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Abstract: This article proposes an approach to testing the cooperative behaviour of autonomous software-based agents 
with safety-relevant tasks. It includes the definition of different model-based testing criteria based on the 
coverage of Coloured Petri Net entities as well as the automatic generation of appropriate test cases. The 
multi-objective optimization problem considered addresses both the maximization of interaction coverage 
and the minimization of the amount of test cases required. The approach developed for its solution makes 
use of genetic algorithms. The resulting automatic test case generation process is presented in this article 
together with the experiences gained by applying it to cooperating autonomous forklifts. 

1 INTRODUCTION 

1.1 Motivation 

Modern software-based applications increasingly 
rely on de-centralized functionalities distributed 
among entities. While classical component-based 
software usually involves behavioural synchronicity, 
however, autonomously cooperating agents are 
conceived to take individual decisions on the basis 
of their local sensorial perception and reasoning 
capabilities (Saglietti, Söhnlein and Lill, 2011). 
Typical application domains addressed by 
autonomous cooperation include mobile robots or 
traffic control based on car-to-car communication. 
Evidently, local decisional autonomy and shared 
cooperative tasks allow for higher flexibility and 
performance than central controllers; on the other 
hand, the resulting global behaviour induced by 
autonomous decisions involves also a much higher 
variety of potential interaction scenarios. In 
particular, this multiplicity poses serious challenges 
to verification, as compositional testing or proving 
techniques relying on separation of concerns cannot 
be taken to provide adequate evidence any longer. 

In fact, the potential failure behaviour of 
autonomous cooperative robots goes beyond the 
possibility of incorrect performance of one entity 
including also inappropriate decision-making due to 
inaccurate perception instruments, inadequate 
interpretation of signals perceived, incorrect 

identification of actions required or inconsistence 
between decisions of cooperating agents. 

Therefore, in order to improve the state-of-the-
art, a model-based approach for testing cooperating 
autonomous systems was developed within the 
European ARTEMIS project R3-COP. It aims at 
capturing the inherent interaction multiplicity by an 
appropriate modelling notation, from which to 
derive representative test cases. In more detail, the 
approach developed is based on the following steps: 
 modelling of the behaviour of a cooperating 

autonomous system; 
 definition of adequate coverage criteria based on 

the modelling elements of the notation chosen; 
 automatic generation of model-based test cases 

achieving given coverage criteria. 
 
The test data generation process follows a multi-

objective optimization strategy based on genetic 
algorithms (Mitchell, 1996): in fact, it aims at 
maximizing test coverage while minimizing the 
number of tests involved. 

After addressing related work in the next section, 
the rest of the article is structured as follows: 
 chapter 2 briefly outlines the benefits of using 

Coloured Petri Nets (CPNs) for the purpose of 
modelling cooperating autonomous systems; 
furthermore, objectively reproducible coverage 
criteria based on CPN modelling elements are 
presented and hierarchically organized; 
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 chapter 3 proposes an incremental testing 
procedure consisting of successive testing phases 
characterized by gradually increasing levels of 
contextual detail; 

 chapter 4 is devoted to the automatic generation 
of optimized CPN-based tests by means of 2 
different optimization strategies: the former 
addresses conflicting objectives by pre-defined 
target priorities (section 4.1), while the latter one 
allows to capture varying target priorities by 
moving along a whole Pareto front (section 4.2); 

 finally, chapter 5 illustrates the practicability of 
the technique developed in the light of an 
example inspired by a real-world application 
involving cooperating forklifts. 

1.2 Related Work 

The approach presented in this article is based on the 
classical concept of model-based testing (e.g. Utting 
and Legeard, 2007; Broy et al., 2005) allowing for 
the extraction of significant test cases from 
dedicated behavioural and environmental models. In 
order to capture the behaviour of cooperating 
autonomous systems, it makes use of the modelling 
language CPNs (Jensen and Kristensen, 2009). The 
coverage criteria proposed in section 2.2 were partly 
inspired by already existing coverage concepts (Zhu 
and He, 2002) for Predicate-Transition Petri Nets 
(Genrich and Lautenbach, 1981). For the purpose of 
automatic test case generation, they were transferred 
to CPNs giving rise to appropriate metrics for the 
evaluation of the fitness of candidate test case sets. 

