
Pex Extension for Generating User Input Validation Code for Web
Applications

Karel Frajták, Miroslav Bureš and Ivan Jelı́nek
Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University,

Karlovo nám. 13, 121 35 Praha 2, Czech Republic

Keywords: User Input Validation, Code Generation, Web Application Testing.

Abstract: The code written by a software developer is not always flawless. The more code is created the more errors are
introduced into the system. In web development different programming languages can be used to implement
back–end and front–end sides of the application. For example, it is possible to implement user input validation
multiple times — it validates the input values on client–side using JavaScript before the data is sent to server
and then the received data is validated again on the server–side. The logic is duplicated, changes made to
the validation code must be synchronised on both sides. All implementations must be also unit tested, which
increases the time required to create and maintain multiple sets of unit tests. In this paper, we will describe
how white–box testing tool Pex can be extended to generate user input validation code for ASP.NET MVC
web applications. The validation code won’t be duplicated in JavaScript on the client–side and the application
will be protected from sending invalid input values from the client–side. The testers can focus on testing using
meaningful data input values. Testing of corner cases can be automated thus saving the available resources —
testers involved in testing and time spent on testing.

1 INTRODUCTION

Web applications are usually hybrid applications —
more than one programming language is used in the
development process. Code of back–end (server–
side) part of the application can be written in high
level programming language, like Java, C#, Ruby,
Python, or PHP. Data–driven web applications where
data is stored in database require the knowledge of
database programming language. The client facing
part of the hybrid web application, the front–end, is
created using HTML with the help of JavaScript to
improve the user experience. Other platforms suitable
to create the front–end are available too, like Flash
or Silverlight, but HTML and JavaScript combination
is the most widespread. Knowledge of multiple pro-
gramming languages is therefore essential.

Of course there are exceptions when one sin-
gle programming language can be used to imple-
ment both sides of the web application. WebSharper
(Bjornson et al., 2011) web framework builds both
client and server–side of the web applications with
functional programming language F#. All the code
is written in F# only. Server–side is powered by F#
code, special constructs are used to translate F# code

into JavaScript code that is executed on the client–
side. When developing application for Silverlight ap-
plication platform single .NET Framework language
is required. An alternative in Java world is Google
Web Toolkit (GWT) (Tacy et al., 2013) where parts of
the code written in Java are compiled to JavaScript to
generate the front–end code.

In hybrid web applications the validation code is
implemented on client–side to improve user experi-
ence. The validation code must be also implemented
on the server–side too — the data received from the
client side can not be trusted and must be validated.
Validation code is duplicated on both sides.

In this paper we propose an improvement to web
application unit testing. The client–side JavaScript
code duplicates the logic already created on server–
side. This code must be also properly tested — de-
veloper has to create and maintain another set of unit
tests. Our proposed solution uses white–box testing
tool to generate the client–side validation code from
the server–side validation code. The tool generates
the unit tests for server–side code, extracts the vali-
dation logic and translates it to JavaScript code. This
code then validates the user input values on client–
side.

315Frajták K., Bureš M. and Jelínek I..
Pex Extension for Generating User Input Validation Code for Web Applications.
DOI: 10.5220/0004994103150320
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 315-320
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

We’re going to discuss the problems of creating
unit tests to achieve high test coverage in the next
section and briefly describe the white–box testing
method. Our motivation and the reasons we have de-
cided to use Pex and create our extension is explained
in section 4. Our proposed solution is described in
next section 5. And section 6 concludes the results of
our work and describes our future work.

2 IN PURSUIT OF HIGH TEST
COVERAGE

Code that is unit tested since the very beginning is not
error–free, but the number of errors is reduced. Unit
tests are in most cases created by the developers at the
moment of writing the code or in worse case much
later. They are familiar with their code and know the
details of it and know how to write the tests quickly.
The pitfall is that they can introduce a false positive
error. The test does fail to indicate a problem or fail-
ure but it does not verify the correctness of the appli-
cation code. They might have not fully understood the
requirements or the test was created to test their own
incorrect code and system specifications and require-
ments were ignored. They have created a non–failing
test that verifies incorrect behaviour.

Code coverage is a metric used to describe the de-
gree to which the source code of a program is tested
by a test suite. The higher the number, the better.
But it is quite difficult to create unit tests manually
with very high test coverage. The most difficult is
testing the code paths that result in an exception be-
ing explicitly thrown — when constraint is broken
or a contract validation fails. Tester must set up the
test environment properly and infer the set of input
variables values that when passed to the method will
throw an exception. That means he has to have access
to the source code and be familiar with it. Significant
amount of time can be spent on analysing the code
and writing the test case than actual testing.

These corner cases can be tested using white–box
testing tool. We have decided to use a white–box test-
ing tool in our proposed system as it gives a better
insight into the internal structure of the tested code
and it can infer the minimal sets of significant input
parameter values.

