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Abstract: In this position paper, I argue that although the definition and quantifiable metric for organisational 
complexity may still be controversial, it is possible to capture structural aspects of complexity in both static 
and dynamic forms. Based on Kannampallil’s theoretical framework for computing complexity, it is 
proposed here that complexity, in an aggregate sense, can be evaluated in terms of (i) the number of 
components (NoC) there are within a socio-technical organisation and (ii) the degree of interrelatedness 
(DoI) between these components. Given these variables, it is then possible to characterise complexity in 
terms of simple, complicated, relatively complex and complex profiles. These profiles serve as useful 
toolkits for indicating the complexity level a team, a department or the entire organisation is at for useful 
interventions or insights to be made. Adapting the ideas of Pentland, I also argue that with technological 
advances in Information Systems, organisations are now able to capture relational or social network data 
with relative ease, to construct useful network and complexity maps of individuals, teams and organisations 
in real time. 

1 INTRODUCTION 

Wherever coordination of tasks and resources are 
involved, there almost always exists an element of 
complexity. The degree to which this complexity 
varies depends on a number of factors, e.g. the 
intellectual cognitive load required to complete the 
task, the experience of the person doing it, the 
number of entities (e.g. machines, people) required 
to coordinate them, etc. In organisations, 
decomposition of structure, tasks and responsibility 
is usually required to ensure efficient and effective 
completion of tasks to achieve organisational goals. 
In projects, meticulous coordination is required for 
tasks, resources, scheduled and cost so that the 
project can be completed within quality, time and 
budget. Although the colloquial meaning of 
complexity is often accepted as being “not simple” 
or “more than complicated”, complexity is 
understood in different ways, not only in different 
fields, but has also different connotations within the 
same field (Mitchell, 2009).  

According to Manson (2001), research in the 
science of complexity may be categorised broadly as 
either of the three: (i) “Algorithmic complexity” – 
which deals with deriving complexity of a system by 

appraising the difficulty ascribed to describing 
system characteristics by using mathematical 
complexity theory and information theory; (ii)  
“Deterministic complexity” – which stipulates, using 
chaos theory and catastrophe theory, that the entire 
system may become de-stabilised or inactive due to 
the interaction of certain few key variables; and (iii) 
“Aggregate complexity” – which posits that 
complexity can be understood by observing how 
individual agents interact and work in concert with 
each other in the system to create complex 
behaviour. In this paper, I focus on aggregate 
complexity because I consider the organisation as a 
larger system that comprise smaller sub-systems 
such as social, technological and group-level.  I 
contend that the former two streams of complexity 
study do not adequately suit organisational systems. 
For instance, interactions between knowledge 
workers and organisational entities (e.g. computer 
systems) are diverse, rich and experiential. 
Therefore, information theoretic measures, which 
generally identify complexity as the simplest 
computational algorithm that can reproduce system 
behaviour (e.g. Shannon’s entropy measure 
(Shannon, 1948)), are over simplified. Deterministic 
complexity is also marred by several limitations, 
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particularly in its applicability to social phenomena 
(Mitchell, 2009).  

In the following sections, I discuss the definition 
of complexity used in this paper, a proposed 
framework for computing aggregate complexity and 
how it is possible for organistions to capture and 
profile it in real-time. 

2 EXAMINING AGGREGATE 
COMPLEXITY 

For the purpose of this study, I define complexity in 
terms of one of the most salient concepts postulated 
by aggregate complexity – the interrelatedness of 
components of a system (Kannampallil et al., 2011). 
According to Kannampallil et al. (2011), complexity 
of a system is relative in the sense that complexity is 
a function of the number of components (NoC) and 
the degree of interrelatedness (DoI) within the 
system. This definition is in congruence with others 
in the field (Manson, 2001; Bar-Yam, 2006; 
Johnson, 2007; Mitchell, 2009). In other words, as 
both variables increase, so does complexity of the 
system. It is also important to note that while 
increasing the number of components may make the 
system “complicated”, it is the degree of 
interrelatedness, or in other words the unique 
relationships (both manifest and latent) that makes 
the system “complex”. As a consequence, the 
interrelatedness of system components results in 
properties that characterise complex systems (Bar-
Yam, 2006), these properties being non-
decomposability (that systems cannot be understood 
by focusing on components in isolation), emergence 
(where unexpected behaviour arises as a result of 
component interactions), nonlinear behaviour 
(characterised as non-predictability and non-
proportionality of behaviour) and self-organisation 
(where individual actors take on different structural 
positions so the system can be maintained). 
Accordingly, by combining ranges of extremes for 
both variables, there can be four conditions 
(although not postulated in a prescriptive or 
exhaustive manner) to characterise the range of 
complexity as in shown in Figure 1.  