Alternative approaches (Nguyen et al., 2012) and 
(Micskei et al., 2012) were also devoted to the 
automatic generation of test cases for autonomous 
software agents by means of evolutionary 
techniques. They differ, however, from the target 
pursued in the present article by focusing on testing 
for robustness in terms of aiming at the generation of 
exceptional test scenarios, e.g. involving unusually 
high stress, human misuse, communication 
anomalies, behavioural extremes etc. Such 
approaches assume the previous identification of 
anomalous behaviour; this may be hard to be 
achieved in general, especially in case of numerous 
interacting agents. In addition, they do neither 
address the global amount of behavioural 
multiplicity captured by interacting autonomous 
systems, nor the amount of testing required; both 
these objectives, on the other hand, are pursued by 
the technique developed in this article. 

2 MODEL-BASED TESTING 
USING CPNS 

2.1 CPNs for Modelling Autonomous 
Cooperating Agents 

In order to capture the high behavioural multiplicity 
of interaction scenarios arising from autonomous 
cooperation, an adequate modelling notation is 
required. Coloured Petri Nets (Jensen and 
Kristensen, 2009) have proven to be particularly 
useful for this purpose thanks to their capability of 
providing a compact and scalable representation 
(Lill and Saglietti, 2012a). 

Classical Petri Nets are well-known techniques 
for modelling and analyzing concurrent processes, in 
particular capturing their cooperative behaviour as 
well as potential conflicts. CPNs result by enriching 
the tokens of ordinary Place/Transition Petri Nets 
(Murata, 1989) with type-specific data values 
(colours). For this purpose, each CPN place is 
assigned a colour set specifying the type of tokens 
that may be allocated to that place. At any time, the 
net marking defines the current state.  

In order to control the production and 
consumption of coloured tokens, CPN arcs are 
assigned dedicated arc expressions determining a 
multi-set of coloured tokens to be produced resp. 
consumed during transition firings. In order for a 
transition to fire, each variable occurring in its input 
arc expressions has to be bound to a specific colour 
such that a sufficient number of tokens of that colour 
(determined by evaluating each input arc expression) 
is available in the corresponding input place. The 
firing of a transition w.r.t. an enabling variable 
binding is denoted as an event. Each event leads first 
to the consumption of tokens in each input place of 
the transition in amounts and colours as indicated by 
evaluating the corresponding input arc expression. 
After the firing, tokens are produced in output places 
in amounts and colours as indicated by evaluating 
corresponding output arc expressions of the 
transition. Transition guards may further restrict the 
firing of a transition by requiring the fulfilment of 
given conditions. 

The sound mathematical basis on which CPNs 
are based allows for the use of formal analysis 
techniques (Jensen and Kristensen, 2009). 
Furthermore, dedicated tools support step-wise 
simulation and state space analysis (Jensen, 
Kristensen and Wells, 2007; Westergaard and 
Kristensen, 2009). While sharing with classical Petri 
Nets the benefit of providing an intuitively appealing 
visualization of complex processes, CPNs offer 
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additional advantages by supporting full expressive 
power thanks to the concept of coloured tokens and 
net annotations in SML (Milner et al., 1997). By 
permitting to encapsulate data information within 
the type-specific tokens, CPNs can be easily adapted 
to meet application-specific requirements without 
needing to change the underlying net layout, hereby 
supporting compactness and scalability. Further 
extensions of CPNs also support hierarchical design 
and timely aspects (Jensen and Kristensen, 2009). 

2.2 Hierarchy of CPN-based Coverage 
Criteria 

In the following, a CPN-based test case is defined to 
be a pair consisting of an initial CPN state and of a 
finite sequence of CPN events. For the purpose of 
providing objectively reproducible test stopping 
rules based on measurable test targets, the following 
cooperation-tailored coverage criteria were 
introduced in (Lill and Saglietti, 2012b) on the basis 
of CPN model entities (i.e. transitions, events and 
states) to be covered during testing. 