2.1 Insight Into the Code

White–box tool test internal structures of an applica-
tion, in contrast to black–box testing when only the
public interfaces of the application are tested. The in-
ternals of an application can be analysed statically or

dynamically. Both having its advantages and disad-
vantages but supplementing each other. Static anal-
ysis analyses the code at a higher level than dynamic
analysis and can detect issues that are correct from the
viewpoint of dynamic analysis(Karpov, 2011).

White–box test case generators produce represen-
tative set of tests that can cover most of the applica-
tion code. Test case generator with insight into the
code minimizes the number of generated test cases to
achieve high test coverage.

JWalk(Simons, 2007) is white–box testing tool
targeting Java platform. It supports lazy systematic
unit testing. The tool infers dynamically the evolv-
ing specification of an application on the fly by dy-
namic analysis and uses the class state exploration and
then it tests the code systematically and exhaustively
to bounded depths.

Pex(Tillmann and de Halleux, 2008) generates
inputs for parametrized unit tests by analysing the
branch conditions in the .NET platform program. Test
inputs are chosen based on whether they can trigger
new branching behaviours of the program. The anal-
ysis using a dynamic symbol execution (DSE) (Cadar
and Sen, 2013) is an incremental process. It refines
a predicate along the execution path over the formal
test input parameters over the set of behaviours ob-
served previously. Variants of the previous inputs
are inferred by a constraint solver Z3 (de Moura and
Bjørner, 2008) in order to steer future program execu-
tions along alternative program path.

White–box testing tools help the developers to
create unit tests to test the code on low level. How-
ever it is important for the application to be tested
on higher levels — to meet the specification require-
ments, passing user acceptance testing, etc.

3 RELATED WORK

The solution proposed in (Alkhalaf et al., 2012) uses
minimum and maximum input validation policies to
validate user input. These policies are defined as reg-
ular expressions the input value must match. The
JavaScript validation must be defined beforehand and
the extraction is done in runtime, the extracted data
is then analysed using string analysis. In (server side,
2012) the authors are parsing the HTML code of the
page to locate the form and the input elements. For
every element a metadata is created and stored.

As observed in (Jamrozik et al., 2013), Pex does
not produce tests sensitive enough to make a good
regression test suite, sometimes the end users expect
different value or more values fitting given the condi-
tion or program path. A new tool extending Pex was

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

316

proposed with the use of augmented dynamic symbol
execution (ADSE)(Jamrozik et al., 2012). ADSE is
based on exploration of a program through path con-
ditions, but before test data is generated, the condi-
tions are augmented with additional conditions; mul-
tiple test data for the same path condition are derived.

We propose to use existing code without duplica-
tion to create user interface validation code to ver-
ify user input before triggering an action or computa-
tion. The JavaScript code will be generated automati-
cally from the server–side code. It is easier to analyse
server–side C# code than parsing HTML pages and
locating input elements.

4 MOTIVATION

On an e–commerce web site user would like to com-
plete his order. He is asked for his contact details,
shipping address and credit card details in checkout
process. He has to fill several web forms. User does
not want to fill all the data first, submit the form,
and wait for the error message when something was
wrong with his data. To improve the usability it is
desired to display an human–readable message to the
user immediately when some of the provided values
are invalid and must be corrected. The code on the
client–side validates the values entered by the user
preventing the form to be submitted when data is not
valid.

We are going to demonstrate Pex capabilities on
a sample method in Listing 2. First the method vali-
dates user’s registration data, then it creates and saves
user and returns the view when everything is all right.
An exception is thrown when validation of input val-
ues fails.

return userName != (string)null &&
7 < userName.Length &&
password != (string)null &&
passwordConfirmation != (string)null &&
(password == passwordConfirmation ||
password.Length ==
passwordConfirmation.Length &&
password.op_Equality((object)
passwordConfirmation) != (sbyte)0) &&

17 < 2014 - dateOfBirth &&
2014 - dateOfBirth < 121;

}

Listing 1: Example of validation code.

Pex generates unit tests for the trivial observed
values (see Figure 5) for input parameters. If all
conditions are met then the path condition string at
the point of returning boolean true value can be ob-
served (see Listing 1).

Looking at the path condition for year of birth we
can see the power of Pex observations. The required
age for registered user ranges from 18 as the mini-
mum value and 121 as the maximum value. Pex does
not generate tests for all values from this range, but
observes the condition and infers the proper code for
the value to match this constraint. These basic Pex
outputs can not be used to generate user input valida-
tion code.

5 PROPOSED SOLUTION

Our solution uses combination of techniques to
achieve our goal. The process is described as follows:

1. Methods handling incoming user requests are
identified – the method must be declared in a con-
troller class and it must handle POST requests.

