating
on a sequence of values, e.g., Run Length Encoding
(RLE), to heavyweight ones (compression on an array
of bytes).

Finally, the model P has to be com-
pressed/encoded using some model-dependent
technique (e.g., tree compression).

A schema-less permuting XML compressor can
approximate schema; the distinct elements of the
model P can represent the constraints governing the
structure of elements, and the type of CLOBs stored
in each container Si ∈ S can be further approximated
(e.g., a container with only characters between [0,9]
implies integer data type).

Regarding querying, XML queries are typ-
ically described using XPath (XPath, 2013) or
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Figure 1: A document tree D (top) and its annotated tree
(bottom).

XQuery (XQuery, 2013), which supplements XPath
with a SQL-like “FLWOR expression” for performing
joins and data-dependent operations. Using a single
file to store the compressed XML document is a
simple and convenient storage method, e.g., to satisfy
any query, the model P would first be decompressed
and traversed. Since P is often significantly smaller
than the original XML file, the time penalty can be
amortized over many queries, especially in compari-
son to homomorphic DFS-based query algorithms by
smartly structuring the storage S. (A homomorphic
compressor preserves the structure of the input).
After the query is resolved in P, which may require
the extraction of text elements, the appropriate text
is found in S and decompressed to complete the query.

Regarding updates, the XQuery Update Facil-
ity (XQuery Update, 2013) is a relatively small ex-
tension of the XQuery language, which provides con-
venient means of modifying XML data.

Without substantial modifications to the com-
pressed unit, all updates must be appended to the end
of the file, Therefore the mapping M cannot be fixed,
and must be able to integrate with some differential
data structure to store updates which then is used to
efficiently handle subsequent queries. Otherwise we
will have to rebuild the model P and the storage S af-
ter each update (or flush) operation.

2.3 XSAQCT

XSAQCT is a permuting XML compressor, with its
compressed representation (i.e., P) in the form of an
Annotated Tree, see (Müldner et al., 2009).

An annotated tree of an XML document is a tree
in which every node is represented by similar paths
(i.e., paths that are identical) merged into a single
path, and labeled by its tag name. Examples of sim-
ilar paths are /a/b1/ and /a/b2/, or using XPaths
/a/b[1]/c[1]/ and /a/b[2]/c[1]/. Each node of an
annotated tree is of the form X [A0, ...,An], i.e, it is
labeled with a sequence (of non-negative integers),
called an annotation list, representing the number of
occurrences of this node’s children. Figure 1 provides
a running example of an XML document and its an-
notated tree. One of the necessary (but not sufficient)
conditions for an annotated tree T to faithfully repre-
sent at least one arbitrary XML document D is that the
sum of all annotations of a node is equal to the num-
ber of annotations of any child of this node, i.e., it
satisfies the recursive sums property: For any node
X [A0, ...,An] in T , and any child of X , Y [B0, ...,Bm],
∑n

i=0 Ai = m.
To answer queries using an annotated tree, anno-

tations have to be mapped to the XPath indices, we
now provide two algorithms. Algorithm 1 describes
a SAX-event driven DFS traversal of the annotated
tree, e.g., SAX :: StartEvent() represents a handler
called when the StartEvent event occurs (this algo-
rithm ignores text elements, however to handle these
elements, all that needs to be considered is the full-
mixed content property and whether a node is a leaf
or not). Algorithm 1 helps us to formalize how zero
and non-zero annotations “ripple” through a DFS. Al-
gorithm 2 describes how to pre-compute much of the
DFS using highly-parallel, tightly-looped, recursive
sums, showing how a regular XPath query can be re-
solved by an annotated tree.

Let a cycle be defined as consecutive siblings of
the form x→y→x or contradicting sibling orderings
such as x→y,y→x for different parents of the same
similar path. While this algorithm is restricted to
cycle-free XML sources, to handle cycles the only
changes required are: annotation sequences need to
be used instead of single annotation values, and the
Line 5 has to be changed from a single value to a set
of values, whose length is defined by an extra function
parameter (the annotation of a “cycle” node).

