
FunctionGuard
A Query Engine for Expensive Scientific Functions in Relational Databases∗

Anh Pham and Mohamed Eltabakh
Computer Science Department, Worcester Polytechnic Institute (WPI), Worcester, MA, U.S.A.

Keywords: Caching Techniques, Expensive User-defined Functions, Scientific Applications, Query Processing.

Abstract: Expensive user-defined functions impose unique challenges to database management systems at query time.
This is mostly due to the black-box nature of these functions, the in-ability to optimize their internals, and the
potential inefficiency of the common optimization heuristics, e.g., “selection-push-down’. Moreover, the in-
creasing diversity of modern scientific applications that depend on DBMSs and, at the same time, extensively
use expensive UDFs is mandating the design and development of efficient techniques to support these expen-
sive functions. In this paper, we propose the“FunctionGuard” system that leverages disk-based persistent
caching in novel ways to achieve across-queries optimizations for expensive UDFs. The unique features of
FunctionGuard include: (1) Dynamic extraction of dependencies between the UDFs and the data sources and
identifying the potential cacheable functions, (2) Cache-aware query optimization through newly introduced
query operators, (3) Proactive cache refreshing that partially migrates the cost of the expensive calls from
the query time to the idle and under-utilized times, and (4) Integration with the state-of-art techniques that
generate efficient query plans under the presence of expensive functions. The system is implemented within
PostgreSQL DBMS, and the results show the effectiveness of the proposed algorithms and optimizations.

1 INTRODUCTION

Database systems provide an eminent support
to scientific applications in various domains
including biology, healthcare, astronomy, or-
nithology, among others. Many of these ap-
plications utilize DBMSs for managing large-
scale datasets, e.g., biological databases in
Genobase (http://ecoli.naist.jp/GB8/), Ecoli-
House (http://www.porteco.org/), Ensemble project
(http://www.ensembl.org/), and UniProt database sys-
tem (http://www.ebi.ac.uk/uniprot), and healthcare
databases in H.CUP (https://www.hcup-us.ahrq.gov/)
and HealthCatalyst (http://www.healthcatalyst.com/).
All of these databases leverage the desirable char-
acteristics of DBMSs including advanced query
optimization, indexing techniques, concurrency and
recovery control, and ensured consistency.

One of the challenging requirements in scientific
applications is that the targeted analysis usually goes
beyond the standard SQL operations, e.g., selection,
projection, join, and grouping and aggregation, to
more complex analysis functions such as sequence

∗This project is partially supported by the NSF-CRI
1305258 grant.

alignment, prediction functions, quality assessment
tools, image processing, feature extraction and di-
mensionality reduction, etc. These functionalities
when integrated inside the DBMS they are typically
modeled as stored procedures or functions, and hence
they are treated as black box operations with very
limited optimizations. Most modern DBMSs support
implementing the user-defined functions in external
languages, e.g., C or Java. Since these functions are
usually expensive, they impose high overhead—and
sometimes a bottleneck—to query execution.

Optimizing such expensive functions has been
addressed in previous work (Hellerstein and Stone-
braker, 1993; Hellerstein and Stonebraker, 1993;
Chaudhuri and Shim, 1996; Scheufele and Moerkotte,
1998; Scheufele and Moerkotte, 1998). Most of these
optimization techniques relay on estimating the cost
of these functions, and then generating query plans
that try to minimize the invocation of expensive func-
tions. For example, if a selection predicate invokes
an expensive UDF, then it can be more efficient not
to use the optimization rule “selection-before-join”,
and instead postpose checking the expensive selec-
tion predicate until after the join operation. Other
techniques use main-memory caching in which the

95Pham A. and Eltabakh M..
FunctionGuard - A Query Engine for Expensive Scientific Functions in Relational Databases.
DOI: 10.5220/0004992300950106
In Proceedings of 3rd International Conference on Data Management Technologies and Applications (DATA-2014), pages 95-106
ISBN: 978-989-758-035-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

invocations within a given single query are cached
in main memory, and then if the same input parame-
ters are used multiple times during the execution, then
the cached results are used to avoid redundant invoca-
tions (Hellerstein and Naughton, 1996).

However, as scientific functions are getting more
complex and storage is getting less expensive, an
attractive—and yet unexplored—approach is to use
larger and persistent disk-based caches to main-
tain the output from these expensive functions for
longer time. The advantages of this approach in-
clude: (1) Unlike main-memory caches which opti-
mize a single query, persistent caches can optimize
multiple queries, and (2) As the data size is getting
larger, persistent caches will offer much larger space
to store more data, and hence increase the cache hit
ratio and avoid more invocations to these functions.

In this paper, we propose a new mechanism for
optimizing expensive user-defined functions in re-
lational database systems. We propose theFunc-
tionGuardsystem that leverages disk-based persistent
caching to achieve across-queries optimizations sup-
ported by proactive cost-based cache refreshing tech-
niques and cache-aware query optimization. Func-
tionGuard relays on the following novel features:

(1) Dynamic Extraction of Dependencies: We
develop a function analysis tool that automatically ex-
tracts the dependencies of the user-defined functions
from their source codes. These dependencies may in-
clude the input arguments passed to the function, ac-
cess to database tables, external files, wall clock, and
invocation to other functions. The output from this
process is a complete functional dependency graph
that captures all elements that a given functionF de-
pends on.

(2) Identifying Cacheable Functions and
Caching Results: Based on the dependency graph,
the system identifies which functions arecacheable,
i.e., their outputs can be temporarily cached and
re-used across multiple invocations. A cacheable
function must have all its dependencies (immediate
children in the dependency graph) identified as
trackable, i.e., the DBMS can track whether or
not these dependencies have changed from the last
invocation. For example, an access to a local DB
table is a trackable dependency, whereas an access to
an external DB table is not. For cacheable functions,
their output results are cached for subsequent re-use.

