
A Methodology for Porting Sequential Software to
the Multicore Platform

Considering Technical and Economical Aspects of Software Parallelization

Constantin Christmann, Jürgen Falkner and Anette Weisbecker
Fraunhofer Institut für Arbeitswirtschaft und Organisation IAO, Nobelstraße 12, 70569 Stuttgart, Germany

Keywords: Software Development, Parallelization, Multicore Platform, Economical Aspects, Auto Tuning.

Abstract: Today multicore processors are ubiquitous in desktop computers, servers and various other devices. In order
to take advantage of such multicore processors many of today’s existing applications, which typically are
sequential applications, need to be ported to the multicore platform. However, the adoption of multicore
technology in software applications is still restrained by technical and economical obstacles. The
contribution of this paper is a methodology for porting sequential software to the multicore platform. It
takes into account the technical specifics of parallel programming and multicore technology offering
developers orientation during the porting process. In addition to that (and in contrast to existing
methodologies) it also addresses the economical obstacles of multicore adoption in software development
by (1) supporting planning and cost control to counteract high development costs and by (2) utilizing auto
tuning in order to cope with uncertainty due to varying processor architectures.

1 INTRODUCTION

Due to diminishing returns of traditional techniques
in processor design recent developments showed a
clear trend towards multicore architectures, where
two or more individual processor cores are
integrated on a single chip (Borkar and Chien,
2011). Today multicore processors are ubiquitous in
desktop computers, servers and also mobile devices
like smartphones or tablets (UBM Tech, 2011;
Jainschigg, 2012).

However, the increasing performance of such
multicore processors can only be exploited by
software applications that take advantage of
parallelism (Pankratius and Tichy, 2008; Rauber and
Rünger, 2012). The consequence is that new
software applications should be designed and
developed as parallel programs right from the start.
Furthermore, many existing applications have to be
adapted to this new paradigm, due to the fact, that
with an increasing number of available cores the
compute intensive parts of a sequential application
might lose a growing factor compared to a
parallelized implementation (Singler and Konsik,
2008; Creeger, 2005).

Today the adoption of multicore technology in
software applications is still restrained by various
obstacles (Christmann, Hebisch and Strauß, 2012a).
On the one hand there exist technical challenges of
adopting the technology: many developers do not
have the necessary know-how to use existing
parallel programming environments effectively,
developers are in need of adequate tools supporting
the different tasks of parallel programming and
software engineering methods are required which
give developers orientation regarding parallel
software development.

On the other hand there exist obstacles which
originate more in an economical perspective:
 High development costs: Parallel

programming is generally associated with a
higher development effort than the
development of sequential programs
(Hochstein et al., 2005). This higher effort has
a direct effect on the development cost.
Furthermore the parallel development is more
costly due to the special expertise which is
needed by developers (Diggins, 2009).

 Varying Architectures: There exists a high
uncertainty regarding many aspects of the
multicore processor design. Examples are the

551Christmann C., Falkner J. and Weisbecker A..
A Methodology for Porting Sequential Software to the Multicore Platform - Considering Technical and Economical Aspects of Software Parallelization.
DOI: 10.5220/0004988505510559
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 551-559
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

number of hardware threads per core, the
organization of caches or heterogeneous
processor cores (Sodan et al., 2010; Borkar
and Chien, 2011). The optimization of a
parallel program for a specific architecture
may have a negative effect on performance on
a slightly different system (Karcher, Schaefer
and Pankratius, 2009). So, in order to support
different processors multiple optimizations
must be established and maintained, which
increases the complexity of the development
process.

Such an economical perspective is highly

relevant in the context of parallelization. This is
pointed out by the results of a survey of 254
software developers where 30 percent of the
participants are seeking efficient techniques for
porting sequential applications to parallel
(Jainschigg, 2012). Albeit this relevance, existing
methodologies for porting of sequential applications
mostly focus on the technical obstacles mentioned
above, leaving out the economic aspects (see Section
2).