Line 14 in Algorithm 1 says that after recurring
on N’s child X , we disregard the first element of X’s
annotation list for subsequent iterations and the first j
elements of X ′s annotation list will be disregarded by
the time we decrement (in Line 15) j to zero. Thus,
the size of X’s annotation list is equal to the number
of j decrements for N, which must be equal to the
summation of N’s annotation list (i.e., the recursive
sum property). Generalizing this to find the proper
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Algorithm 1: Annotated DFS.
Data: struct Node = {

ElementLabel P,
ChildSet⟨Node⟩ S = {S0, . . . ,Sm}
AnnotatedIterator A = {A1, . . . ,An}

}
1 AnnotatedDFS(Node N) begin
2 j← N.A1
3 if j < 1 then
4 return
5 else if N is attribute then
6 for k← 1 to j do
7 SAX::Attribute(N.P)

8 else
9 if N is element Node then

10 SAX::StartEvent(N.P)

11 while j > 0 do
12 for every child X of N do
13 AnnotatedDFS(X)
14 X .A← X .A.next()

15 j← j−1

16 if N is element Node then
17 SAX::EndEvent(N.P)

annotation locations for each vertex in some arbitrary
path V0[X ]/V1[Y ]/.../VN [Z] in the annotated tree, we
need to find how many times Line 14 will be executed
for each vertex Vj[].

The importance of the annotated tree in XSAQCT
is that it can be considered a high level XML index,
which has proved to be essential for various applica-
tions, e.g., updates, see (Müldner et al., 2010).

A lossless annotated representation of an XML
tree efficiently supports many of the XQuery hier-
archal queries, e.g., ancestor and descendant, just
by comparing annotation values or sums for related
uses).

The complete compression process involves
creating text containers for each unique path of an
XML document, storing a delimited (using ASCII
Zero, \0), and possibly indexed list of character data
for each similar path. Character data is a general
term for all the characters not defined in the syntax of
XML, e.g., text elements and structure (whitespace)
data. For example, in Figure 1 the text container of
C[1,1,1] has three text elements t14, t15, and t19.
Similar paths often have similar data (i.e., high mu-
tual information), which improves the compression
efficiency.

Algorithm 2: Random Access DFS.
Data: struct Node = {

SimilarPath P,
ChildSet⟨Node⟩ S = {S0, . . . ,Sm}
AnnotatedList A = {A0, . . . ,An}

}
struct XPath = {

Sequence⟨Node⟩
S = {S j[X ]/P.S j+1[Y ]/. . ./Sm[Z]}

}
Result: Returns true if XPath P can be resolved by

an Annotated Tree rooted at N.
1 RecursiveSum(Node N, XPath P, int offs) begin
2 if |P.S|= 0 or offs≥ |N.A| then
3 return false

4 pathVal← X
5 annotVal← N.Aoffs

// Have to test all potential
subtrees.

6 if pathVal is /0 then
7 if |P.S|= 1 then
8 return annotVal > 1

9 bool c = false
10 for i← 1 to annotVal do
11 SS = {S j[i]/. . ./Sm[Z]}
12 c = c or RecursiveSum(N,SS,offs)

13 return c

// Correct annotation index.
14 else if annotVal ≥ pathVal then
15 if |P.S|= 1 then
16 return true

17 disp = pathVal−1
18 offset← ∑offs−1

j=0 N.A j

19 for every child Node X of N do
20 if X = P.S j+1 then
21 SS = {P.S j+1[Y ]/. . ./P.Sm[Z]}
22 return

RecursiveSum(X ,SS,offset+disp)

23 return false

3 ARCHITECTURE OVERVIEW

3.1 XML Compression and
Column-stores

(Choi and Buneman, 2003) consider a schema-based
compressor XMill (Hartmut and Suciu, 2000) as a
column-based storage model, and then study XML
join queries. With respect to queryability, the goal
of the mapping M, while working in the compressed
domain, is to structure the model P in such a way to
take advantage of vectorization and CPU- and cache-
friendly operations, by creating a layout based on
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fixed-width dense arrays, and thus being able to work
only on the relevant data at a time. Permuting XML
compressors are most useful, but they should also
allow random access. While in general, a schema
is not necessary for XML compression, for rela-
tional databases, it is always beneficial for a colum-
nar database to exploit a priori knowledge from the
schema (e.g., integer columns will be indexed and
compressed using integer-specific techniques).