Firstly, there are simple systems with few 
components and low interrelatedness (1), whereby 
the system along with its behaviour is easily 
predictable, understood, managed and described. For 
instance, an individual accountant who runs his own 
practice by himself may only have few components, 
such as patients, notes and computer, and relations 

 

 

 

 

 

 

 

 

 

Figure 1: Range of Complexity (Kannampallil et al., 
2011). 

(interaction with computer, customer and 
stationery). The accountant is considered to be in a 
very simple system. Secondly, systems with many 
components and low interrelatedness (2) are also in 
many cases, quite predictable to a certain extent 
because of the low interrelatedness. For instance, a 
receptionist in a firm who handles many phone 
requests and relies only on the computer booking 
system. Thirdly, relatively complex systems have 
few components but a high degree of 
interrelatedness (3). Such systems can be studied as 
a “whole” because of its few components but high 
level of interrelatedness – e.g. section of an 
emergency hospital department where members are 
few but the interactions are quite diverse. Finally, 
complex systems are systems exhibiting high degree 
of interrelatedness and many components (4), e.g. 
multiple employees from varying organisational 
units attending to multiple victims in a disaster-
struck area. 

In light of the framework proposed, one cannot 
deny the importance of context. According to 
Herbert Simon (1996), “one cannot study the 
complexity of a system without specifying the 
content of complexity”. Therefore, while context is 
important, Simon also argues that a complex system 
may be decomposed wherever possible, into smaller 
functional components, characterized by the 
interrelatedness between them. Thus, while the 
number of components is easily computable, the 
question remains as to what constitutes 
“interrelatedness” precisely. 

Drawing on closing remarks from Kannampallil 
et al. (2011), “…complex systems can typically be 
considered in terms of functionally smaller 
components and the relations between them, based 
on theoretical, rational, and practical 
considerations….There often is a structure in the 
relationships that exist between care providers, 
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artifacts, and patients….As such, it is possible to 
characterize it as a network of actors, where (at a 
high level of decomposition) the nodes are actors (or 
artifacts) and the edges are their relationships.” 
Although no single operational definition of the 
construct, interrelatedness, is offered, I argue that 
there are two salient measures in network science, in 
social networks analysis particularly, that might help 
develop an operational definition of the construct. 

Firstly, interrelatedness connotes a meaning of 
cohesiveness and integration. That is, given a system 
which can be represented in the form of a network, 
what is the current number of connections, as 
opposed to the maximum possible. In social network 
parlance, this is specifically referred to as the density 
of a given network (i.e. ratio of existing ties to the 
theoretical maximum) (Wasserman et al., 1994). The 
second important measure that taps into aspects of 
interrelatedness is inclusiveness, which refers to the 
number connected actors within the network. In 
other words, it is the total number of entities or 
actors or nodes minus the number of isolated ones 
(Scott, 2000). So if we consider a social network of 
10 actors, with 5 isolated actors, inclusiveness would 
be 5. However, in order to allow for standardization 
and comparison across several networks (similar to 
the density measure), it is useful to express 
inclusiveness as a proportion of the total number of 
actors within the network. Therefore, using the 
example above, inclusiveness expressed as a 
proportion of the entire network would be 0.5, with 
the range being 0 to 1. Therefore, while 
inclusiveness represents the connectedness of 
individual actors within a network, density captures 
the extent to which the connections are current as 
compared to the latent. So while inclusiveness is a 
measure based at the actor level, density is about the 
extent to which the actors are connected and is 
situated at the tie level. The notion of inclusiveness 
is a useful indicator of social network membership 
as well group dynamics (Mitchell et al., 1980; Pfeil 
et al., 2009) and can thus be used in conjunction 
with the density measure as a proxy for 
interrelatedness. The following section describes 
how complexity profiles can be constructed by using 
these measures. 