Thus, the contribution of this paper is a
methodology for porting sequential software to the
multicore platform which (in contrast to existing
methodologies) also addresses the economical
obstacles of multicore adoption in software
development by (1) supporting planning and cost
control to counteract high development costs and by
(2) utilizing auto tuning in order to cope with
uncertainty due to varying processor architectures.

The remainder of this paper is structured as
follows: Section 2 presents the related work. In
Section 3 the design considerations are described
that form the foundation for the development of the
presented methodology. In Section 4 the
methodology is described in detail and Section 5
presents the results of applying the methodology to
the porting of an image processing application.
Section 6 contains a detailed comparison between
the manual parallelization approach used by the
methodology and the classical approach of existing
parallelization methodologies. Section 7 concludes
with a discussion and an outlook on upcoming
research activities.

2 RELATED WORK

The porting of an existing sequential application is
related to software development in general and more
specifically to the topics software maintenance and

migration. For these topics various methodologies
and approaches are available, which in general do
rather focus on processes than technical details;
hence, they do not address the specifics of multicore
technology and parallelization.

A methodology presented by Christmann,
Hebisch and Strauß (2012b) acts as a link between
the general software development process and the
specifics of parallel programming. This was
achieved by describing central activities which need
to be incorporated in the classical development
process in order to develop software for the
multicore platform.

Regarding the specifics of software
parallelization more literature can be found as this is
a classical research area in high performance
computing (HPC) that now is foregrounded due to
the increasing proliferation of multicore processors.
Most methodologies focus either on the shared
memory model or on message passing, which both
are the dominating models for parallel programming
nowadays.

A method for the message passing model was
presented by Ramanujam and Sadayappan (1989),
which allows the parallelization of nested loops.
Foster (1995) described the abstract steps for
developing a parallel algorithm - also with focus on
message passing. Sundar et al. (1999) presented a
step-wise parallelization for sequential vector
programs using the Message Passing Interface
(MPI).

Other methodologies address the shared memory
programming model: One is the methodology
described by Park (2000), which supports the
parallelization of a whole program while fostering
the utilization of various tools within this process.
Intel (2003) and Tovinkere (2006) also cover the
parallelization of a full sequential program with
focus on the shared memory model. Both methods
utilize specific (and somewhat out dated) Intel tools;
however, the individual steps of the methodology as
well as the utilization of different tools are still
relevant today. Donald and Martonosi (2006)
describe a method for the parallelization of a
specific simulation code.

Addressing the shared memory model as well as
message passing, Mattson, Sanders and Massingill
(2004) created a set of design patterns covering
different aspects of parallel programming (i.e.
decomposition, organization of dependencies, …).

In Table 1 these methodologies are compared.
The criterions for comparison are:

 Independence of a specific domain

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

552

 Support of the shared memory model as well
as the message passing model

 Addressing of higher development costs and
uncertainty due to varying architectures

Table 1: Comparison of existing methodologies.

D
om

ai
n

In
de

pe
nd

en
ce

Sh
ar

ed
 M

em
or

y

M
es

sa
ge

 P
as

si
ng

H
ig

h
D

ev
el

op
m

en
t C

os
ts

V
ar

yi
ng

 A
rc

hi
te

ct
ur

es

Ramanujam and
Sadayappan (1989)

Foster (1995)

Sundar et al. (1999)

Park (2000)

Mattson, Sanders and
Massingill (2004)

Intel (2003)

Tovinkere (2006)

Donald and Martonosi
(2006)

Christmann, Hebisch
and Strauß (2012b)

Legend: applies applies mostly applies partly

 applies slightly does not apply

As the comparison shows, most methods only

support one of the two predominant programming
models. Regarding the development costs some
methods just give the advice to developers to
consider complexity and software engineering
efforts when making decisions regarding the manual
parallelization (Foster, 1995; Mattson, Sanders and
Massingill, 2004). Other methods do focus
development efforts on compute intensive parts of
the program (Park, 2000; Tovinkere, 2006; Intel,
2003; Christmann, Hebisch and Strauß, 2012b).
Donald and Martonosi (2006) achieve a simplified
parallelization by exploiting characteristics of the
specific application domain and Sundar et al. (1999)
reduce the complexity of the parallelization by
addressing data partitioning issues and
communication issues in separate development
stages. However, none of these methods allows a

planning of the parallelization process while taking
into account the development costs of alternatives.