(3) Cache-Aware Query Optimization: We ex-
tend the query engine of FunctionGuard to take into
account the cached results of expensive UDFs. The
caching may partially or completely eliminate the
need for the function invocation at query time. We
propose new query operators and algorithms for ef-

ficiently integrating the cached results in the query
pipeline. We also propose cache replacement mecha-
nisms that are suitable for disk-based caches in con-
trast to main-memory caches.

(4) Proactive Execution and Pre-fetching of Re-
sults: For a cacheable functionF , when one ofF ’s
trackable dependencies change, the output cache will
be invalidated. One possible approach is to wait for
the next invocation ofF to refresh its cache. In con-
trast, FunctionGuard deploys a cost-based proactive
mechanism in which the system may proactively re-
freshF ’s cache output using the most recently or fre-
quently used arguments. In that case, the execution
overhead of the function ispartially shifted to the
times when the system is idle or under utilized in con-
trast to the query time.

FunctionGuard is not a replacement for the ex-
isting techniques, instead it is complementary to
all algorithms that generate efficient query plans in
the presence of expensive UDFs, e.g., (Hellerstein,
1994; Hellerstein and Stonebraker, 1993; Chaudhuri
and Shim, 1996; Scheufele and Moerkotte, 1998;
Scheufele and Moerkotte, 1998). That is, Func-
tionGuard takes as input a query plan generated from
any of these systems, and then it updates the plan by
replacing the operator used for function invocations
by a more complex cache-aware operators that utilize
the available cache.

The rest of the paper is organized as follows: In
Section 2, we present the related work. In Section 3,
we present the proposed mechanisms for building
the dependency graph and managing the cache. The
cache-aware query processing, and proactive cache
update are presented in Sections 4, and 5, respec-
tively. Finally, the experimental evaluation and con-
clusion remarks are included in Sections 6, and 7, re-
spectively.

2 RELATED WORK

Scientific algorithms and techniques usually require
super-linear or evenN2 or N3 time complexity to pro-
cessN data points (Gray et al., 2005; Haas et al.,
2001). These expensive functions when implemented
inside the DBMSs represent a major optimization
challenge at query time. Several techniques have been
proposed to optimize the execution of these expen-
sive functions, e.g., predicates that involve expensive
functions or expensive subqueries (Chaudhuri et al.,
2002; Chaudhuri and Shim, 1993; Hellerstein and
Stonebraker, 1993; Munagala et al., 2007). The work
in (Chaudhuri et al., 2002) has explored the usage
of data mining models to derive query predicates,

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

96

Create Function F1(int x, varchar y)

{

 ….

 Select gene_name

 From Gene

 Where geneID like JW00% ;

 ….

 Execute F2();

}

Create Function F2()

{

 Select protein_name

 From Protein

 Where proteinFunc = ‘Hormonal ;

 ….

 IF (condition)

 Execute F3()

}

Create Function F3()

{

 ….

 File *f = fopen(c:\\input.txt , r);

 ….

 Execute F2();

}

F1

Arguments (x, y)
Gene table

(geneID like ‘JW001’)

F2

Protein table

ProteinFunc = ‘Hormonal’
F3

File: c:\\input.txt

(a) Expensive functions in the database.

(b) Dependency Graph between functions and data sources.

Figure 1: Examples of expensive UDFs in scientific applications and their dependency graph.

and then how the predicates can be used for effi-
cient execution. In contrast, the techniques presented
in (Hellerstein, 1994; Hellerstein and Stonebraker,
1993; Chaudhuri and Shim, 1996; Scheufele and
Moerkotte, 1998; Scheufele and Moerkotte, 1998)
have all focused on optimizing the query plan by
not following the traditional heuristic of “predicate-
pushdown” since the predicates in the case of expen-
sive functions can be even more expensive than a join
operation. Thus, these techniques proposed new cost
models and extensions to existing query optimization
techniques to find more efficient query plans.

Capturing the semantics of the external functions
has been addressed in (Chaudhuri and Shim, 1993;
Chaudhuri and Shim, 1996). Users provide seman-
tics information and cost estimates for their UDFs,
and these information is integrated with the query
optimizer to choose the cheapest query plan. The
presence of expensive functions in queries has been
addressed in different contexts including multimedia
repositories (Chaudhuri and Gravano, 1996; Zhang
et al., 2012), object-relational databases (Hellerstein,
1998), and continuous queries (Munagala et al., 2007;
Denny and Franklin, 2006). For example, The work
in (Denny and Franklin, 2006) has proposed approxi-
mation techniques to run the expensive UDFs to only
the accuracy needed by the query instead of con-
suming the entire input. The algorithm presented
in (Chang and Hwang, 2002) proposes a strategy to
answer top-k ranking queries with minimal number
of probing to evaluate objects, and hence minimizing
the invocation of the involved expensive functions.

The FunctionGuard system is distinct from the
previous techniques in that: (1) It leverages disk-
based caching techniques, and hence the cached data

will optimize multiple queries and the amount of
cached entries can be more scalable compared to
main-memory caches, (2) The system does not search
for an optimal query plan, and hence it is complemen-
tary to existing techniques, i.e., FunctionGuard can be
used on top the existing techniques, e.g., (Hellerstein,
1994; Hellerstein and Stonebraker, 1993; Chaudhuri
and Shim, 1996; Scheufele and Moerkotte, 1998),
as will be explained in Section 4. And (3) Func-
tionGuard includes novel mechanisms for disk-based
cache maintenance, which are different from those de-
veloped for main-memory caches.

3 DEPENDENCY GRAPH AND
RESULTS CACHING

3.1 Dependency Graph

Maintaining the dependencies among the user-defined
functions and the data sources, e.g., database tables,
flat file, wall clock, or any other sources of data, is
an essential metadata information in the system. This
is because these dependencies will enable the system
to keep track of whether or not a specific cache (a
materialized output from a function) is still valid. The
cache of a given functionF is considered valid as long
as all elements on whichF depends do not change.