3 COMPLEXITY PROFILES – SO 
WHAT? 

Consider a knowledge-intensive organisation such as 
a hospital emergency department. It comprises 

doctors, specialists, nurses, managers, and other 
hospital staff members. In effect, this can be 
considered as a social system. The hospital also 
cannot function without its technology such as 
computers, specialist equipment, beds and so on. We 
term these artefacts as being part of the the 
technological system. Therefore, this healthcare 
socio-technical system (which can be represented as 
a‘network’), the doctors, patients, specialists and 
nurses are treated as ‘components’ of the network. 
Artifacts, such as beds, healthcare technologies, used 
by the patient or by the medical professionals within 
the patient’s network, are also deemed as 
components of the network.  

If we use the mean value of the ‘number of 
components’ and the mean value of the ‘degree of 
interrelatedness’ as points of segregation on the x 
and y axis of the framework respectively, the range 
of complexity can thus be categorized into ‘simple’, 
‘complicated’, ‘relatively complex’ or ‘complex’ 
clusters or profiles. These profiles can then be 
associated with a myriad of dependent constructs or 
variables such as the coordination of care of the 
hospital, patient waiting times, length of patient 
queues, which are in a sense aspects of operational 
performance and indirectly, organizational 
performance. When sufficient historical data is then 
collected, one may use the data to fit to whatever 
model one is interested in observing or testing. 

With the notion of this conceptual modelling 
crystallised, applying the same type of modelling to 
other domains and disciplines become only a matter 
of what phenomena one is interested in studying. For 
instance, one may be interested to understand the 
aggregate complexity level one’s project team is at. 
In the context of Information Technology (IT) 
development projects, although there are a myriad of 
well-structured project management processes and 
frameworks such as Extreme Programming, 
PRINCE II methodologies and so on, complexity at 
an aggregate level is hardly captured or examined. 
At the minuscule level, task complexity may be 
measurable; for instance, COCOMO II and Lines of 
Code techniques allow for one to establish just how 
complex a software program is. Another example 
would be the number of dependencies a task has to 
and from other tasks within a project plan. In 
Critical Chain Project Management, resource 
dependencies are also accounted for along with the 
normal constraints of quality, time and cost. While 
current tools and methodologies are fairly efficient 
in capturing such complexity, it does not account for 
it holistically. Therefore, a model that accounts for 
human-level, organisational-level, group-level and 
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technological-level factors is needed. The following 
example shows how aggregate complexity can be 
captured at both a micro (e.g. individual level) and 
macro (e.g. organisational) level.  

Micro Level: At the individual-level, one can 
construct complexity profiles of social-professional 
networks of knowledge-intensive workers, that can 
be used to associate with individual performance or 
decision making (Chung et al., 2013). Taking the 
example of a general practitioner as a knowledge-
intensive worker, one can ask him or her to list a 
finite (e.g. up to 15) number of contacts who are 
important to her in the provision of care. One can 
also ask her to elicit the relationship amongst the 
contacts she provided, thus completing the entire 
socio-professional network (see Figure 2). Once this 
is done, mean values of the distribution of number of 
contacts (i.e. components of the network) and the 
mean values of the distribution of density and/or 
inclusiveness of connections (i.e. degree of 
interrelatedness) can be derived to define cut-points 
for the complexity profiles. These profiles can then 
be associated with social and professional outcomes 
such as performance, coordination and decision-
making. That is, patterns of performance or 
decision-making for various profiles can be 
compared (e.g. simple vs. complex) for further 
insights, useful for intervention mechanisms. 

 

Figure 2: Example network map of knowledge intensive 
worker (ego’s network indicated in bottom left green 
colour). 