Also, varying processor architectures are
considered unsatisfactorily - in (Christmann,
Hebisch and Strauß, 2012b) this aspect is addressed
by integrating auto tuning into the development
process. But to sum up, none of these methods fully
counteracts the economic obstacles described in the
introduction.

3 DESIGN CONSIDERATIONS

The following considerations served as foundation
for the development of the methodology:
 Parallelization: To achieve a parallelization

without any manual effort the methodology
should consider the utilization of a
parallelizing compiler - if such a compiler is
available for the given programming
environment. However, satisfactory
performance is often not possible using a
parallelizing compiler alone, so an (additional)
manual parallelization will be necessary also
(Pankratius and Tichy, 2008; Asanovic et al.,
2009).

 Planning: In order to support planning and
cost control during a complex and time-
intensive porting process the methodology
should be organized as a phase model
(Ludewig and Lichter, 2007) with well-
defined results for each individual phase.
Furthermore, regarding the manual
parallelization an optimization method
(Christmann, Falkner and Weisbecker, 2012)
should be integrated in the methodology.

 Auto tuning: Due to the heterogeneity of
processor architectures an individual adaption
of the parallel program may be necessary. To
minimize the manual effort the methodology
should utilize an automatic tuning for this.
Besides the advantage of reducing the manual
effort this also may lead to better
performance, as non-intuitive parameter
combinations may be reached (Asanvoic et al.,
2006).

4 THE METHODODLOGY

The methodology divides the process of porting a
sequential application to the multicore platform into

A�Methodology�for�Porting�Sequential�Software�to�the�Multicore�Platform�-�Considering�Technical�and�Economical
Aspects�of�Software�Parallelization

553

four phases. The individual phases will be described
in the next sections.

4.1 Phase 1: Preparation

The objective of the first phase is the selection and
preparation of a suitable programming
environment for the parallelization of the sequential
program.

The applicability of a parallel programming
environment is highly dependent on the existing
program code of the sequential program.
Furthermore, the methodology does require certain
tools (mandatory: timer, profiler, parallel debugger,
auto tuner; optional: parallelizing compiler,
regression test tool, analysis tools), so the
availability of these tools is also an important
constraint. After selecting a suitable programming
environment the provisioning of this environment
(including the required tools) must take place.

In particular, if a parallelizing compiler is
available for the programming environment and if a
test shows that it does not have a negative (but
possibly positive) effect on the performance it
should be utilized for compilation.

4.2 Phase 2: Analysis

The objective of the second phase is the detailed
analysis of the sequential program and based on this
analysis the determination of an optimal strategy
for the manual parallelization.

The underlying approach of this phase is based
on the optimization method for the manual
parallelization presented in (Christmann, Falkner
and Weisbecker, 2012). The method perceives a
manual parallelization as a combination of one or
more local parallelizations in individual partitions of
the sequential program code and allows the
estimation of overall implementation effort and
speedup based on such local parallelizations. These
estimates are then used to determine an optimal
combination of local parallelizations based on the
economic principle (Kampmann and Walter, 2009).
Following this optimization method this phase is
divided into three steps (see Figure 1):
1. Initialization: First the partitions of the

program code which contribute significantly to
the execution time of the program are identified
using a profiler.

2. Analysis of partitions: Then each of these
compute intensive partitions is analyzed
regarding potentials for local parallelization.

Figure 1: Activity diagram of the analysis phase.

This involves the identification of dependencies
relevant for parallelization as well as the
creative process of identifying and documenting
parallelization opportunities (regarding the
identification of such parallelization
opportunities see i.e. Foster, 1995; Mattson,
Sanders and Massingill, 2004; Rauber and
Rünger, 2012). In particular for each
opportunity the expected speedup as well as the
associated development effort must be
methodically estimated and documented.