FunctionGuard constructs a functional depen-
dency graphG based on the functions’ definitions
(See Figure 1). The graphG = (V, E) is a directed
graph, where the nodesV represent either a UDF or a
data source. Each non-leaf node represents a UDF
and each leaf node represents a data source. Each

FunctionGuard�-�A�Query�Engine�for�Expensive�Scientific�Functions�in�Relational�Databases

97

Source type Additional Info Trackable

Database table Predicates in the form of

“colum <op> constant”

Yes

External file --- Yes

Wall Clock --- No

Random

Generation

--- No

Other sources --- No

Func Calls --- Yes (if

cacheable)

Figure 2: Types of Data Sources Used in UDFs.

edgee= (v1, v2) ∈ E represents a dependency from
nodev1 (must be a UDF) to nodev2 (either another
UDF or a data source), which indicates thatv1 de-
pends on or accessesv2. For example, the functions
illustrated in Figure 1(a) will map to the dependency
graph in Figure 1(b). FunctionF1 depends on its
two input argumentsx and y, the Gene table in the
database, and functionF2. Therefore, if, for example,
the data in tableGene have changed, then the cached
output ofF1 may be invalidated. After extracting the
dependencies of each of the three functions, the pro-
duced graph will be as depicted in Figure 1(b).

It is worth noting that the graph captures coarse
grained dependencies among the UDFs and the data
sources. This means that a functionF depends on
a data sources if there is any execution path ofF
that accessess. And thus, these dependencies are
static based onF ’s definition and independent from
the input arguments passed toF . For example, func-
tion F2 depends onF3 only under a certain condition.
However, the dependency graph does not capture such
fine-grained dependency because it is very expensive
to capture the dependencies for each execution path
especially is complex functions. The graph may also
contain cycles, e.g., the cycle between functionsF2
andF3 in Figure 1(b). These cycles do not necessarily
mean that there are cycles at execution time because
F2 may be referencingF3 in specific execution paths
or under certain conditions as shown in the figure.

Graph Construction: To construct the graph, we
built a tool that takes a function’s source code in
C, Java, or PL/SQL, and returns its dependencies.
Hence, given a set of UDFs in the database, the
tool incrementally builds the dependency graph. For
a given functionF , the types of the extracted data
sources along with their properties are summarized in
Figure 2. The tool extracts references to database ta-
bles, and for each tableT it captures any predicates
on T in the form of“columnName<op> constant”.
These predicates are important as they will help nar-
rowing down the false-positive decisions of invalidat-
ing a cache of a functionF although the actual change

to a database table is irrelevant toF ’s output. The
database tables are defined astrackabledata sources
since FunctionGuard can track whether or not it has
changed from the last invocation. The system also
extracts any access to flat files in the file system, and
defines them astrackabledata sources since Func-
tionGuard can track whether or not a file has changed
by checking itslast modificationtimestamp. Refer-
ences to the wall clock, random generation, or other
sources, e.g., references to external databases, are also
extracted and defined asnon-trackable. Finally, invo-
cations to other functions are also extracted as illus-
trated in Figure 2.

Based on the extracted dependencies, a function
F is categorized ascacheableiff all its dependent
data sources aretrackableand all its dependent func-
tions arecacheable. Otherwise,F is categorized as
non-cacheable. In the presence of a cycle in the de-
pendency graph, if none of the functions involved in
the cycle is categorized asnon-cacheable, then all of
them will be categorized ascacheable. For example,
functionsF2 andF3 in Figure 1(b) will be both cate-
gorized ascacheable.

3.2 Cache Management

As an initial setup, the database admin needs to allo-
cate a certain disk spaceM in the database for the
cache managed by FunctionGuard. Initially, Func-
tionGuard will divide this space equally between the
expensive functions. However overtime, the system
will monitor the usage of these expensive functions
and dynamically assign priorities to them, which will
reflect on the amount of cache allocated to each func-
tion. The priorities are computed as follows:

Priorities of Expensive Functions: Assume that
there areN expensive functions in the system, denoted
asF = {F1, F2, ...,FN}. Our goal is to make the sys-
tem adaptive to the most recent usage of the expensive
functions and not highly dependent on the old history.
In order to achieve this, the system maintains a cata-
log table that stores for each functionFi its usage over
the lastK queries executed in the system. The usage
of function Fi in queryQ j includes two parameters:
Fi j .Frequencyand Fi j .TotalTime, where the former
captures the number of timesFi is invoked byQ j , and
the latter captures the total time consumed byFi from
all its invocation byQ j . As more queries are executed
by the system, each new queryQnewreferencing func-
tion Fi will replace the oldest entry inFi with a new
entry forQnew. Moreover, for each functionF ′ ∈ F

that is not referenced byQnew, the oldest entry will be
deleted and a new entry with zero parameters is added
to F ′ history. The mechanism ensures that the system

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

98

Table-scan

Projection

(Compute F1(R.a))

!"#$

%&!"#'$

Selection

F1(R.a) = …

Q: Select *

 From R

 Where F1(R.a) = <const>

 …

R

Rest of the plan

(a) Naïve Plan: For each tuple in R,
invoke F1() to compute its output, and

then apply a selection operator.

Table-scan

!"#$

!"#$$$%&!"#'$

Cache-aware

join

Persistent

cache of F1

$$$$$$!"#$$$$$()**$$

R

Cache hit Cache miss

Cache-aware

Projection

(Compute F1(R.a))

Selection

F1(R.a) = …

Rest of the plan

Union All

!"#$$$%&!"#'$

Join based on

the function

arguments R.a

Buffers to update

F1’s cache

Bmiss

Bhit

(b) Cache-Aware Plan: First probe the
cache (using Left-outer join), and only

for the cache misses, invoke F1().

