
Software Quality Assurance for the Development of
JASMIN Infrastructure

Cao Xiaolin, Zhang Aiqing and Liu Qingkai
Institute of Applied Physics and Computational Mathematics, No. 2, Fenghao East Road, Haidian District, Beijing, China

Keywords: Parallel Program, JASMIN Infrastructure, Software Quality Assurance, Software Development Process.

Abstract: JASMIN is a parallel software infrastructure oriented to accelerate the development of parallel programs for
large scale simulations of complex applications on supercomputer. Tens of application programs have been
reconstructed or developed on JASMIN. With the rising effort needed to develop and maintain JASMIN, it
is very crucial to fulfil software quality assurance. Compared with open source or commercial software
development, there are four challenges including parallel computing, higher technical risks etc in the
development of JASMIN. A Four-phases-twelve-nodes process are presented and widely used for a seriers
new software modules development. These modules meet the requirements arising from application
programs and improve performance for adapting new supercomputer.

1 INTRODUCTION

The complexity of application systems and that of
supercomputer architectures are providing a great
challenge for parallel programming in the field of
scientific computing. J Adaptive Structured Meshes
applications Infrastructure (JASMIN) is a parallel
software infrastructure oriented to simplify the
development of parallel software for multi-physics
peta-scale simulations on multi-block or adaptive
structured meshes (Mo, 2010). JASMIN
infrastructure is intrinsically different to traditional
libraries because it provides data structures,
communication algorithms, load balancing strategies
and parallel programming interfaces to shield the
details of parallel computing from the users. Based
on JASMIN, a user can easily develop parallel
programs for complex computers.

Tens of large scale application programs have
been reconstructed or developed on JASMIN. It is
portable for personal computers, high performance
clusters, and massively parallel processing
computers. On JASMIN, after the program is
rewritten on a personal computer, it can successfully
run on parallel machines where JASMIN is installed.
These programs are suitable for different numerical
simulations arising from multi-material
hydrodynamics, radiation hydrodynamics, neutron
transport, hydrodynamics instability, laser plasma
interactions, materials science, climate forecasting,

and so on. Many of these programs can efficiently
use thousands of processors on TianHe-1A
supercomputer (Yang, 2011).

JASMIN has been developed by a parallel
compuing team including more than ten members
since 2004. JASMIN is written in four languages
C++, C, Fortran 90, and Fortran 77. It has three
layers architecture with hundreds of classes. There
are six hundred thousand lines of code in JASMIN
V3.0 in 2013. With the rising effort needed to
develop and maintain JASMIN, it is very crucial to
Software Quality Assurance (SQA).

SQA is necessary to do so in a systematic and
quantifiable way(Aiftimiei, 2012). The application
of such an approach is combined in the term
Software Engineering, the application of the
engineering approach to enhance the development
process as well as the quality of the resulting
software (Lichter, 2010). Since there is no technique
of software engineering which can be applied well to
tackle all problems, these techniques have to be
adapted to specific domains and kinds of software.
There are for example special architectures like
Enterprise Java Beans for database applications.
OpenFOAM (2013) does make use of particular
design processes or software project management
techniques to enhance the development process.

This paper shows that JASMIN software projects
in particular face challenges beyond those regularity
faced in common commercial software. These

439Xiaolin C., Aiqing Z. and Qingkai L..
Software Quality Assurance for the Development of JASMIN Infrastructure.
DOI: 10.5220/0004991504390444
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 439-444
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

challenges need to be addressed in the software
architecture and software development process. A
Four-phases-twelve-nodes process for the
development of new software module in JASMIN is
described. It has been proved that the software
development process is very useful to enhance the
quality of JASMIN.

2 OVERVIEW OF JASMIN

2.1 Design Objectives

The programming challenges mainly arise from two
types of increasing complexity. The first is the
computer architecture. The memory wall is still the
key bottleneck for realistic performance; the
increasing number of cores in each CPU increases
the seriousness of this bottleneck. The data
structures should be matched to a cached-based
memory hierarchy. However, aggregation
techniques are indispensable for the construction of
computers. More and more cores are integrated into
each CPU, and more and more CPUs are clustered
into each computing node, and hundreds or
thousands of nodes are interconnected. Parallel
algorithms should have sufficient parallelism to
utilize so many cores. The design of such data
structures and parallel algorithms are too
professional for the application users.