Macro Level: If one wants to understand aggregate 
complexity at an organisational level, it is also 
possible to account for interdependencies beyond the 
individual by accounting for interdependencies 
between individuals, departmental units and 

organisational units and so on, at specific points in 
time. Reverting back to the example where one 
wants to understand how such macro-level 
complexity may be used to indicate or even provide 
a sense of prediction about its impact of overall 
organisational or operational performance, I 
consider a hospital emergency department (ED), to 
illustrate. Here, patients, doctors, human resources 
and even artifacts, such as beds, healthcare 
technologies, used by the patient or by the medical 
professionals, within the boundaries of the ED, can 
be deemed as components of the network. Therefore, 
in this case, each tie would depict a form of 
connection, be it an interaction between the 
computer and the nurse, or a communication that 
took place between the doctor and the patient, or the 
utilization of the bed by the patient. In general, one 
may treat these relations as simply 
“interdependencies”. One can then start obtaining a 
distribution of NoC and DoI variables at various 
points in time. Once this is obtained, complexity 
profile cut-points can then be obtained from the 
distribution and complexity profiles can be obtained 
and individual cases can be plotted against these 
profiles (Figure 3).  

 

Figure 3: Example Plots in Complexity Profiles. 

4  DYNAMIC COMPLEXITY 

Much of the description of how aggregate 
complexity can be captured detailed above pertains 
to static states. In other words, it is analogous to 
taking snapshot of the number of components and 
interdependencies amongst them within a social or 
organisational system at any point in time. Similar to 
how movies are essentially multiple frames of 
snapshots put together, I argue here that dynamic 
complexity is simply capturing various snapshots of 
the interactions occurring within the system at 
various points in time.  

Professor Alex Pentland’s (2012) from MIT 
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Media Labs pioneered the use of wireless tags that 
captures relational information as well as body 
language, including tone, volume and pitch, from the 
communicator. The tags, whose size is similar to 
those of name cards can be worn like any ordinary 
ID card, are unobtrusive in nature. It ubiquitously 
captures the ‘when’, ‘who’, ‘whom’ and ‘how’ of 
the communication but not the ‘what’. In other 
words, it does not capture content. Therefore, at any 
point in time, it is possible for the communication 
pattern of individuals to be captured. Furthermore, 
with the use of Radio Frequency ID tags also 
available these days, it is possible for these tags to 
be used to capture relational data, particularly when 
individuals deal with non human resources such as 
computers, machines, and so on. Pentland used the 
patterns of communication captured to associate 
with individual and team success. In reality, the 
association can be made with other social 
phenomenon such as creativity, coordination, etc. 

In a similar manner, reverting back to the 
example of the hospital ED, it becomes possible for 
us to understand how organisational complexity 
associates with operational performance such as 
patient queues and waiting times. Here, one would 
capture the organisational complexity of the ED as a 
whole, having these tags in place in both human and 
non-human resources. This enables us to capture all 
relations and interdependencies at various points in 
time. It is also important that at these points in time, 
data relating to the dependent variables - patient 
queues and waiting times, for instance, should also 
be recorded. To illustrate, the relational snapshots 
can be taken at every 3 hours in a 24 period, yielding 
8 data points. If one does this for a week, there 
would be 56 data points and for two weeks, 112 data 
points. A distribution of the NoC and DoI can then 
be computed, and the mean values for each of these 
variables can serve as the relative cutpoints for the 
complexity profiles to be obtained. In this manner, 
one can compare which organisational complexity 
states perform better (e.g. when at the ‘simple’ 
profile or at the ‘complicated’ profile) in terms of 
operational performance. 

5 CONCLUSIONS 

Complexity is still a controversial topic, one that is 
multi-faceted in epistemological stance, in definition 
and in oeprationalisation. In general, literature in 
complexity studies can be categorised in to 
deterministic, algorithmic and aggregate complexity. 
In this position paper, I focus particularly on 

aggregate complexity and argue that it is possible to 
capture structural aspects of complexity in both 
static and dynamic forms. Based on Kannampallil’s 
theoretical framework for computing complexity, it 
is proposed here that complexity, in an aggregate 
sense, can be evaluated in terms of (i) the number of 
components (NoC) there are within a socio-technical 
organisation and (ii) the degree of interrelatedness 
(DoI) between these components.  

Given these variables, it is then possible to 
characterise complexity in terms of simple, 
complicated, relatively complex and complex 
profiles. These profiles serve as useful toolkits for 
indicating the complexity level a team, a department 
or the entire organisation is at for useful 
interventions or insights to be made. Adapting the 
ideas of Pentland, I also argue that with 
technological advances in Information Systems, 
organisations are now able to capture relational or 
social network data with relative ease, to construct 
useful network and complexity maps of individuals, 
teams and organisations in real time. 
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