3. Analysis of partitions: Then each of these
compute intensive partitions is analyzed
regarding potentials for local parallelization.
This involves the identification of dependencies
relevant for parallelization as well as the
creative process of identifying and documenting
parallelization opportunities (regarding the
identification of such parallelization
opportunities see i.e. Foster, 1995; Mattson,
Sanders and Massingill, 2004; Rauber and
Rünger, 2012). In particular for each
opportunity the expected speedup as well as the
associated development effort must be
methodically estimated and documented.

4. Determination of a manual parallelization:
Then one must decide which economic
objective should be applied to this optimization
of the manual parallelization:
 Speedup maximization: Achieving a

maximal speedup while not exceeding a
certain budget of development hours ܣ∗.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

554

 Effort minimization: Achieving a certain
speedup ܵ∗ while requiring the fewest
number of development hours.

As described in (Christmann, Falkner and
Weisbecker, 2012) the underlying optimization
problem of selecting ideal parallelization
opportunities within independent subsets of
program partitions can be formulated as
multiple choice knapsack problem (MCKP)
(Kellerer, Pferschy and Pisinger, 2010). Hence,
for each independent subset the MCKP must be
solved and the optimal solution over all
independent subsets must be selected. The result
of this optimization is the basis for the
following project decision:
 If a solution exists then it does represent the

optimal manual parallelization with regard
to the chosen economic objective.

 Otherwise, if no solution can be found, the
project must be aborted due to the
expectation that the economic objective
cannot be accomplished.

4.3 Phase 3: Implementation

In this phase the individual local parallelizations
become implemented which are the result of the
optimization in the previous analysis phase.

The implementation of a single local
parallelization is further divided into multiple steps
(see Figure 2):
1. Implementation: The first step involves the

implementation of the local parallelization
following the documentation created in the
previous analysis phase.

2. Test and debugging: The objective of this step
is to make sure that the original functionality of
the program is ensured. As with the sequential
program a program version exists, which
produces correct results, regression tests
(Frühauf, Ludewig and Sandmayr, 2004) can be
used for program verification. If testing does
indicate errors this errors must be resolved. The
identification of causes for errors introduced by
parallelization (like race conditions or dead
locks) is typically not a simple task but special
analysis tools for automatic error detection can
help. However, if such analysis tools cannot
help to determine all errors then the program
execution must be retraced using a debugger
suited for debugging parallel programs until all
causes for errors are identified and resolved.

3. Evaluation: This step involves the evaluation
and if necessary the optimization of the local

parallelization. Therefore, the overall execution
of the program should be measured to find out if
the recent parallelization had a positive effect
on the execution time in the first place. Also an
analysis tool can be utilized for judging if the
parallel execution of the local parallelization
does perform as expected.

4. Rollback: If the local parallelization does not
improve the execution time of the program then
the sequential program flow in this part of the
program must be restored.

Figure 2: Activity diagram of the implementation phase.

4.4 Phase 4: Adaption

The objective of the last phase is to optimally adapt
the parallel program to one or more target
systems. Such adaption can be done manually;
however, as this might be associated with a high
development effort, it is intended by the
methodology to utilize auto tuning for this task.
First, the auto tuning must be integrating the parallel
program. Afterwards, the tuning must be performed
for every target system. The result is a set of one or
more parameter configurations, which optimally
adjust the program to the various target systems.

5 APPLICATION

The presented methodology was applied to the
porting of OpenJPEG, which is an open source

A�Methodology�for�Porting�Sequential�Software�to�the�Multicore�Platform�-�Considering�Technical�and�Economical
Aspects�of�Software�Parallelization

555

implementation of the JPEG 2000 standard. The
scenario we used for benchmarking was the
encoding of a given set of bitmap images.

The economic objective for the parallelization
was to achieve a maximum speedup within a given
time frame of one week (ca. 40 developer hours).
The whole porting was performed by a single
developer who already had some experience in
parallel programming.

As primary system during the manual
parallelization a server with Dual Clovertown
processor (2.33 GHz, 64 bit) with 8 cores was used.
The second system we wanted to support was a
laptop with Intel Mobile Core 2 Duo processor (2.40
GHz, 32 bit) equipped with 2 cores. On both target
systems Windows 7 was installed as operating
system.