The second complexity is the application system.
Large scale simulations are mainly used to study the
characteristics of complex systems. With the
increasing of computer capabilities, the complexity
of the application system should also increase
simultaneously. However, the increasing complexity
brings many new problems. Firstly, the fast parallel
algorithms are usually required for the solution of
large scale discrete systems. Though many such
algorithms have been studied, they are seldom
mature enough for realistic applications. Secondly,
the dynamic variations of physical characteristics
often lead to serious load imbalance, challenging the
parallel efficiency across thousands of processors.
Thirdly, complex systems are often coupled with
many small systems and such tight coupling often
leads to irregular communication issues. The fast
parallel algorithms, load balancing strategies and
irregular communications together increase the
difficulty of programming for such systems.

JASMIN infrastructures(MO, 2009) are designed
toward solving such challenges. The main objective
of JASMIN is to accelerate the development of
parallel program for large scale simulations of

complex applications on parallel computers. The
basic ideas described as following:
 Hides parallel programming using millons of

cores and the hierarchy of parallel computers.
 Integrates the efficient implementations of

parallel fast numerical algorithms.
 Provides efficient data structures and solver

libraries.
 Supports software engineering for code

extensibility.

2.2 Software Architecture

Figure 1 depicts the three layers architecture of
JASMIN. The bottom layer mainly consists of
modules for high performance computing for
SAMR meshes.In this layer, modules are grouped
into three sub-layers. The base sub-layer, Toolbox,
contains the essential C++ classes for parameter
input, memory management, restarting, and input/
output interfaces with the HDF5. The second sub-
layer contains two modules, Patch Hierarchy and
Patch Data, for data structures and one module,
Communications, for communication and load
balancing strategies. The top sub-layer, Mesh
adaptivity, contains the components for the local
mesh refinement or coarsening.

Figure 1: Software architecture of JASMIN.

The middle layer of JASMIN contains the
modules for the numerical algorithms shared by
many applications including computational
geometry, fast solvers, mathematical operations on
matrix and vectors, time integration schemes,
toolkits, and so on.

The top layer is a virtual layer consisting of C++
interfaces for parallel programming. On the top of
this layer, users can write serial numerical
subroutines for physical models, parameters, discrete

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

440

stencils, special algorithms, and so on; these
subroutines constitute the application program.

2.3 Structure Meshes Supported

Figure 2 depicts the user interfaces for applications
programs. The left lists the main classes and strategy
classes used by the application programs. The right
lists the main modules which should be implemented
by the user. The left side of the figure represents
JASMIN interfaces for parallel programming, whilst
the right hand side shows the user application
program. On the left, the class
algs::HierarchyTimeIntegrator <DIM> represents
the time integration on the patch hierarchy. It should
be called by the user main program. In JASMIN, this
class depends on the time integration strategy class
algs::TimeIntegratorLevelStrategy<DIM>.

Figure 2: User programming interfaces of JASMIN.

The user must implement a subclass of this
strategy class on a patch level for application
program. In return, this implementation should use
the integrator components for the descriptions of
neighboring relationships. These components cover
various data dependencies which occur in different
phases of a numerical simulation such as variable
initialization, time stepping, numerical computing,
memory management, patch data memory copy,
synchronization between neighboring patch levels,
parallel sweeping, particle computing, etc. Most
components contain not only communication but
also the numerical computing. Each component calls
a strategy class algs::StandardComponent-
PatchStrategy<DIM>. The user should implement a
subclass of the strategy class at the patch level. In
the subclass, the user must implement the numerical
subroutines representing the numerical computing
on a patch.