Transition-based Coverage Criteria address 
the verification of generic, though non-trivial system 
functionality of robots (e.g. basic motor activities or 
self-localization). By limiting the testing scenarios to 
the mere transition level, the multiplicity of data 
flow is deliberately kept out of the testing scope by 
focusing on one single action instance. Testing 
criteria addressing this relatively coarse level of 
abstraction include the “all transitions”- criterion 
demanding the activation of each single transition, 
the “all transition pairs”- criterion demanding in 
addition also the triggering of all possible pairs of 
transitions, as well as the “all transition sequences”- 
criterion extending the previous criteria to include 
the firing of any possible sequence of transitions. 

Event-based Coverage Criteria go beyond 
single generic transitions by explicitly addressing 
the whole variety of possible action instances (e.g. 
varying robot movement scenarios under different 
terrain conditions). By focusing on event 
occurrences, the underlying data flow multiplicity - 
including the amount and the colours of tokens - is 
intentionally integrated into the testing scope. 
Coverage criteria addressing this finer level of 
abstraction include the “all events”- criterion 
demanding the occurrence of every event, the “all 
event pairs”- criterion demanding in addition also 
the occurrence of any possible pair of events, as well 
as the “all event sequences”- criterion extending the 

previous criteria to include the occurrence of any 
possible sequence of events. 

State-based coverage criteria, on the other 
hand, enrich the accuracy of test observations by 
distinguishing between different operational 
conditions present before and after event 
occurrences, such as potential mid- or long-term 
interferences with other robots or obstacles.  In 
terms of model entities, this is captured by 
addressing different token amounts and colours 
between and after action instances. Coverage criteria 
at this particularly fine level of detail are the “all 
states”- criterion demanding the traversal of every 
state, the “all state pairs”- criterion demanding in 
addition the traversal of any possible pair of 
successive states, as well as the “all state 
sequences”- criterion extending the previous criteria 
to include the traversal of any possible sequence of 
states. 

As event-based and state-based coverage criteria 
require the construction of the underlying CPN state 
space graph, the test case generation may be limited 
by state space explosion (Valmari, 1998). This 
problem, however, may be partly circumvented by 
the following strategies (Pelánek, 2009): 
 using parallel or distributed computing for 

calculating the state space graph;   
 reducing the state space, e.g. by addressing a 

higher degree of abstraction or by restricting the 
model parameters to tractable dimensions 
considered as acceptable for testing purposes; 

 restricting the coverage targets to operationally 
relevant portions of the state space. 
 
Under the realistic assumption that all CPN 

transitions are connected by arcs, all guards are 
satisfiable and every state can be reached from 
another state via at most one event, under a given 
initial marking the causal implications between the 
coverage criteria introduced above are illustrated by 
the subsumption hierarchy shown in Figure 1 (Lill 
and Saglietti, 2012b). 

3 INCREMENTAL STRUCTURAL 
TESTING 

In analogy to conventional structural software 
testing, the scope of the testing object may be step-
wise enriched by growing amounts of contextual 
details. In fact, the hierarchy shown in Figure 1 
highlights the increasing refinement from generic 
actions (bottom level) via specific action instances 
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Figure 1: Subsumption hierarchy of CPN-based coverage criteria. 

(intermediate level) to action instances involving 
different operational pre- and post-conditions (top 
level). Based on this concept the following structural 
testing phases for cooperating autonomous systems 
are proposed: 
1. local test of context-free actions represented by 

CPN transitions, intended to verify generic, but 
non-trivial robot functionalities like basic motor 
activities by robots or self-localization 
functionalities by sensors. 

2. local test of context-specific actions 
represented by CPN events; after that, the 
second testing phase extends the testing scope 
to the coverage of specific action instances. For 
example, motor activities should be tested on 
different terrain conditions (e.g. varying grip or 
slope) and self-localization should take place in 
different environments (e.g. outdoor or in a 
closed factory room). 

3. global test of contextual system behavior 
represented by CPN state pairs. Therefore, a 
third phase also takes into account global 
system states encountered before and after event  
occurrences. For example, the actions of mobile 
robots could be affected by weather conditions, 
battery status or the interference of other robots 
or obstacles. Post-conditions encountered after  
event occurrences may often lead to further 
conflicts (e.g. robots blocking each other). This 
may be exploited for the prolongation of test 
cases in order to capture these situations.  

 
While these structural testing phases can 

systematically support preliminary verification 
activities aimed at fault detection, they evidently do 
not allow for the quantitative assessment of 
operational reliability, as they exclusively address 
structural coverage ignoring issues like frequency of 
occurrence or criticality of events. Therefore, if 

required, these phases should be completed by 
reliability testing based on an operationally 
representative usage profile. 