Three-bundle operators

Figure 3: Example of Cache-Aware Query Plans in FunctionGuard.

will adapt to the most recentK queries in the system.
Given these parameters, the priority of each function
Fi is computed as follows:

Fi.FreqScore= ∑
∀ j ∈ K

Fi j .Frequency/ SumFreq

Fi .TimeScore= ∑
∀ j ∈ K

Fi j .TotalTime/ SumTime

Fi .priority = 1
2(Fi .FreqScore+ Fi.TimeScore)

where, SumFreq(and SumTime) is the sum of all
functions’ frequencies (and times) over allK queries.
As a result, each ofFi .FreqScore, Fi .TimeScore, and
ultimately Fi .priority should be between [0,1] in-
terval with total sum of each measure as 1. The
Fi .priority will then be used as the percentage of the
cache allocated to functionFi .

Cache Maintenance: When a functionFi is invoked
at query time, the system needs to perform two main
tasks: (1) Identify which cached values forFi can be
re-used, and (2) update theFi ’s cache by either adding
more new entries to the cache (if space permits), or
by replacing less important entries with more impor-
tant entries. Since the maintained caches in Func-
tionGuard are disk-based, their manipulation, e.g.,
probing and replacement will be different from main-
memory caches. In this section, we describe the struc-
ture of a cache entry and how to measure its impor-
tance (in the case of replacement), then in Section 4
we present how the cache is efficiently manipulated at
query time.

For a given functionFi , each entry in the cache
will have three components:(1) The input arguments
used when invokingFi , (2) The output results, and
(3) A frequency capturing how many timesFi has
been called with these input arguments. An entry with
a larger frequency value means that the corresponding
input arguments are more frequent, and hence this en-
try gets more weight and tend to stay longer in the
cache. More formally, if the cache allotted forFi
holds at mostCountFi entries, then these entries will
be the ones with the highest frequency values.

4 CACHE-AWARE QUERY
PROCESSING

If a user’s query involves an expensive function,
then FunctionGuard will utilize the available caches
to avoid unnecessary invocations of these functions.
By doing so, the execution and response times of a
given query can be significantly enhanced—the ex-
periments in Section 6 illustrate that the speedup can
be more than two orders of magnitude. In this sec-
tion, we introduce the cache-aware query processing
operators, how the persistent cache is utilized at query
time, and how the cache is maintained and updated.

FunctionGuard�-�A�Query�Engine�for�Expensive�Scientific�Functions�in�Relational�Databases

99

4.1 Bundled Cache-aware Operators

Considering the query in Figure 3 that involves an
invocation to an expensive functionF1 in the Where
clause. Assume that the query plan depicted in Fig-
ure 3(a) is the plan generated from one of the state-of-
art techniques. In this plan, each input tuple from re-
lationRwill go through aprojectionoperator to com-
puteF1 over attributeR.a. And then, aselectionoper-
ator will pass the tuples satisfying the predicate(s) to
the rest of the query plan. Therefore, in this plan, the
dominant factor in the execution time will be(cost(F1)
x |R|), wherecost(F1) is the cost for a single invoca-
tion of F1 and|R| is the cardinality ofR.

In FunctionGuard the query plan will be modified
by replacing theprojectionoperator that invokesF1
by athree-bundle operators, which consist of a newly
introducedcache-aware joinoperator, acache-aware
projectionoperator, and aunion alloperator (See Fig-
ure 3(b)). The two query plans presented in Figure 3
are equivalent plans, i.e., the produce the same results
given the same input. Thethree-bundle operatorscan
be used in replacement for the standardprojectionop-
erator regardless of whether the function invocation is
in the projection list,Whereor Havingclauses. The
cache-aware joinoperator will join the input tuples
with the persistent cache of functionF1 based on the
input parameters passed to the function, e.g.,R.a in
our example. If there is a cache hit, then the output
will be forwarded to theunion operator. Otherwise,
the tuples are forwarded to thecache-aware projec-
tion operator as illustrated in the figure to compute
F1 on these tuples. For each invocation ofF1 from
the operator, the output value is cached in a main-
memory buffer, termedBmiss. The usage of this buffer
is twofold. First, subsequent inputs to thecache-
aware projectionoperator will be checked first against
the entries inBmiss buffer—which acts as a second-
level cache. If an entry is found, then the invocation to
F1 is skipped. Second, this buffer along with theBhit
buffer will be used to updateF1’s persistent cache.

To updateF1’s cache, we need to reflect the us-
age of the current query on that cache, e.g., how
many times the function is called, each input argu-
ment is used how many times, and the total execution
time consumed byF1. Therefore, the proposed cache-
aware operators maintain main-memory buffers in or-
der to collect these information (Refer to Figure 3(b)).
In Figure 4, we present the algorithm that thecache-
aware joinandcache-aware projectionoperators use
to update theBhit andBmiss buffers, respectively. For
the Bhit buffer, when thecache-awarejoin operator
finds a cache hit inF1’s persistent cache, an entry is
added toBhit capturing the function’s input arguments

Managing buffers in the three-bundle operators

Assumptions

 - The expensive function is F1

 - The input argument to F1 is r.a, where r is a data

 tuple and a is a data attribute

B
hit

Buffer // each entry is: (argument list, frequency)

 - For each input tuple r to the cache-aware join operator

 - If (cache hit)

 - If (an entry for r.a exists in Bhit) Then

 - Increment its frequency value

 - Else

 - Add an entry for r.a with frequency= 1

 - End If

 - End If

B
miss

Buffer // each entry is: (argument list, output value, frequency)

 - For each input tuple r to the cache-aware projection operator

 - If (an entry for r.a exists in Bmiss) Then

 - Retrieve its output value to update r

 - increment the frequency for this entry

 - Else

 - Execute function F1

 - Add an entry in Bmiss (r.a, F1 output, 1)

 - End If

Figure 4: Managing Buffers in the Three-Bundle Operators.

having a frequency set to 1. Any subsequent appear-
ance of the same input arguments will only increment
the corresponding frequency. For the cache misses
from the join operators, thecache-aware projection
will invoke F1 to compute the functions output, and
an entry consisting of(r.a,F1(r.a),1) will be added to
the Bmiss buffer. Any subsequent appearance for the
samer.a will be served from theBmiss buffer without
invoking F1 as illustrated in Figure 4, and will only
increment the corresponding frequency to keep track
of how many times the same input argument is used.