3 SOFTWARE QUALITY
MANAGEMENT

3.1 Challenges

Scientific software projects (Chhabra, 2010;
Jalender, 2012) can be distinguished by
characteristics that clearly separate them from other
development projects like open source(Franch, 2013)
or commercial software development processes. For
JASMIN infrastructure, there has fundamental
features described as follows:
 Parallel Computing. Parallel programs based on

JASMIN are developed for multiple cores which
go up to massive parallelism in peta-scale
supercomputer. Since these codes are both, more
complex to implement as well as more difficult
to debug and maintain, simulation software,
which has to implement parallel functionality
incorporates additional technical difficulties.
 Changing Requirements. The software

architecture has on one side to support efficient
algorithms and implementations. On the other
side it has to be easily extensible to
accommodate for new functional requirements
arising from application programs and
performance improvement for adapting new
generation supercomputer like ten-peta-scale
supercomputer.
 Backward Compatibility. Subsequent versions

of JASMIN need provide the same programming
interface that previous versions do, programs
written against the previous version will be able
to compile and run with the new version. When
new version of JASMIN adapted for new
generation supercomputer is installed,
application programs without any change can run
efficiently for large scale simulation.
 Higher Technical Risks. When new scientific

and/or mathematical methods are implemented
one cannot guarantee the feasibility of the
problem until nearly complete development of
the software. In the case of simulation software
the need for parallel computing enlarges the
technical difficulties of the software
development.

3.2 Software Development Process

A preliminary design process model for the
development of scientific software is presented. This
model takes the particular challenges of JASMIN in
account and promises to tackle these challenges
through the combination of an agile approach and

Software�Quality�Assurance�for�the�Development�of�JASMIN�Infrastructure

441

stringent application of rules to keep the process
manageable.

Table 1: Four-phases-twelve-nodes process for the
development of new software module.

Phase Node Objectives

Create task
(why,what)

Requirements
analysis

Real problem in user
program; functionality,
performance improvement

Conceptual
definition

Concise scientific
concepts, clear academic
statement

Architecture
design

Systematic sketch; main
function; external
interfaces

Design
task (how)

Test design Define test cases

Implement
design

Module architecture; data
structure, algorithm

Strategy
assessment

Confirm scientific and
technical feasibility

Complete
task

Coding
Write module code; run
and debug code

Testing
Write test code; do unit
and Integration tests

Version
control

Manage source code and
test cases.

Apply

Small Release
Do acceptance tests; form
installation package.

Deployment
Make software available
on user supercomputers

Maintenance
Correct faults, upgrade
version

The process model is called Four-phases-twelve-

nodes(FPTN) process for the development of new
software module in JASMIN. There are two kinds
of development. One is developing new
functionality in order to meet the requirements
arising from application programs. Another is
performance improvement for adapting new
supercomputer. The whole development of JASMIN
in each year is consisted of a series of new software
modules implemented by small team including 1-3
members. Therefore, the quality of a single module
is increasingly vital.

3.3 Example

A Fast multipole method (FMM) solver(Cao, 2011)
is a good example for the development of new
software module. These main features of the FPTN
process will be explained by the development of
FMM solver.

3.3.1 Create Task

NODE1-Requirements Analysis. It is necessary to
develop parallel code including FMM algorithm in
various application fields. Examples include
electromagnetic scattering, celestial mechanics and
dislocation dynamics. But the lack of efficiently
parallelized and user friendly software libraries has
hindered the wide-spread use of the FMM algorithm.
Then, the analysis and summary of the FMM
algorithms and its three applications were described
in requirement document. Furthermore, the parallel
performance and usage was briefly given.

NODE2-Conceptual Definition. A parallel
solver named “FMM solver” was presented. FMM
Solver encapsulates the commonness for various
applications. It supplies users with abstract
interfaces required to implement the individuality
with serial mode. The commonness contains
distributed storage of multi-levels, intra-level and
inter-level data communication, and arrangement of
computation etc. The individuality contains various
expansion and translation operators. Some concepts
in FMM solver, for example M2M, M2L, L2L
translation etc, were demonstrated.