4 OPTIMIZED TEST CASE 
GENERATION 

Automatic model-based test case generation pursues 
two main objectives: 
 a fault detection benefit achieved by maximizing 

interaction coverage; 
 an economic benefit achieved by minimizing the 

amount of test cases. 
 
In general, these objectives are conflicting, as 

higher coverage usually demands for more test 
cases. The underlying multi-objective optimization 
problem is approached by evolutionary techniques 
(Freitas, 2002). Inspired by Darwinian evolution 
theory, they rely on the successive improvement of 
solution candidates by genetic operators (s. Figure 
2). 

In the context of CPN-based testing, each 
individual within a given population is intended to 
represent a candidate set of test cases, where test 
cases are referred to as genes. 

After a starting population is randomly 
generated, each of its individuals is evaluated in 
terms of its achievement of the objectives by a so-
called fitness function. The following operators are 
then applied for the purpose of generating a 
subsequent population of given size. 

The elitism operator transfers a fixed percentage 
of the population consisting of the best-fitted 
individuals unaltered to the successive population.  

Furthermore, all individuals are considered for 
recombination where the recombination process is 
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based on a selection operator repeatedly choosing 
pairs of individuals according to given strategies and 
on a crossover operator recombining them to build 
two new individuals.  In order to reduce the risk of 
worsening very fit individuals by recombination, a 
fixed percentage of the elite skips this phase and 
directly proceeds to the successive mutation 
operator. Two crossover operators were defined and 
implemented: 
 uniform crossover: exchange of test cases 

between selected individuals; for each test case 
of an individual, the probability of being 
transferred to the other is decreasing with 
coverage progress in order to avoid weakening 
very good individuals towards the end of the 
optimization procedure; 

 cut & glue: recombination of two single test 
cases from selected individuals by randomly 
splitting each of them into two parts in such a 
way that processing both initial parts results in a 
common state; the sequential endings of both test 
cases are then interchanged resulting in two 
different and meaningful test cases. 
 
In order to increase genetic diversity, test cases 

building the new population may be successively 
subject to mutation operators, at an operator-specific 
probability depending on the coverage progress 
currently achieved. The intention is to take into 
account the varying need for further genetic material 
throughout the generation process, tending to 
increase this material at the beginning while 

reducing it towards the end. In more detail, the 
mutation operators applied are the following: 
 the add operator (abbr. by a) inserts a randomly 

generated new test case; 
 the delete operator (abbr. by d) removes a 

randomly chosen test case; 
 the replace operator (abbr. by r) concatenates the 

delete and add operator;  
 the modification operator (abbr. by m) alters a 

test case by replacing its events (starting from 
randomly chosen intermediate state) with 
potential randomly chosen alternative events up 
to a pre-defined test case length resp. up to the 
reaching of a final state. 
In order to prevent the loss of precious genetic 

material during evolution, for each entity a set of test 
cases covering it is stored in a so-called gene pool 
from which the add operator may successively 
access for re-insertion. 

The algorithm continues as long as no individual 
candidate fulfils given stopping criteria, e.g. in case 
a minimum fitness value is achieved or the number 
of iterations exceeds a certain limit. 

4.1 Weight-based Optimization 

For calculating the fitness of each individual, a 
fitness function has to be specified. One test case 
generation technique involves the definition of 
dedicated weights for each mission objective. 
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Output of best result

Evaluation (Fitness)

Initialization

 

Figure 2: Genetic operators (left) and scheme of a genetic algorithm (right). 
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The fitness of each individual ts is based on two 
measures capturing the achievement of both 
objectives. 

The degree of fulfilment of the first objective 
(coverage maximization) is evaluated by the relative 
coverage c(ts) achieved by a test case set ts: 

 
 

 
 
 

On the other hand, the degree of fulfilment of the 
second objective (test number minimization) is 
evaluated by the following normalized value s(ts): 

 
 
 
 

where 
 sizemax is the size of the largest test case set in the 

current population; 
 sizemin is the size of the smallest test case set in 

the current population; 
 size(ts) is the size of the test case set under 

evaluation. 
 