Memory Constraints for Buffers: it is possible that
theBhit andBmissbuffers get filled up and cannot take
more tuples. Therefore, both operatorscache-aware
join and cache-aware projectionhave strategies to
spill these buffers to disk when needed. The case of
theBhit buffer is easier since thecache-aware joinop-
erator is only writing to this buffer without reading
back from it. Hence, when it gets full, its entries are
sorted based on the function’s arguments, e.g.,r.a in
our example, and then written to disk. For theBmiss
buffer the scenario is different since the projection op-
erator is writing and reading from it. Therefore, if this
buffer is full, then thecache-aware projectionopera-
tor will write any input tupler that does not have a
successful cache hit inBmiss to disk without invoking
the F1 function. Therefore, when all tuples are con-
sumed, it will be guaranteed at that time that no more
tuples can have a cache hit with the current content of
Bmiss. Hence, the buffer will be sorted based on the
function’s arguments, and then written to disk. Af-
ter that, the data tuples spilled to disk are read and

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

100

Step 1:

lists sorted on

Input arguments

Merging and

Hashing
Main memory

hash table

Main m

Hash Key: Input arguments

Hash Value: frequency

Step 2: Current Persistent

Cache
!"

Main memory

hash table

Step 2 output

Sorting and

Spilling

Step 3:

!"

Step 3 output ep 2 out

Merge Sort

New Persistent

Cache

Lists of cache entries

sorted by frequency Dropping entries

that do not fit in

Bhit Buffer

Lists

Bmiss Buffer

Lists

lists sorted on

Input arguments

Merging and

Sorting

Main memory

table

Sorted on

frequency

Main memory

table Step 4:

Dropping entries

that do not fit in

Figure 5: Updating a Persistent Cache of an Expensive Function.

processed one at a time and by invoking theF1 func-
tion over them. And theBmiss buffer gets populated
again with the function’s outputs until all tuples are
processed. By deploying these strategies, then the
number of invocations to the expensive functionF1
is guaranteed to be minimal—The number of invoca-
tion is zero for arguments that exist in the persistent
cache, and it is one for the other argument values.

Special Case−No Persistent Cache: A special case
to the algorithm presented above is that if the expen-
sive function has no persistent cache. This may hap-
pen if it is the first time a given function is used within
a query, or if the existing cache is invalidated due to a
change in one of the data sources on which the func-
tion depends. This information is maintained in a sys-
tem catalog table as will be presented in Section 5.
In either case, FunctionGuard will not use thethree-
bundle operatorssince there is no persistent cache
to use. Instead, the system will only use thecache-
aware projectionoperator to evaluate the expensive
function with each input tuple, caches the results in
theBmissbuffer, and then the buffer will be written to
the persistent cache after the query finishes.

4.2 Persistent Cache Update

After the query is completed, the information col-
lected in theBhit andBmissbuffers will be used to up-
date the function’s persistent cache on disk, i.e., the

current most important entries should be kept in the
cache. However, since the cache is persistent on disk,
it is more complicated and expensive to update the
cache compared to main-memory caches. Thus, in
FunctionGuard the cache of a given expensive func-
tion F is not updated after each query, instead it is
updated afterβ queries referencingF—β is a config-
uration parameter in the system that can be defined
per function. As a result, the cost of a cache update is
amortized over theβ queries.

The procedure for refreshing and updating the
cache of a functionF involves four main steps as il-
lustrated in Figure 5. The overall goal from this pro-
cedure is to revisit the cache entries in the persistent
cache as well as theBhit and Bmiss buffers (at that
time these buffers are written to disk from the lastβ
queries), and re-populate the cache to keep the entries
that are referenced more frequently, i.e., thefrequency
value is high. The procedure works as follows. In
Step 1, the algorithm reads allBhit lists that are written
to disk in parallel. Since each list is sorted based on
the input arguments, then using a multi-way merge,
we can efficiently merge all occurrences of a given
input argumentsI . The output is stored in a main-
memory hash table, where the hash key is the input
argumentI . The hash table does not need to maintain
all the entries—which can be large—, we only main-
tain the entries having the largest frequency that can
fit the hash table. For the other entires, we assume
their frequency is small and we approximate them to

FunctionGuard�-�A�Query�Engine�for�Expensive�Scientific�Functions�in�Relational�Databases

101

zero. The advantage of having the hash table fits in the
main memory will be clear in Step 2 of the update pro-
cedure. In Step 2 (See Figure 5), the algorithm scans
the current persistent cache for functionF , and for
each entrye =(Input arguments, output, frequency),
the hash table built in Step 1 is probed (using the in-
put arguments values) to update the frequency of this
entry. Since the hash tables fits in memory, then we
only need one scan over the persistent cache to com-
plete this step. The output from this step is stored in a
memory buffer, and when it gets full, it will be sorted
based on the frequency values and then spilled to disk
as depicted in the figure.

Step 3 is similar to Step 1 in which the algorithm
will merge the entires in theBmiss lists to get the to-
tal frequency for each input arguments and produce
the output entry. The main difference is that the out-
put table will not be a hash table, instead it will be
a main memory table sorted based on the frequency
values. This difference is due to the fact that the en-
tries in theBmiss lists are guaranteed not to exist in the
current persistent cache. In this step, we also use the
same approximation strategy as in Step 1, where the
memory table may not hold all entires from theBmiss
lists, and in that case, we keep only the entires that
have the largest frequencies and approximate the oth-
ers to zero. The final step involves one scan over the
lists produced from Step 2 (sorted based on their fre-
quency values) and applying a merge sort algorithm
over these lists and the output from Step 3 (also sorted
based on the frequency values). The output from this
step is the new persistent cache.