2. Unit tests similar to one in Listing 3 are cre-
ated for each method — the header of the unit
test method is basically header of the inspected
method and all the required information to gener-
ate the code can be fetched by reflection API. We
have added a special line to generated test method
that forces Pex to output observed path conditions
(see the last line of code in Listing 3). The ob-
served path conditions are otherwise hidden.

3. Pex explores the method code and our extension
analyses the code of the generated test methods
and outputs the method headers and the observed
path conditions into temporary storage (an XML
document). The method header uniquely identi-
fies the location in code and also the form on the
page — every form is identified by an action URL
which identifies the controller and action handles
this form data.

4. Extracted C# code is passed to C#/JavaScript
compiler.

5. Generated JavaScript code is embedded into the
assembly to be used later.

All the values of input element are passed to the
validation function (see the code of submitHandler
method in Listing 4) on client–side. If the validation
condition is met, the form is submitted. The form and
the validation logic were generated for the method
shown in Listing 2. All form input values are vali-
dated on form submit.

Pex�Extension�for�Generating�User�Input�Validation�Code�for�Web�Applications

317

public ActionResult Register(string userName, string password, string passwordConfirmation, int yearOfBirth)
{
if (string.IsNullOrEmpty(userName)) throw new ArgumentNullException("userName");
if (userName.Length < 8) throw new ArgumentException("User must be at least 8 characters long");
if (password == null) throw new ArgumentNullException("password");
if (passwordConfirmation == null) throw new ArgumentNullException("passwordConfirmation");
if(password != passwordConfirmation) throw new ApplicationException("Password does not match the confirm

password.");
var thisYear = DateTime.Today.Year;
if (thisYear - yearOfBirth < 18 || thisYear - yearOfBirth > 120)
throw new ApplicationException("Invalid year of birth");

new UserService().CreateUser(userName, password);
return View();

}
Listing 2: Sample method.

[TestClass, PexClass(typeof(UserController))]
public partial class UserControllerTest
{
[PexMethod]
public void Register(
string userName, string password, string

passwordConfirmation, int yearOfBirth)
{
var uc = new UserController();
PexAssert.IsTrue(
uc.Register(userName, password,

passwordConfirmation, yearOfBirth));
PexObserve.ValueForViewing(
"path condition", PexSymbolicValue.

GetPathConditionString());
}

}

Listing 3: Test method used for Pex explorations.

function __validate(userName, password,
passwordConfirmation, dateOfBirth)

{
return
userName !== null && 7 < userName.length &&

password !== null && passwordConfirmation
!== null && (password ===
passwordConfirmation || password.length ===
passwordConfirmation.length && password

=== passwordConfirmation) &&
17 < 2014 - dateOfBirth &&
2014 - dateOfBirth < 121;

}
}

$(’#form’).validate({
submitHandler: function(form) {
var _1 = $("#userName").val();
var _2 = $("#password").val();
var _3 = $("#passwordConfirmation").val();
var _4 = $("#yearOfBirth").val();
if(!__validate(_1, _2, _3, _4))
{
// display error message
return false;

}
}

});

Listing 4: Generated validation code.

We have hit the limit of the current version when
the compilation of the extracted code to JavaScript
either failed (given constructs were not available) or
the generated JavaScript code was not valid and errors
were reported on the client–side. This happened when
the validation code for user input validation methods
used code that can not be evaluated on client–side,
e.g. code accessing database, detecting the existence
of a file or evaluating session values. We had to skip
the code generation for these methods.

5.1 Validation

The correctness of the auto–generated JavaScript
code is critical for our solution to work seamlessly.
We have used Karma1, a JavaScript test–runner, to
verify the correctness of the code:

1. a unit test case is generated for every JavaScript
validation method generated by our extension

2. the values discovered by Pex are supplied to this
test case

3. the result is verified

This set of tests is executed only when a change
is made to the application code and all the valida-
tion methods are re–generated. We have experienced
some difficulties when using the values Pex discov-
ered as an input to JavaScript test case — particularly
speaking about date and time values and different rep-
resentations of these data types in C# and JavaScript.

It might look like we are adding new tests and in-
creasing the number of executed tests, but all these
tests are generated and executed automatically, no
tester is involved in this process. These tests validate
our approach.

1http://karma-runner.github.io/0.8/index.html

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

318

Figure 5: Pex explorations output for method in Listing 2.

5.2 Experimental Verification

We have tested our tool on selected applications —
the citations management application and selected
parts of an e–commerce project TheBeerHouse2. The
first application was developed using test driven de-
velopment process, the TheBeerHouse project source
code is shipped with number of unit tests.

First we used Pex in the way it was designed —
to automatically generate test suites with high code
coverage for the server–side code. Pex can also gen-
erate tests testing corner case scenarios (see the lines
with red icon in Figure 5) and there was no need to
create these tests manually. After that our extension
was used to generate the test method used to extract
the validation code and to convert it to JavaScript.