3.2 Discussion and Architecture Layout

The main claim made in this paper is that any
permuting XML compressor that is to be extended
to the transactional (i.e., update and query) domain,
requires the same model of storage as a column-store
(while ignoring additional nuances such as SQL
Joins), as both have similar foundations in exploiting
mutual information within disjoint columns, ulti-
mately reducing the amount of time spent performing
I/O operations. The justification for this claim is that
any permuting XML compressor creates independent
containers and then requires logic (i.e., the mapping
M) to recombine the data from multiple locations.
Similarly, a column-store often stores the attributes
of an entity in several locations and then requires
logic to recombine the data from multiple locations.
Finally, since SQL substantially overlaps FLOWR,
many of the complex data/storage dependent queries
required for XQuery are identical to SQL queries in
the relational domain.

For example, C-Store (Stonebraker et al., 2005)
uses an instance of a BerkelyDB Key-Value database
for each column. Several values are combined to
produce blocks, which are compressed (depending on
the data type, and whether direct operation on the da-
tum is necessary) and finally stored into the database,
using a sparse index on the position (i.e., key of the

Figure 2: XSAQCT Storage Layout.

first instance in the block). On top of this abridged
explanation of its architecture, C-Store introduces
mechanisms for late materialization (e.g., using bit
vectors or position lists to store intermediate query
results making it possible to delay the decompression
of data as long as possible), inserts/updates/deletes,
and other SQL-specific functionalities.

In the case of XML, it is difficult and sometimes
incorrect to view the resulting tree as a collection of
tuples. A single parent may have multiple children of
the same name or type or that same node may only
appear in a small percentage of subtrees rooted at
the same parent. In recent years many XML-enabled
(i.e., interfaces with a relational database), and
Native XML solutions have been proposed. For
example, eXist (exi, 2014) stores the XML tree as a
modified, number-scheme based, k-ary tree combined
with structural, range and spatial indexing based on
B+-trees, and a cache used for database page buffers,
but it does not compress the documents.

One of the main benefits of a permuting XML
compressor is that the intermediate representation
is compact. In addition, the permutation implies
that we have two seemingly disjoint problems (com-
pressing the structure and storing and compressing
the content) that must be linked together via some
mapping. In column-stores, it is beneficial to use
column-oriented compression algorithms that can be
operated on directly without decompression. Reading
less data saves I/O operations, while not having
to pay the cost of decompression. Similarly, by
compressing the XML tree in a manner that can still
be directly operated upon (e.g., we can still execute a
DFS on the annotated tree to map it to text), we can
introduce an ultra-compact index of the XML that
can take advantage of the reduced I/O operations and
other benefits from compressing the data.

With XSAQCT, if we view the contents of each
“similar path” as an independent list of text values,
we could create a single attribute table for each path
in the relational domain; (either in the row-store or
column-store environments). However, we can still
exploit all of the benefits inherent to a column-store
(compression, late materialization, etc.). Addition-
ally, in the column-store environment, the contents
of a single entity is often stored in many locations,
which then requires additional logic to combine the
attributes for joining and grouping attributes; (this
is exactly how many permuting XML compressors
work). Also, in (Fry, 2011) and (Corbin et al., 2013)
XSAQCT was compared to many different XML-
database engines using the BerkelyDB Key-value
database, and the results were promising.
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Figure 2 depicts the architectural layout of a mod-
ified XSAQCT. The storage manager is defined as an
interface that relates the annotated tree and its query-
ing mechanisms to the underlying storage architecture
(either through SQL, or its own internal querying sys-
tem). As discussed before, additional data structures
are required to handle XSAQCT specific functionali-
ties independent of the storage mechanisms involved
(although the summation indices, for example, can
be tightly integrated). It should be noted however,
the memory required by these XSAQCT-specific fea-
tures take away from the potential memory used by
the caching, buffering and loading architectures of the
database.

4 TESTING AND ANALYSIS

4.1 Benchmark Data

Table 1 provides our benchmark data; a corpus
of seven XML files ranging from 30 Megabytes
to 467 Gigabytes found in: (OSM, 2014),
uniprot_trembl (The UniProt Consortium, 2013),
(Wikipedia: The Free Encyclopedia, 2014), (The
DBLP Computer Science Bibliography, 2014),
(xmlgen, 2013), and (Skibiński and Swacha, 2007).
V(N) denotes the value V*10N, Size is the size of file
in Gigabytes, E:A denotes the number of elements
and attributes, CD denotes the content density, the
amount of character data contained in the XML,
MD denotes the markup density, the amount of data
required for structuring the XML (e.g., the amount
of syntactic data and data used to name tags and
attributes), and SP denotes the number of similar
paths.