After selecting a suitable parallel programming
environment (Visual Studio 2010, Intel C/C++
Compiler XE, OpenMP) and preparing optional and
mandatory tools the analysis of the sequential code
was conducted following the steps described in
Section 4.2: At first a profiling run using the
sampling profiler of Visual Studio did point out 11
partitions in the code which were significantly
compute intensive. These partitions were analyzed
regarding parallelization opportunities. This detailed
analysis of partitions was rather time-consuming and
did require a total of 19 developer hours. In the final
step of the analysis an optimal manual
parallelization was chosen which maximized the
speedup under the constraint of the remaining
developer hours.

This manual parallelization was implemented
which took slightly more than the expected 4 hours.
After some analysis and slight optimization of the
implementation a speedup of 1.95 was achieved (the
expectation was a speedup around 2.2). While this
speedup did not meet the expectation it does not
necessarily indicate a wrong decision regarding the
manual parallelization – due to the fact that
estimates for other manual parallelizations contain
the same potential for deviation than the chosen
parallelization.

Thereafter, the implementation was adapted to
the two target systems using auto tuning. More
specifically different parameters of the parallel
implementation were adjusted dynamically by a
genetic algorithm (Goldberg, 1989) based on the
execution time of many repeated program runs. The
parameter optimization of the auto tuning further
reduced the execution time so that a final speedup of
2.06 was realized.

After adapting the program to the server system
the auto tuning was also conducted for the mobile
system. Worth mentioning is that at first the
execution time of the parallel program on the mobile
system was significantly worse than the execution
time of the sequential implementation – this shows
how the performance of a given parallelization
depends on the architecture it becomes executed on
and how an individual optimization for varying
systems is necessary. After applying the auto tuning
a final speedup of 1.21 was achieved - without
requiring any manual analysis or optimization of the
implementation. Figure 3 gives an overview how the
execution time of the application was improved for
both systems over the different phases of the
methodology.

Figure 3: Improvement of the execution time for both
systems over the different phases of the methodology.

6 EVALUATION OF THE
MANUAL PARALLELIZATION

Subject of this section is the comparison between the
manual parallelization approach used by our
methodology and the approach of existing
parallelization methodologies. In particular the focus
of this comparison lies on the ability to support
planning activities and to consider an economic

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

556

objective/constraint regarding the manual
parallelization.

In general many of the existing methodologies
from Section 2 do only cover the technical aspects of
parallelizing a single algorithm or a given part of the
program. Some methods (Park, 2000; Intel, 2003;
Tovinkere, 2006; Christmann, Hebisch and Strauß,
2012b) help the programmer to focus development
efforts onto promising parts of the program. The
underlying approach of these methods can be
generalized in the following form, which we will
denote as the classical approach:
1. Identification of partitions: First the partitions

of the program code which contribute
significantly to the execution time of the
program are identified. The following steps 2 to
4 are traversed for each of these compute
intensive parts individually. The sequence is
determined by the share of the execution time a
partition has, so that the one with the largest
share is parallelized first.

2. Analysis of the partition: The current partition
is analyzed regarding opportunities for local
parallelizations.

3. Determination of a local parallelization: Then
a local parallelization is chosen – typically the
one which maximizes the speedup in the
partition.

4. Implementation of the local parallelization:
The local parallelization becomes implemented,
tested and eventually optimized. Then steps 2 to
4 are traversed for the next partition.

An abort criterion for this successive

parallelization is not explicitly declared by any
methodology but we assume the following: Of
course the parallelization ends if steps 2 to 4 have
been traversed for all compute intensive partitions.
Furthermore, due to the economic principle
(Kampmann and Walter, 2009) we can assume that
the cycle continues until either a demanded speedup
for the program has been accomplished (effort
minimization) or the available budget for the
parallelization has been used up (speedup
maximization).