Evidently, the higher the value s(ts), the lower 

the size of the corresponding test case set. 
Depending on the relative priority of each 

objective, the overall fitness of test case set ts is 
evaluated by the following weighted sum: 

 
 
 

where w1 and w2  are weights with w1 + w2 = 1. 
 
Before recombining individuals, a so-called 

elitism operator transfers a fixed percentage of 
individuals with best fitness values unaltered to the 
following population ensuring that populations do 
not degrade over time. 

4.2 Pareto Optimization 

Using weighted sums to determine fitness values has 
the disadvantage that the tester is obliged to define 
the objective weights before the optimization 
procedure. An alternative solution not requiring any 
a priori weights is offered by Pareto optimization 
where a solution is called Pareto-optimal if no other 
solution has a better rating with respect to all 
objectives. A set of Pareto-optimal solutions is 
referred to as a Pareto front. 

In case of Pareto optimization, the generation 
process no longer aims at achieving one best-fitted 

solution, but rather a Pareto front offering optimal 
solution alternatives. The stopping rules of genetic 
evolution must be adapted accordingly: the 
algorithm terminates after reaching a maximum 
number of iterations or as soon as the Pareto front is 
stable, i.e. it is maintained unaltered for a pre-
defined number of iterations. 

For assigning fitness values, the algorithm 
proceeds by repeatedly extracting sets of non-
dominated individuals from the current population. 
This results in a ranked sequence of Pareto fronts; all 
individuals of the same front are then assigned the 
same fitness value which decreases with the rank of 
the front.  

The elitism operator has to be adapted such that 
the best Pareto front (i.e. the first-ranked set of non-
dominated individuals) is transferred unaltered to the 
following population. In order to allow for a genetic 
evolution, if the elite front consists of more than half 
of the original population, the size of the next 
population is increased such as to contain twice as 
many individuals as the elite. 

5 PRACTICAL APPLICATION 

The model-based test generation process proposed 
was applied to a CPN modelling the cooperation of 
autonomous forklifts moving within a logistic 
warehouse (s. Figure 3). In more detail, an arbitrary 
number of robotic agents move along a narrow lane 
consisting of an arbitrary number of discrete 
segments.  

The robots are assigned missions (transition next 
order) by a central controller and aim at 
accomplishing them as autonomously as possible. 

If possible, robots proceed towards their 
designated target segments by moving along the lane 
(transitions forward resp. backward, depending on 
their direction). In case they recognize passive 
obstacles, they stop in order to avoid collisions. 

Robots moving in different directions and 
meeting each other cooperate by switching positions 
(transition switching maneuver). If unable to access 
a specific segment (e.g. due to a slow preceding 
robot or a passive obstacle), robots raise an alarm 
(transition traffic holdup) after 5 unsuccessful 
attempts to access the segment. Successfully 
completed missions are logged in the order of their 
accomplishment (transition mission completed). 

The two optimization strategies addressed in this 
article have been implemented in the Java 
framework Access/CPN (Westergaard and 
Kristensen, 2009).  

minmax

max

size size

 size(ts) size
)s(ts

-

-


entities ofnumber  total

 by ts covered entities ofnumber 
)c(ts 

s(ts)wc(ts)w)fitness(ts 21 
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Figure 3: CPN model of cooperating forklifts. 
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Table 1: Parameterization of the genetic algorithm. 

initialization 
population individual 

10 individuals 1 test case 

stopping criteria 

weight-based 
optimization 

Pareto optimization 

≤ 1000 
iterations 

fitness  
= 1.0 

≤ 1000 
iterations 

stable front 
for 5 

iterations 
gene pool ≤ 5 genes per entity 

elitism 
weight-based 
optimization 

Pareto optimization 

transfer rate 0.20 Pareto front 
selection roulette wheel 

crossover 
(apart from 
10% of the 

elite) 

uniform 
crossover at 
probability 

0.90 

coverage exchange probability 

[0.00 ; 0.25] 0.50 
]0.25 ; 0.50] 0.40 
]0.50 ; 0.75] 0.30 
]0.75 ; 0.90] 0.20 
]0.90 ; 1.00] 0.10 

cut & glue at 
probability 

0.10 
− 

mutation 
mutation 

probability per 
test case: 0.10 

coverage 
mutation operators 

a d r m 
[0.00 ; 0.25] 1.00 0.00 0.00 0.00 
]0.25 ; 0.50] 0.80 0.10 0.05 0.05 
]0.50 ; 0.75] 0.70 0.20 0.05 0.05 
]0.75 ; 0.90] 0.60 0.30 0.05 0.05 
]0.90 ; 1.00] 0.50 0.40 0.05 0.05 