Table 1: Overview of XML Test Suite.

XML File Size E:A CD MD SP

planet(1) 466.04 6.13(9) : 2.4(10) 0.507 0.493 63

uniprot(2) 155.54 3.15(9) : 4.17(9) 0.502 0.498 149

enwiki-latest(3) 44.19 2.35(8) : 2.08(7) 0.918 0.082 39

dblp(4) 1.28 3.25(7) : 8.08(6) 0.566 0.434 204

1gig(5) 1.09 1.6(7):3.83(6) 0.74 0.26 548

Swissprot(6) 0.106 2.97(6) : 2.18(6) 0.444 0.556 264

lineitem(6) 0.03 1.02(6):1 0.19 0.81 19

4.2 Results of Testing and Analysis

4.2.1 Compression Ratio

This section provides an experiment to test the com-
pression ratio for the complete test XML files and
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Figure 3: Top: Total compression ratios. Bottom: Log 10
byte sizes of individual components.

for various components of these files. In compar-
ing XSAQCT and column-stores, the annotated tree
is the only element independent of a column-store,
therefore we need to measure how much memory is
required to represent the XML data. For this ex-
periment, the annotations will simply be stored as
a sequential-list without any additional paged index
scheme. For completeness, we also show how com-
pressible the data is. Table 2 provides a break-
down of the largest annotation list (A), and its RLE-
compressed equivalent (B). (Z) provides the annota-
tion list that compresses the worst (least redundant
annotations), and (Y) is its associated uncompressed
size. This table shows that the performance of queries
on the annotated tree is dependent on the paths being
queried, especially when a RLE, which pre-computes
much of the summation, is used.

The top and the bottom of Figure 3 respectively
plot the compression ratio of each file using a stan-
dard XSAQCT process (with varying back-end com-
pressors) and the total size of the annotation list, af-
ter applying a run length encoding to each annotation
list, and then compressing each RLE encoding using a
heavier weight compression scheme. For timing rea-
sons, the largest files were not compressed with the
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Table 2: Compression Ratio (all units in bytes).

File A B Y Z
planet 1.05(10) 5.18(5) 8.80(6) 6.85(6)
uniprot 3.03(9) 1.48(5) 1.48(7) 7.32(6)
enwiki-latest 5.72(5) 2.8(3) 5.72(5) 3.10(5)
dblp 5.60(4) 27745 5.56(4) 5.28(4)
1gig 2.39(4)8 1.17(2) 1.02(4) 6.40(3)
SwissProt 6(5) 2.95(1) 3.67(3) 3.81(3)
linteitem 2.4(3) 1.18(1) 2.40(3) 1.18(1)

more complex compressors (such as ZPAQ, paq8, PP-
Monster). With the more content-dense XML files,
XSAQCT and vanilla compressors often compress the
data to similar sizes, mostly because they are both
equally limited in the compressing of free-formed
English. However, when markup becomes equally
dense, XSAQCT can compress much better, in ad-
dition to already allowing random access queries.
Uniprot_trembl, for example, has a markup density
of roughly 77 Gigabytes, its annotated representa-
tion requires approximately 26.75 Gigabytes, and a
run-length encoding of each individual annotation list
produces an annotated representation of roughly 2.9
Gigabytes, a markup compression ratio of 3.8 per-
cent. One more GZIP compression on the RLE,
produces an annotated representation of roughly 345
Megabytes, a markup compression of ratio of 0.5 per-
cent. Finally, compressing all of its contents (text in-
cluded) with GZIP produces a compression ratio of
slightly 8 percent, or 12.2 GB.

Table 2 provides a breakdown of the largest an-
notation list (A), and its RLE-compressed equivalent
(B). (Z) provides the annotation list that compresses
the worst (least redundant annotations), and (Y) is its
associated uncompressed size.