The first step of the approach used by our
methodology (which will be denoted in the
following as analyzing approach) and the classical
approach is very similar. As well is the creative
process of analyzing a partition the same for both
approaches. A first difference is that in the analyzing
approach the development effort for every local
parallelization must be estimated methodically
whereas the classical approach has no such

requirement. However, the central difference is that
in the classical approach the decision for
implementing a local parallelization is made
subsequently to the analysis of an individual
partition whereas in the analyzing approach at first
all compute intensive partitions are analyzed and the
selection of one or more local parallelizations is
based on this exhaustive analysis.

Both approaches have their strengths and
weaknesses. The advantage of the classical approach
is that the selection of a local parallelization only
requires a simple comparison of the parallelization
opportunities in the current partition. Furthermore,
in the best case only partitions which actually get
parallelized are analyzed, due to the fact that the
decision for analyzing the next partition depends on
the parallelization objective being already
accomplished or not.

In contrast to that does the presented
methodology follow the approach of selecting a
manual parallelization for the whole program after
performing an exhaustive analysis of possibly
multiple partitions. The overall analysis effort of the
analyzing approach depends directly on the
threshold for rating partitions as being significantly
compute intensive in step 1 of the analysis phase.
Hence, this effort can be higher than the effort spent
for analysis when following the classical approach.
On the other hand, if this step leads to more
partitions being analyzed than in the classical
approach then the data basis for finding an optimal
parallelization is larger, too – it comprises at least
the same parallelization opportunities which would
be identified when following the classical approach.

Hence, the manual parallelization determined in
step 3 of the analysis phase is at least the same or
possibly even better regarding the given economic
objective as the parallelization that becomes
implemented by the classical approach. Another
advantage is that in our methodology a cancellation
of the project is possible in an early stage of the
project. And if the project continues after the
analysis phase the estimates regarding speedup and
effort of the selected manual parallelization can be
used for the further project planning.

7 CONCLUSION & OUTLOOK

The results of applying our methodology to some
real world code (see Section 5) show that the
methodology is suitable for porting sequential
software to the multicore platform. Furthermore, the
results show that following the methodology it also

A�Methodology�for�Porting�Sequential�Software�to�the�Multicore�Platform�-�Considering�Technical�and�Economical
Aspects�of�Software�Parallelization

557

was possible to comply with a given economic
objective as well as achieving a significant speedup
on two varying target systems without much
additional development effort – hence, the
methodology did help to address and overcome the
economic obstacles associated with the scenario.

In Section 6 we have carved out similarities as
well as fundamental differences between the
analyzing approach used by our methodology and
the classical approach used by many existing
methodologies. The comparison showed how our
approach allows project planning and cost control
and how in some cases this even can lead to better
quality (higher speedup/less development effort) for
the manual parallelization.

As both approaches do have pros and cons the
question arises, under which circumstances each of
the approaches is suitable the most? Due to the
higher complexity we think the approach of our
methodology might be better suited for rather large
porting projects, which can benefit the most from
better planning capabilities and cost control. In
contrast to that the more “ad hoc” doing of the
classical approach might be the right choice for
rather small porting projects. However, despite this
argumentation this is still an open question that we
want to pursue. Furthermore, we intend to apply our
methodology to upcoming porting projects. Based
on these experiences we want to develop the
methodology further to achieve an optimal use in
practice.

REFERENCES

Asanovic, K. et al., 2006. The landscape of parallel
computing research: a view from Berkeley. University
of California at Berkeley, Technical report.

Asanovic, K. et al., 2009. A view of the parallel
computing landscape. In Commun. ACM, Vol. 52, No.
10, pp. 56-67.

Borkar, S., Chien, A. A., 2011. The future of
microprocessors. In Commun. ACM, Vol. 54, No. 5,
pp. 67-77.

Christmann, C., Falkner, J., Weisbecker, A., 2012.
Optimizing the efficiency of the manual
parallelization. In Int. Conf. on Software & Systems
Engineering and their Applications (ICSSEA 2012).

Christmann, C., Hebisch, E., Strauß, O., 2012a.
Einsatzszenarien für die multicore-technologie,
Fraunhofer Verlag. Stuttgart.

Christmann, C., Hebisch, E., Strauß, O., 2012b.
Vorgehensweise für die multicore-
softwareentwicklung, Fraunhofer Verlag. Stuttgart.