Table 2: Comparison of three test case generation techniques in terms of effort required. 

coverage 
criterion 

no optimization 

weight-based 
optimization 

 
w1= 0.99, w2=0.01 

Pareto 
optimization 

 
(from 1st Pareto front) 

average 
size 

std. 
deviation 

average 
size 

std. 
deviation 

average 
size 

std. 
deviation 

all transitions 1.3 0.48 1.4 0.52 1.5 0.53 

all events 25.2 1.99 24.2 1.55 17.7 1.64 

all states 106.2 4.54 76.9 4.86 63.2 5.94 

all state pairs 177.3 3.89 138.9 8.84 143.5 10.96 

 

The CPN was modelled using CPN Tools (Jensen, 
Kristensen and Wells, 2007). The implemented 
algorithm is parameterized as shown in Table 1. 

For the purpose of comparing the different test 
case generation strategies considered, an initial CPN 
marking involving 3 robots moving on 5 segments 

was chosen. The robots were assigned the following 
missions: 
 Robot #1 is assigned the order of moving from 

segment 1 to segment 4; 
 Robot #2 is assigned the order of moving from 

segment 2 to segment 5; 
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 Robot #3 is assigned the order of moving from 
segment 5 to segment 1. 
 

The example involves 6 transitions, 72 events, 
261 states and 470 state pairs. In accordance with 
the step-wise testing procedure proposed, the "all 
transitions", "all events", "all states" and "all state 
pairs" criteria were selected for the purpose of 
capturing context-free, local context-specific and 
global contextual behaviour. For each criterion 10 
test case sets were generated, each achieving 100 % 
coverage w.r.t. the specific underlying criterion.  

Table 2 shows the average size of the test case 
sets, as well as the standard deviation for each 
experiment. 

The results were also compared with non-
optimized test generation where test cases are 
constructed such that after reaching a state all 
potential events may occur at the same probability. 
Although non-optimized test generation revealed to 
be practicable for the weaker coverage criteria, the 
stronger ones required a considerably higher amount 
of test cases. 

On the other hand, weight-based multi-objective 
optimization was able to help save up to 28% of test 
cases in comparison with non-optimized test 
generation. Though practicable for complex systems, 
it assumes that the objectives were prioritized in 
advance. This requirement may reveal as a drawback 
as the tester usually does not have any a priori 
evidence about the practical implications of this 
choice. 

This drawback is overcome by Pareto 
optimization allowing the tester to take an a 
posteriori decision among a set of optimal 
candidates. This may be particularly helpful when 
100% coverage would require a too high amount of 
test cases, such that the tester might prefer to opt for 
a slightly lower coverage involving considerably 
less test cases. 

6 CONCLUSION 

This article presented a CPN-based testing 
procedure for cooperating autonomous software-
based agents. It relies on successive testing phases of 
increasing contextual scope. 

The testing techniques developed are considered 
as particularly relevant for the purpose of verifying 
and validating the cooperative behaviour of safety-
relevant controllers, each governing the behaviour of 
an agent, as they allow to observe multiple scenarios 
involving whole varieties of potential interactions. 

For the purpose of generating optimized test case 
sets evolutionary techniques revealed to be 
particularly helpful in maximizing interaction 
coverage while minimizing test amount. Two 
optimized test generation procedures using genetic 
algorithms were implemented and applied to a CPN 
model of cooperating autonomous forklifts. 
Compared with non-optimized test case generation 
they proved to be beneficial in saving testing effort. 

Furthermore, Pareto optimization allows for an a 
posteriori adaptation of target priorities based on the 
actual amount of test cases being required to achieve 
given coverage criteria. 

On the whole, the approach presented in this 
article offers a systematic testing procedure for 
cooperative autonomous systems intended to define 
and to measure objective testing targets, as well as to 
achieve them by a minimum number of 
automatically generated test cases. 
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