4.2.2 Query Efficiency

While efficiency of queries has been demonstrated in
the earlier work, see (Fry, 2011) and (Müldner et al.,
2010), this section provides a detailed of efficiency of
queries in the context of our DBMSs.

The performance of query execution depends on
two factors: (A) how fast the query can be resolved
within the annotated tree; and (B) how fast the re-
quired contents can be extracted from each storage
container (e.g., the text at location X, all text contents
between two values).

Since (A) is based solely on
recursive summations and the number of subtrees

that can be resolved at once (i.e., the number of times
the condition on Line 6 in Algorithm 2 is satisfied),
(A) is indeed efficient, since in one clock second,
the summation (or product, assuming RLE) of more
than 300 million random integers can be computed.
However, Table 2 shows that for even the largest

uncompressed annotation list (9.86 GB in total or
2,646,326,444 integers), if it were entirely resident
in RAM, it would still require roughly nine seconds
to compute its entire sum. In addition, the under-
lying column-stores and annotated tree still require
memory for additional indexes, caches, and pending
lists and although this will not require a substantial
amount of memory, a scalable solution appears to be
necessary. Sparse indexing, where an annotation-list
is paged and each page is indexed based on its num-
ber of elements and total summation, is used for its
simplicity and light memory footprint. This allows ef-
ficient random access, e.g., find the correct page and
then finish the summation, and is inherently scalable
(it is possible to index the index), all at the cost of
additional I/O (bring in specific pages from disk and
cache them).

(Fry, 2011) analyzed (B) in the compressed do-
main, and showed that when combined with a stan-
dard key-valued NOSQL database, selecting specific
text contents often outperformed many of the pop-
ular XML Database engines. However, that analy-
sis assumed that the entire annotated tree was RAM-
resident; possibly an unfair assumption for very large
XML files (although, indexing summations can be
much more efficient than computing entire sums), and
only tested selecting specific values. Note that select-
ing specific ranges of attributes with a column-store is
often much more efficient than standard row-stores.

4.2.3 Storage

The central goal of a database system is processing
queries as fast as possible, rather than achieving
XSAQCT’s goal, i.e, getting the highest compression
ratio. A benefit of compressed data is that less time
is spent on I/O operations during query processing,
since less data is read from disk into memory. In
addition, the growing discrepancy between CPU
speed and memory bandwidth implies that more
CPU cycles are being wasted, this implies that we
have more CPU cycles to spare for decompression.
Thus, for optimal query performance, compression
algorithms that aim for direct access, (or if CLOBS
are assumed) high decompression speed and a
reasonable compression ratio are often preferred. For
optimal extendibility, a DBMS that allows external
compressor integration is one that is preferred.
Data Types. The easiest workaround to the problem
of column stores that require a schema is by forcing
every data-type to be a CLOB (which was done for
the compression experiments above). Approximating
the data-type, however, is ultimately a two-pass
process (approximate the data type, then build the
tables), which may be allowable given the domain we

Column-oriented�Database�Systems�and�XML�Compression

113



are operating in, assuming the additional data type
constraint is allowable. Any dynamic approach (e.g.,
each text element is further organized by perceived
data-type), will be ignored since compression on
CLOBs is still an effective solution.

Containers. For each node in an annotated tree, a
new “table” (or storage structure) is created with its
data-type specified according to the outline above.
Each element in a text container is stored with
its index as the primary key and in this case, the
underlying storage and compression mechanisms are
maintained by the database architecture. One detri-
ment to this approach, however, are the overheads in
explicitly representing each key, which can severely
bloat the size of the data on disk. Many column-store
architectures avoid storing this ID attribute by using
the position (offset) of the tuple in the column as a
virtual identifier. XSAQCT may also handle storage
and compression, for instance, data is compressed
and stored in tables as BLOBs (with a key associated
with each). However, this approach may not allow
for efficient querying upon the character data.