5 INVALIDATION AND
PROACTIVE CACHE
REFRESHING

The cached output from an expensive functionF re-
mains valid as long as the data sources on whichF
depends remain unchanged. These data sources and
dependencies are captured in the dependency graph
maintained by the system (Section 3). The system
keeps track of any changes to the data sources in dif-
ferent ways depending on the source’s type as fol-
lows:

• External Files: FunctionGuard tracks the
changes in the external files through the operating sys-
tem by checking their last modification timestamps.
However, there is no generic way on top of the OS
that detects instantaneously a change in the file sys-
tem’s information. Nevertheless developing a peri-
odic job that retrieves the last modification time of

the files will not guarantee a timely detection of these
changes. Therefore, FunctionGuard performs this
check at query time, i.e., given a queryQ that invokes
functionsF1,F2, ...,FN, the system will check the de-
pendency graph to find which external files that these
functions depend on, and then it decides on which
functions will have their caches invalidates (if any).

• Database Tables: If a function F depends on
a database tableT, the system extracts any predicates
used insideF on tableT that limit the scope ofT ’s tu-
ples accessed byF. These predicates are in the form
of “columnName<op> constant”. When this in-
formation is extracted, FunctionGuard automatically
creates database triggers onT that monitor the in-
sertion, deletion, or update of any data tuples satis-
fying the extracted predicates. These triggers insert
records into the catalog table whenever a change in
T that invalidatesF ’s cache takes place. With large
number of functions, the number of triggers created
on a given table can be large, which may degrade the
performance of any operation on that table (Hanson
et al., 1999). Therefore, FunctionGuard does not cre-
ate separate triggers, instead it creates one (or few)
triggers and it augments more code to the trigger’s
body with each addition of a new expensive function.
The pseduocode presented in Figure 6 give an exam-
ple of such system-generated triggers. In the exam-
ple, two expensive functionsF1 andF2 depend on the
database tableT. Assume FunctionF1 has two sep-
arateselectstatements; one concerns the tuples sat-
isfying predicatep1, and the other concerns the tu-
ples satisfying predicatesp2. In contrast, FunctionF2
contains aselectstatement having predicatep3 on ta-
ble T. Thus, one of the generated triggers onT is
theAfter Inserttrigger containing code as depicted in
the figure. For example, any inserted tuple that satis-
fies either of predicatesp1 or p2, will insert a tuple in
the catalog table indicating that an“insertion” oper-
ation in Table“T” at timestamp“timestamp” inval-
idates the cache of function “F1”. This catalog table
is checked by the system to decide whether or not a
specific cache is invalidated.

Proactive Cache Refreshing: Refreshing and updat-
ing a cache is typically performed in apassivemode,
i.e., when the system detects that a cache is invalid, all
its entries will be deleted and the cache will be pop-
ulated later by the next executed query. The Func-
tionGuard system deploys a more proactive feature
that can save significant time at query execution. This
feature works as follows. When the system detects
that a change in a given database table will invalidate
the cache of a given fileF, a set of the input arguments
stored in the cache having the highest frequency will

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

102

Create Trigger FunctionGuard_I

After Insert On T

For each raw

Begin

 // ***F1 dependency predicates section***

 - If (``new’’ vector satisfies predicates p1) Then

 - Insert into the catalog table values

 (“T”, “Insertion”, “F1”, timestamp)

 - End If;

 - If (``new’’ vector satisfies predicates p2) Then

 - Insert into the catalog table values

 (“T”, “Insertion”, “F1”, timestamp)

 - End If;

 // ***F2 dependency predicates section***

 - If (``new’’ vector satisfies predicates p3) Then

 - Insert into the catalog table values

 (“T”, “Insertion”, “F2” , timestamp)

 - End If;

End;

Figure 6: Example of DB triggers that monitor cache inval-
idation on data source T.

!"#$%&'()&*&

+
%
,"
)(
-
%
&+
%
./
0
1
.%
&2
(3
%
&4
56
5)
&7
0
&!
"
#
$
%
&

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!)" *)" (!)" $!)" %!)" '!)"

Figure 7: Effect of Caching on Performance.

be extracted before deleting the cache. These input
arguments represent the arguments most frequently
used when invoking functionF , and thus they will be
stored in a log table. The database admins can then
schedule the invocation ofF using these logged en-
tires to proactively populateF ’s cache. Such type of
tasks can be scheduled at the low-utilization time of
the system, and hence the overhead of executing the
expensive functions will be partially shifted from the
query time to the times when the system in under uti-
lized.

6 EXPERIMENTAL EVALUATION

The experiments are conducted using an AMD
Opteron Quadputer compute server with two 16-
core AMD CPUs, 128GB memory, and 2 TBs
SATA hard drive. We used real-world biolog-
ical datasets from the UniProt database system

(http://www.ebi.ac.uk/uniprot), more specifically the
Protein table that consists of 200,000 protein tu-
ples occupying around 600MBs in the database. For
the expensive function, we used the BLAST (Basic
Local Alignment Search Tool) program that enables
comparing a given protein sequence with a library
or database of other sequences. The program offers
many functionalities, among which we usedblastp
function that searches protein sequences. The query
we used is a simple select-project query from the
Protein table that performs a sequential scan over
the table,. The query contains one predicate over
the protein sequence column that compares each se-
quence to the NCBI repository (Protein Data Bank).