Creeger, M., 2005. Multicore cpus for the masses. In ACM
Queue, Vol. 3, No. 7, pp. 64 ff.

Diggins, C., 2009. Three reasons for moving to multicore.
Dr. Dobb’s Journal. www.drdobbs.com/parallel/21620
0386 [2014-02-25].

Donald, J., Martonosi, M., 2006. An efficient, practical
parallelization methodology for multicore architecture
simulation. In IEEE Computer Achitecture Letters,
Vol. 5, No. 2, pp. 14 ff.

Foster, I., 1995. Designing and building parallel
programs: concepts and tools for parallel software
engineering, Addison-Wesley. Boston.

Frühauf, K., Ludewig, J., Sandmayr, H., 2004. Software-
prüfung – eine anleitung zum test und zur inspektion,
vdf Hochschulverlag. Zurich, 5th edition.

Goldberg, D. E., 1989. Genetic algorithms in search,
optimization, and machine learning, Addison-Wesley.
Reading.

Grötker, T. et al., 2008. The developer’s guide to
debugging, Springer. Berlin.

Hochstein, L. et al., 2005. Parallel Programmer
Productivity: A Case Study of Novice Parallel
Programmers. In Proc. of the 2005 ACM/IEEE
conference on Supercomputing. IEEE Computer
Society. Washington, pp. 35 ff.

Intel, 2003. Threading methodology: principles and
practices. Intel Corp., White paper.

Jainschigg, J., 2012. Parallel programming: goals, skills,
platforms, markets, languages. Slashdot Media,
Report.

Kampmann, R., Walter, J., 2009. Mikroökonomie: markt,
wirtschaftsordnung, wettbewerb, Oldenbourg. Munich.

Karcher, T., Schaefer, C., Pankratius, V., 2009. Auto-
tuning support for manycore applications: perspectives
for operating systems and compilers. In ACM SIGOPS
Operating Systems Review, Vol. 43, No. 2, pp. 96-97.

Kellerer, H., Pferschy, U., Pisinger, D., 2010. Knapsack
problems, Springer. Berlin.

Ludewig, J., Lichter, H., 2007. Software-engineering:
grundlagen, menschen, prozesse, techniken, Dpunkt.
Heidelberg, 1st edition.

Mattson, T. G., Sanders, B. A., Massingill, B. L., 2004.
Patterns for parallel programming, Addison-Wesley.
Boston.

Park, I., 2000. Parallel programming methodology and
environment for the shared memory programming
model. Purdue University, PhD thesis.

Pankratius, V., Tichy, W. F., 2008. Die Multicore-
Revolution und ihre Bedeutung für die
Softwareentwicklung. In Objektspektrum, No. 4, pp.
30-32.

Ramanujam, J., Sadayappan, P., 1989. A methodology for
parallelizing programs for multicomputers and
complex memory multiprocessors. In Proc. 1989
ACM/IEEE Conf. on Supercomputing. ACM. New
York, pp. 637-646.

Rauber, T., Rünger, G., 2012. Parallele Programmierung,
Springer. Berlin, 3rd edition.

Singler J., Konsik, B., 2008. The gnu libstdc++ parallel
mode: software engineering considerations. In Proc.
1st Int. Workshop on Multicore Software Engineering
(IWMSE ’08). ACM. New York, pp. 15-22.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

558

Sodan, A. C. et al., 2010. Parallelism via multithreaded
and multicore cpus. In IEEE Computer, Vol. 43, No.
3, pp. 24-32.

Sundar, N. S. et al., 1999. An incremental methodology
for parallelizing legacy stencil codes on message-
passing computers. In Proc. 1999 Int. Conf. on
Parallel Processing (ICPP ’99). IEEE Computer
Society. Washington, pp. 302-310.

Tovinkere, V., 2006. A methodology for threading serial
applications. Intel Corp., White paper.

UBM Tech, 2011. The state of parallel programming.
Report.

A�Methodology�for�Porting�Sequential�Software�to�the�Multicore�Platform�-�Considering�Technical�and�Economical
Aspects�of�Software�Parallelization

559