Annotation Lists. Compression, paging, index-
ing and storing the annotation lists can be imple-
mented with-respect-to or independent-of the un-
derlying column-store architecture. For example
XSAQCT can: (1) store annotations individually in
each table, using a sparse-index on the annotation
sums and range queries to find the proper summa-
tions. Paging and caching is strictly defined by the
column store used; (2) Store BLOBs of annotations
in each table, and the indexes upon these BLOBS
can be represented as additional keys (i.e., BLOB
ID, Number Elements, Summation). Although with
a traditional column store, this may create multi-
ple columns, many modern column-store architec-
tures allow column-groups, where multiple columns
are stored on the same page, forming a row format
of specific attributes, or (3) XSAQCT can natively
handle (2), and the annotated tree defines the anno-
tation indexing mechanisms, allowing the column-
stores to still cache the BLOBs. One important con-
sequence results from these actions: each annotated
page brought into memory also implicitly defines the
text elements that can be potentially queried upon. In-
tegrating the caching mechanisms allows the column-
store to potentially pre-fetch many text pages, which
can improve performance especially when querying
exhibits locality of reference. Additional performance
tweaks include the relative weight in caching annota-
tions, their indexes, and textual data.

5 CONCLUSIONS AND FUTURE
WORK

This paper showed the relationships between XML
compressors and column-stores. We showed that a
permuting XML compressor, called XSAQCT with
the DBMS back-end has essentially the same func-
tionality as a column-store (while ignoring things
such as SQL Joins), including a specific kind of com-
pression, i.e., using similar path-based compression
that resembles column-based compression in column-
stores. To test the compression ratio achieved with
this compressor, experiments were performed on an
XML corpus. The annotated trees of our corpus range
from 99.8 GB to 3.7 MB, which compressed using
RLE produces data ranging from 2.88 GB to 18 KB.
Compressing the RLE’s with a heavier weight com-
pression algorithm produces data ranging from 253.7
MB to 67 Bytes, showing that indexing exceptionally
large XML files can be done in a succinct fashion. In
addition, the system supports random access queries
and the speed of query resolution within the annotated
tree (founded on simple summations which are in-
herently simple operations). Regarding efficiency of
queries, (Fry, 2011) showed that selection queries and
update queries (using pending lists), outperformed
many of the popular XML Database engines, creat-
ing an area of research for compressed XML in the
database domain; see also (Müldner et al., 2010).

Many interesting problems remain for the future
work, especially in the areas of joins. For exam-
ple, the query: /cars/car[data/attrib=’Model’
and data/text=’855’] can be resolved by both a
row-oriented and column-stores. A late-materialized
column-store would first search the attribute column
and store all public keys (or virtual IDs) satisfying the
equivalence, and then it would scan the text column
and remove from the list all keys that do not satisfy
that equivalence. With respect to schema-less XML
and the recursive sums property, the index of a text
element in one text container is not necessarily equal
to the index in another container for the same sub-
tree (they are both related by the summation of their
parents annotation list and the full-mixed content as-
sumption), thus it is harder to properly execute a join.

The proposed approach could also be useful
for Substantial Updates, Rollbacks/Checkpoints and
Views. Finally, in addition to restricting nodes and
subtrees for some specific user group, since an anno-
tated tree is described in terms of a recursive relation-
ship among sums, and summations of integers are de-
composable and re-orderable, annotated trees are de-
composable into views (with additional mechanisms
to allow the annotated to be recombined).
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K., and Waśniewski, J., editors, Parallel Process-
ing and Applied Mathematics, volume 7204 of Lec-
ture Notes in Computer Science, pages pp. 101–110.
Springer Berlin Heidelberg.

Müldner, T., Fry, C., Miziołek, J., and Durno, S. (2009).
XSAQCT: XML queryable compressor. In Balisage:
The Markup Conference 2009, Montreal, Canada.

Müldner, T., Miziołek, J., and Corbin, T. (2014). Annotated
Trees and their Applications to XML Compression.
In The Tenth International Conference on Web Infor-
mation Systems and Technologies, Barcelona, Spain.
WEBIST.

OSM (2014). OpenStreetMap Foundation, retrieved
March 2014 from http://wiki.osmfoundation.org/
wiki/Main_Page.

Raman, V., Attaluri, G. K., Barber, R., Chainani, N.,
Kalmuk, D., KulandaiSamy, V., Leenstra, J., Light-
stone, S., Liu, S., Lohman, G. M., Malkemus, T.,
Müller, R., Pandis, I., Schiefer, B., Sharpe, D., Sidle,
R., Storm, A. J., and Zhang, L. (2013). Db2 with blu
acceleration: So much more than just a column store.
PVLDB, 6(11):1080–1091.
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