The objective from the evaluation is to study: (1)
The effect of caching on the queries’ response time,
(2) The cost involved in the cache update and main-
tenance, (3) The effect of the internal data struc-
tures, e.g., the buffersBhit and Bmiss, on the per-
formance, and (4) The effectiveness of the proac-
tive cache update on reducing the overhead at query
time. Notice that we do not compare or study the
performance of different query plans because, as
we mentioned in Section 1, FunctionGuard uses the
state-of-art techniques (Hellerstein, 1994; Hellerstein
and Stonebraker, 1993; Chaudhuri and Shim, 1996;
Scheufele and Moerkotte, 1998; Scheufele and Mo-
erkotte, 1998) as a black box to generate an efficient
plan. And hence, we focus on the cache-related per-
formance.

In Figure 7, we study the effect of caching the re-
sults from the expensive predicate and then re-using
it in the next query. The x-axis shows the cache hit
ratio ranging from 0% to 80%, i.e., the ratio at which
the expensive predicate is not executed because the
results was cached. The y-axis shows the relative per-
formance of FunctionGuard compared to having no
cache. Since the expensive predicate is dominating
the cost of the query, the performance is inversely pro-
portional to the number of cache hits.

In Figure 8, we illustrate the overhead involved in
updating the content of the cache−Recall that a cache
should maintain only the entires with the highest pri-
ority as presented in Section 4.2. Since the cache is
disk-persistent, the update cost can be expensive. The
algorithm proposed in Section 4.2 amortizes the cost
over multiple queries. The results depicted in Fig-
ure 8 show the total and amortized cost when varying
the number of queries (β) between 1 and 16 (the x-
axis). The figure indicates that asβ increases, the cost
will also increase. This is because the collected infor-
mation from the multiple runs are accumulating, and
hence it takes more time to reflect that on the cache.
However, as illustrated in the figure, the increase is

FunctionGuard�-�A�Query�Engine�for�Expensive�Scientific�Functions�in�Relational�Databases

103

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

$" %" '" (" $)"

!"#$%&'()'*"%&+%,'-%./%%0'1/('2345.%,'678'

1
(
.5
9'
:
5
;<
%
'2
3
4
5
.%
'1
+#
%
''6
=
%
;8
'

>?@A'
AA@?'

BC@C'

??@C'

DE@A'

!"#$%&'()*#+,)

-#,./)0#+,)

Figure 8: Cache Update Performance.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&" '" %" $"

!"#$$%!&'()%*'+,-%

.
/$
0
',
$/
%1
#"
/%
23
/(
4%

!"#$

%&'$()*+),'-.)$/0*$'1)$2)*3&3'),'$4-+1)$

5"#$ 6"#$

Figure 9: Effect ofBmissBlock Size on Response Time.

sub-linear and thus the amortized cost is reduced as
β increases. Although higherβ means less amortized
cost, it has the drawback of delaying the update of the
cache, and hence some important entries may not be
reflected immediately until the next update. There-
fore β is an important configuration parameter that
depends on the query rate, the system load, and the
desired aggressiveness to update the cache. In the
current version of FunctionGuard ,β is set by the
database admin, however, we plan to explore, as part
of our future work, a cost model based on whichβ can
be tuned dynamically.

The previous experiments reported in Figures 7
and 8 assume 8-Block main memory buffers for each
of the Bmiss andBhit maintained by thethree-bundle
operators. Each block is of size 1MB. In the follow-
ing experiments (Figures 9 and 10), we study the ef-
fect of the buffers’ sizes on the query performance.
We vary the number of blocks assigned to each buffer
over the values from 8 to 1, and measure the query
response time. For theBmiss buffer, as the size de-
creases, the number of tuples that encounter a cache
miss in theBmiss buffer increases (See theCache-
Aware Projectionoperator in Figure 3). And as this
number increases, the data tuples can be temporar-
ily moved to disk until the first scan completes. As
Figure 9 illustrates, for high percentage cache-hit for
the persistent cache, e.g., 80%, most data tuples will
be served by theCache-Aware Joinoperator and they
will skip theCache-Aware Projectionoperator. In that

!"

#!!"

$!!!"

$#!!"

%!!!"

&" '" %" $"

!"#$%!&'()%*'+,$%

-
./
0'
,/
.%
1
#2
.%
34
.(
5%

!"#$

%&'$()*+),'-.)$/0*$'1)$2)*3&3'),'$4-+1)$

5"#$ 6"#$

Figure 10: Effect ofBhit Block Size on Response Time.

!"

#!!"

$!!!"

$#!!"

%!!!"

$" %" &" '" $("

!"#$%&'()*+,$-./')

01$%&'()*+,$-./')231"4,+5)6,+7&,$(8)

!"#$%&'()'*"%&+%,'-%)(&%'./012+314+(/'

5
%
,6
(
/
,%
'7
+#
%
'8
9
%
:;
'

01$%&'()*+,$-./')297':'()6,+7&,$(8)

Figure 11: Proactive Cache Refreshing.

case, the performance is less sensitive to the size of
the Bmiss buffer. In contrast, with lower percentage
cache-hit for the persistent cache, e.g., 20%, most tu-
ples will be forwarded to theCache-Aware Projection
operator. As a result, as the buffer size decreases, the
query’s response time increases.

For theBhit buffer (Figure 10), the effect of the
cache-hit percentage of the persistent cache is re-
versed. That is, as the hit percentage increases over
20%, 40%, to 80%, theCache-Aware Joinoperator
processes more tuples, and hence the utilization of
the Bhit buffer will be higher. As illustrated in Fig-
ure 10, there is almost no effect on the performance
in the case of 20% cache hit even if the size of the
Bhit buffer is one memory block. However, the effect
if clear when the cache hit is 80%. Comparing the
results in the Figures 9 and 10, shows that tuning the
size ofBmissis more important thanBhit . The reason is
that theCache-Aware Joinoperation is less expensive
than buffering the data tuples (and probably writing
them to disk) and the iterating over them again.