NODE3-Architecture Design. The FMM solver
has been designed by classes solv::FMMSolver and
solv::FMMSolverPatchStrategy. The former creates
FMMH, implement algorithms of FMM solver. It
includes three public function: initialize-
SolverState(), setCoeffID(), and solveSystem(). The
later define individuality part as abstract method by
using many C++ interfaces: Multi2-MultiShift(),
Multi2LocalShift(), Local2Local-Shift().

3.3.2 Design Task

NODE4-Test Design. One test case was designed. It
is motion of charged particles in electrostatic field.
The case consider a two-dimensional physical model
which consists of a set of N charged particles with
the potential and force obtained as the sum of pair-
wise interactions from Coulomb’s law. The
calculation of forces in two ways: via the FMM
solver and via direct method. The two calculations
were used to compare the accuracy of FMM solver.

NODE5-Implement Design. The main data
structure including FMMH, M-coefficients etc was
described. The four key algorithms of the FMM
solver have been designed. The solver mainly
implements the commonness part. (a) Data
management on multi-levels in hierarchy:
construction, storage, allocation, specification of
inter-level and intra-level data dependence relation
among cells. (b) Common operations on upward

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

442

pass and down-ward pass: inter-level and intra-level
data communication, arrangement of all translation
among cells.

NODE6-Strategy Assessment. These documents
of five nodes were reviewed and discussed in order
to confirm scientific and technical feasibility. Then,
a small team include 3 members was formed for
implementing FMM solver, programming test case,
real application.

Table 2: Parallel performance with fixed problem size.

Cores particles levels Time(s) Efficiency
1 1.0×106 6 93.83 1.00
4 4.0×106 7 98.14 0.95
16 1.6×107 8 100.71 0.93
64 6.4×107 9 101.12 0.93

256 2.5×108 10 101.29 0.92
1024 1.0×109 11 103.63 0.90

The other 6 nodes are similar to some classical

software development process. The main difference
is doing acceptance tests in node10. The tests consist
of correctness test and parallel performance test
based on the test case in designed in node 4 and
implemented in node 8. The correctness test was
performed by comparing the accuracy of FMM
solver to those of the direct method. For testing the
parallel efficiency, we fix problem size on single
processor with q=10, and vary the number of
processor cores from 1 to 1024. Scalability in table 2
was demonstrated with a parallel efficiency above
90% on 1024 processors.

The FMM solver was applied in a 3-D dislocation
dynamics code to calculate interaction force of
dislocation lines. A physical model including 30
million dislocation line segments in 128×128×128
cells has been designed for testing parallel efficiency
of the FMM solver with 8 levels. We fix problem
size, and vary the number of processor cores from
128 to 1024. For p=1024, the parallel efficiency is
about 80% compared with p=128.

4 REAL APPLICATION

Since 2013, a series of new software modules have
been developed in JASMIN infrastructure based on
FPTN process. These modules enhance the
functionality and improve the performance of
JASMIN with upgrading version from 2.0 to 3.0.
Some real applications of JASMIN 3.0 are described
as follows.

4.1 Structure Meshes Supported

Figure 3 depicts different structured meshes which
JASMIN can support. The first is the patch-based
uniform rectangular SAMR mesh where three patch
levels are given and are colored with red, green and
blue respectively. Usually, a SAMR mesh can
contain several patch levels and each level may
contains many patches. The finer patch level covers
a local region of the next coarse patch level. In Fig.
3, each box represents a region of a patch. The
second example is the single block deforming mesh,
and the third is the multi-blocks deforming mesh for
which nodes always move toward interesting local
regions in the process of simulation. In the two or
three dimensional geometry, each cell in a mesh is
quadrangular or hexahedron respectively. Two
blocks should conformingly contact each other along
the boundaries. The fourth is the particle mesh for
which particles can randomly distribute across the
cells of a uniform rectangular mesh. The fifth is the
curvilinear mesh suitable for the simulation of
climate forecasting. The final example is the three-
dimensional body-fitted multi-block deforming
mesh for the computation of fluid dynamics.

Figure 3: Typical meshes supported by JASMIN.