The generated code was not fully optimal and in
some case we had to modify the code of the appli-
cation for the JavaScript code to be generated without
any problems and sometimes we had to processing the
method. We have observer that the whole process is
not very smooth and straightforward, but overall the
results are promising.

The JavaScript code is hard to read and understand
and it might be difficult to refactor and reuse the parts
of the code later. This code was generated from a code
of the tested application so we the readbility is not the
most important aspect of this code. The code is also
often regenerated.

5.3 Group Experiment

We have asked a team of 20 developers working on
in–house developed project to participate in our ex-
periment — group A of 10 developers was using our
extension, while group B was not. After setting up the
environment and brief introduction they started to use
our Pex extension. We also ask them to report any
issues. To avoid any misinterpretation of the results
they have been working on the same tasks using the

2http://thebeerhouse.codeplex.com/

same code (separate branches were created for each
group). In the end of trial period we asked them to
answer survey questions and evaluate the experience.

� 80% of the selected developers think that the ex-
tension is useful and helpful

� 60% think the extension contributed to their work
and simplified the testing process

� they also welcome the elimination of writing the
same code twice

� 90% think that the process is not very straightfor-
ward and should be improved

� compared to the group B they were able to com-
plete more tasks in shorter time and finish the
work on time despite of the later start

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have described our Pex extension
that improves the web application unit testing pro-
cess. The extension leverages the code insight of a
white–box testing tool to extract the code validating
user input values on server–side and generates client–
side validation code. It is no longer needed to du-
plicate the validation code on both sides and mirror
the changes made to the code. The extracted code is
then processed and translated to Javascript methods.
The developer can focus more on server–side code
only without writing the same code (in Javascript) for
client–side. Our solution improves his development
process and helps him to finish his tasks sooner.

Our solution has known limitations — we do not
support code generation for methods with constraints
that can not be evaluated on client–side without addi-
tional server request, e.g. code accessing file system
or reading server session variables. Another limita-
tion is that we can not validate more than one form on
a web page. Our tool also fails to generate code for

Pex�Extension�for�Generating�User�Input�Validation�Code�for�Web�Applications

319

methods using C# constructs that can not be translated
to JavaScript. In the future we would like to overcome
these problems and make the whole process transpar-
ent by integrating the code extraction and generation
into build process.

ACKNOWLEDGEMENTS

This research has been supported by MŠMT un-
der research program No. 6840770014 and by
Grant Agency of the CTU in Prague under grant
SGS14/076/OHK3/1T/13.

REFERENCES

Alkhalaf, M., Bultan, T., and Gallegos, J. L. (2012). Verify-
ing client-side input validation functions using string
analysis. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages
947–957, Piscataway, NJ, USA. IEEE Press.

Bjornson, J., Tayanovskyy, A., and Granicz, A. (2011).
Composing reactive GUIs in F# using WebSharper. In
Implementation and Application of Functional Lan-
guages, volume 6647 of Lecture Notes in Computer
Science, pages 203–216. Springer Berlin Heidelberg.

Cadar, C. and Sen, K. (2013). Symbolic execution for soft-
ware testing: three decades later. Commun. ACM,
56(2):82–90.

de Moura, L. and Bjørner, N. (2008). Z3: An Efficient
SMT Solver Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 4963/2008 of
Lecture Notes in Computer Science, chapter 24, pages
337–340. Springer Berlin, Berlin, Heidelberg.

Jamrozik, K., Fraser, G., Tillman, N., and Halleux, J.
(2013). Generating test suites with augmented dy-
namic symbolic execution. In Veanes, M. and Viganò,
L., editors, Tests and Proofs, volume 7942 of Lecture
Notes in Computer Science, pages 152–167. Springer
Berlin Heidelberg.

Jamrozik, K., Fraser, G., Tillmann, N., and Halleux, J. D.
(2012). Augmented dynamic symbolic execution.
In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2012, pages 254–257, New York, NY, USA. ACM.

Karpov, A. (2011). Myths about static analysis. the third
myth - dynamic analysis is better than static analysis
@ONLINE. http://www.viva64.com/en/b/0117/. Ac-
cessed: 2013-09-04.

server side, a. (2012). Automated server-side form valida-
tion. In Informatics, Electronics Vision (ICIEV), 2012
International Conference on, pages 61–64.

Simons, A. (2007). JWalk: a tool for lazy, systematic
testing of java classes by design introspection and
user interaction. Automated Software Engineering,
14(4):369–418.

Tacy, A., Hanson, R., Essington, J., and Tokke, A. (2013).
GWT in Action. Manning Publications.

Tillmann, N. and de Halleux, J. (2008). Pex-white box test
generation for .NET. In TAP, pages 134–153.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

320