In Figure 11, we study the effect of the proactive
cache refreshing when the cache is invalidated, e.g.,
because on of the dependent sources has changed. In
the experiment, we manually controlled when to in-
validate the cache, i.e., after 1, 2, 4, 8, or 16 user’s
queries (the x-axis in the figure). The effect of this
is that the if the invalidation takes place after several
queries, then FunctionGuard has a higher chance to
learn more about the invocation pattern of the expen-

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

104

sive function. Hence, the predicted and proactively
cached entires are more likely to be used. To setup
the experiment, we simulated a workload as follows.
We divided the data tuples in theProtein table into
5 segments, each one consists of 40K tuples. In the
first experiment (labeled“Uniform Workload” in Fig-
ure 11), all segments have the same probability of be-
ing involved in (touched by) a user’s query. There-
fore, it is harder for the system to learn a useful invo-
cation pattern. In contrast, in the second experiment
(labeled“Skewed Workload”in Figure 11), the each
segment has a different probability of being touched
by a user’s query. We set the probabilities to be expo-
nentially decreasing, e.g, Segmentsi has double prob-
ability than Segmentsi−1 of being queried. A given
user query will touch 50,000 tuples across the 5 seg-
ments according to the probabilities set in each exper-
iment.

As the experiments show, the benefit from the
proactive execution and quality of the predicted invo-
cation pattern depends on the user’s workload. In the
case ofUniform Workload, all tuples have the same
chances of being queried, higher number of the pred-
icated and proactively cached values are wrong pre-
dictions. Therefore, the savings at query time is not
large even if we increase the number of queries before
a given invalidation. In contrast, the results in the case
of Skewed Workloadshow larger savings because the
system is able to identify the invocation patterns more
likely to be used in the future. And hence, the cache
hits get higher. This is more effective as the number
of queries before the invalidation is relatively large,
e.g., 8 or 16.

7 CONCLUSION

We proposed the FunctionGuard system for effi-
ciently incorporating expensive functions in relational
database queries. FunctionGuard is distinct from ex-
isting systems in that it leverages disk-based caches
in novel ways to speedup query execution by avoid-
ing unnecessary invocations. It addition, it can be in-
tegrated with any of the state-of-art techniques that
build optimal query plans in the presence of expen-
sive functions. The unique features of FunctionGuard
include: (1) Automated mechanisms for analyzing ex-
pensive functions and building the corresponding de-
pendency graph between functions and data sources,
(2) Cache-aware query processing and optimizations
based on thethree-bundleoperators to integrate the
cached data into the query pipeline, And (3) mech-
anisms for updating and refreshing the disk-based
caches in batch-optimized and proactive ways. The

empirical evaluation demonstrated the effectiveness
of the proposed system to speedup queries and en-
hance the utilization of the existing cache.

REFERENCES

Chang, K. C.-C. and Hwang, S.-w. (2002). Minimal
probing: Supporting expensive predicates for top-k
queries. InProceedings of the 2002 ACM SIGMOD
International Conference on Management of Data,
pages 346–357.

Chaudhuri, S. and Gravano, L. (1996). Optimizing queries
over multimedia repositories. pages 91–102.

Chaudhuri, S., Narasayya, V., and Sarawagi, S. (2002). Ef-
ficient evaluation of queries with mining predicates.
In ICD, pages 529–540.

Chaudhuri, S. and Shim, K. (1993). Query Optimization in
the Presence of Foreign Functions. InProceedings of
the 19th International Conference on Very Large Data
Bases, VLDB ’93, pages 529–542.

Chaudhuri, S. and Shim, K. (1996). Optimization of queries
with user-defined predicates. InACM Transactions on
Database Systems, pages 87–98.

Denny, M. and Franklin, M. (2006). Operators for expen-
sive functions in continuous queries. InData Engi-
neering, 2006. ICDE ’06. Proceedings of the 22nd In-
ternational Conference on, pages 147–147.

Gray, J., Liu, D. T., Nieto-Santisteban, M., Szalay, A., De-
Witt, D. J., and Heber, G. (2005). Scientific Data
Management in the Coming Decade.SIGMOD Rec.,
34(4):34–41.

Haas, L., Schwarz, P., Kodali, P., Kotlar, E., Rice, J., and
Swope, W. (2001). Discoverylink: A system for inte-
grated access to life sciences data sources.IBM Sys-
tems Journal, 40(2):489–511.

Hanson, E. N., Carnes, C., Huang, L., Konyala, M.,
Noronha, L., Parthasarathy, S., Park, J., and Vernon,
A. (1999). Scalable trigger processing. InIn Proceed-
ings of the 15th International Conference on Data En-
gineering (ICDE), pages 266–275.

Hellerstein, J. M. (1994). Practical predicate placement.
In In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 325–335.

Hellerstein, J. M. (1998). Optimization techniques for
queries with expensive methods.ACM Transactions
on Database Systems (TODS.

Hellerstein, J. M. and Naughton, J. F. (1996). Query Execu-
tion Techniques for Caching Expensive Methods. In
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’96,
pages 423–434.

Hellerstein, J. M. and Stonebraker, M. (1993). Predicate
migration: Optimizing queries with expensive pred-
icates. InProceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
pages 267–276.

Munagala, K., Srivastava, U., and Widom, J. (2007). Opti-
mization of continuous queries with shared expensive
filters. In In PODS 07: Proc. of the twenty-sixth ACM

FunctionGuard�-�A�Query�Engine�for�Expensive�Scientific�Functions�in�Relational�Databases

105

SIGMODSIGACT-SIGART symposium on Principles
of. ACM.

Scheufele, W. and Moerkotte, G. (1998). Efficient dynamic
programming algorithms for ordering expensive joins
and selections. InIn Proc. of EDBT, pages 201–215.

Zhang, Y., Yu, L., Zhang, X., Wang, S., and Li, H. (2012).
Optimizing queries with expensive video predicates
in cloud environment.Concurr. Comput. :
Pract. Exper., 24(17):2102–2119.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

106