4.2 Large Scale Simulation

Table 4 shows four large-scale data sets of real
application. They have been generated by four
application programs reconstructed or developed on
JASMIN. These programs have been run on tens of
thousands of cores with several or tens of hours on
peta-scale supercomputer.

LARED-P is a three-dimensional program
for the simulation of laser plasma intersections

Software�Quality�Assurance�for�the�Development�of�JASMIN�Infrastructure

443

Table 3: Simulation scale and parallel performance.

Program Simulation scale Efficiency

LARED-P
36000 cores,

2.0×1010 particles
45%

LARED-S
32768 cores,

1.6×108 grids
52%

LAP3D
16384 cores,

2.1×109 grids
50%

JEMS-FDTD
30000 cores,

6.1×108 grids
62%

using the method of Particle-In-Cell (Pei, 2009).
Left upper map in figure 4 shows the distribution of
particles in a snapshot and the related volume
rendering of laser intensity. LARED-S is a three-
dimensional program for the simulation of radiation
hydrodynamics instabilities occurring in the process
of radiation driven compression explosion. Right
upper map in figure 4 shows the result of the
Richtmyer-Meshkov(R-M) instability among
materials interface.

Figure 4: Simulation results of four application programs.

LAP3D is a three-dimensional program for the
simulations of filament instabilities for laser plasma
intersections in the space scale of hydrodynamics.
Left bottom map in figure 4 shows isovalue contour
of laser intensity. JEMS-FDTD is a three-
dimensional Electronmagnetic solver-finite
difference time domain. Right bottom map in figure
4 shows a simulation for high power electromagnetic
pulse couples into computer box through small
apertures and slots.

5 CONCLUSIONS

A Four -phases -twelve –nodes process for the

development of JASMIN infrastructure is
described. This process takes the particular
challenges of developing scientific software in
account. It is widely used for a series new software
modules development to keep the software quality of
JASMIN manageable. A developing management
information system has been customized and
installed for these tasks involving tens of persons. A
developing environment including code inspection,
automatic test system is optimized in order to adapt
scientific software efficiently.

ACKNOWLEDGEMENTS

This work was under the auspices of the National
Natural Science Foundation of China (Grant Nos.
61033009), the National Basic Key Research Special
Fund (2011CB309702) and the National High
Technology Research and Development Program of
China (863 Program) (2012AA01A309).

REFERENCES

Aiftimiei, C., Ceccanti, A., Dongiovanni, D.,,and
Giacomini, F., 2012. Improving the quality of emi
releases by leveraging the emi testing infrastructure.
Journal of Physics: Conference Series, 396(5).

Chhabra, J. and Gupta, V., 2010. A survey of
dynamicsoftware metric. Journal of Computer Science
andTechnology, 25:1016–1029.

Franch. X. and Susi, A., 2013. Managing Risk in Open
Source Software Adoption. Proceedings of ICSOFT
2013, Reykjavik, Iceland, 29-31.

Jalender B., Govardhan A., Premchand P., 2012.
Designing code level reusable software components.
Int. J. Software Engineering & Applications. 3(1):
219-229.

Lichter A., Hoffmann V., 2010. Processes and Practices
for Quality Scientifc Software Projects. Proceedings
ofWASDeTT 2010.

Mo Z. Y., Zhang A.Q., 2009. User’s guide for JASMIN,
Technical Report . https://www.iapcm.ac.cn/jasmine.

Mo Z. Y., Zhang A.Q., 2010. JASMIN:A parallel
software infrastructure for scientific computing. Front.
Comput. Sci. China. 4(4): 480-488.

OpenFoam, 2013. http://www.openfoam.org/.
Pei W. B., Zhu S.P., 2009. Scientific computing in Laser

Fusion. Physics (in Chinese), 38(8): 559-568.
Pryscilla, M.D., Ana, C.O., 2013. Improving Quality in

Agile Development Processes. Proceedings of
ICSOFT 2013, Reykjavik, Iceland, 29-31.

Yang X. J., Liao X. K., Lu. K., 2011. The TianHe-1A
supercomputer: Its hardware and software. J. of
Computer Science and Technology. 26(3): 344-351.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

444

