
Cloud Governance by a Credit Model with DIRAC

Vı́ctor Méndez Muñoz1, Adrian Casajús Ramo2, Ricardo Graciani Diaz2 and Andrei Tsaregorodtsev3

1Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona (UAB), Edifici Q,
Campus UAB, ES-08193 Bellaterra, Spain

2Department of Structure and Constituents of Matter, University of Barcelona, Diagonal 647, ES-08028 Barcelona, Spain
3Centre de Physique des Particules de Marseille, 163 Av de Luminy Case 902 13288 Marseille, France

Keywords: Cloud Computing, Federated Cloud, Cloud Governance.

Abstract: Nowadays, different eScience actors are assuming the Federated Cloud as a model for the aggregation of
distributed cloud resources. In this complex environment, service delivery and resource usage is an open
problem, where multiple users and communities are committed to particular policies while using federated
resources. In the other hand, DIRAC has become a multi-community middleware fully interoperable in Dis-
tributed Computing Infrastructures (DCI), including several cloud managers. Furthermore, DIRAC is able to
federate Infrastructure as a Service (IaaS) to provide Software as a Service (SaaS) in a transparent manner to
the final user. This paper defines a credit model for the resource usage providing automatic management in
federated cloud. It is presented a prototype of this model, which is implemented with DIRAC, describing a
test for the model assessment and drawing up conclusions for a production level federated cloud governance.

1 INTRODUCTION

The benefits of cloud computing are related with a
set of key features. Cloud uses Internet access to re-
mote services or resources supported by virtual stor-
age and computing. It is provided on-demand and
depending on user workload it can scale up or down
without affecting the service level. A main asset of
these features is a virtual running environment de-
ployed for particular user requirements, instead of a
bare-metal platform under provider specifications. By
this mean Cloud is saving operational costs and sim-
plifying software maintenance. Moreover, the cloud
scaling features are of great importance for an effi-
cient use of the resources.

The cloud key features can be implemented in
different ways, depending on the particular physiog-
nomy of the cloud deployment model. In this sense,
federated cloud model is the evolution of private
clouds, aggregating not only IaaS, but also additional
services for eScience communities such as monitor-
ing, authentication, authorization, marketplace and
accounting (Simon et al., 2012).

DIRAC (Tsaregorodtsev et al., 2008) has evolved
from single community to multi-community frame-
work. The cloud management of DIRAC follows
Rafhyc architecture (Méndez et al., 2013b) for clouds

of hybrid nature. DIRAC is using Cloud resources
in the LHCb production (Ubeda et al., 2014), feder-
ating private clouds supported by OpenStack (Open-
Stack, 2014) and OpenNebula (Llorente et al., 2011).
Another production level use of cloud was in Belle
Monte Carlo simulation campaign with AWS (Lerner,
2006) using Amazon EC2 interface (Graciani Diaz
et al., 2011).

This paper is focused in the next challenge of pro-
viding federating cloud in multi-community environ-
ments. For this purpose it is necessary to leverage the
use of the resources between different communities.
This is achieved by a governance between the poli-
cies of IaaS and the policies of communities. The
main idea is to assign resource credits in terms of
CPU, memory or IO usage (temporal and permanent
storage as well as network resources), to the running
campaigns of the communities. Such credits are con-
sumed on-demand, with a pay-per-use approach, but
instead of legal tender resource credits are used. This
pay-per-use concept can be transparently adopted in
the case of commercial clouds prices, where the cred-
its are simply pre-payment. Main cloud managers are
providing billing systems which can be enabled for
pricing. However, non commercial clouds are com-
ing from capital expenditure (Capex) model in the use
of the resources. In this model user invests capital

679Méndez Muñoz V., Casajús Ramo A., Granciani Diaz R. and Tsaregorodtsev A..
Cloud Governance by a Credit Model with DIRAC.
DOI: 10.5220/0004977806790686
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (FedCloudGov-2014), pages 679-686
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



in ownership infrastructures, or delegates invest to a
computing hosting institution. Then, resources are
allocated without a pay-per-use on-demand scheme,
just relating investment negotiations with available
power and storage capacity. A first step to provide
an on-demand price is to have a total cost breakdown
of the resources in an updated system, then to apply
a commercial margin considering the market compe-
tence. Significant advances in the last years (Cohen
et al., 2013) (Konstantinou et al., 2012) are targeting
a costs management level. In the meantime, the pre-
sented model based in resource credit metrics is an
affordable approach to offer on-demand resources in
non commercial IaaS sites. Furthermore, it is compat-
ible with future metrics, when price management will
reach maturity in non commercial clouds.

An additional important point of the provided gov-
ernance is about keeping the key features of cloud
computing, with elastic allocation of resources as well
as Virtual Machine (VM) configuration to run any sci-
entific software.

Section 2 describes a previous approach of feder-
ated cloud with DIRAC. The contribution of the paper
is a credit model for cloud governance in Section 3.
Additional contribution in Section 4, describes a pro-
totype implementation with DIRAC and test results
for model assessment is shown in Section 5. Conclu-
sions and future work can be found in Section 6.

2 PREVIOUS APPROACH OF
FEDERATED CLOUD WITH
DIRAC

DIRAC has a cloud extension integrating different
IaaS providers which need to fulfil some requisites
(Méndez et al., 2013a). In addition to the mentioned
Amazon, OpenNebula and OpenStack clouds, Cloud-
Stack (CloudStack, 2014) has also been integrated
with DIRAC (Méndez et al., 2012) (Albor et al.,
2011). Beyond providing the aggregation of different
cloud managers, DIRAC includes federated services
for eScience communities like monitoring, authoriza-
tion or image metadata catalog.

Regarding the key features of cloud computing,
DIRAC cloud extension allows VM scheduling poli-
cies for different possibilities of VM horizontal auto
scaling set-up. The scale up can be more aggressive
and scale down softer, to reach better job response
times. On the other hand, soft scale up and hard
scale down can be set-up to reduce VM overheads and
therefore a better efficiency, when job response time
is not a constrain.

Another key feature is the image management by
generic contextualization to configure the VMs de-
pending on the SaaS requirements and the IaaS end-
point within to be deployed. I.e. DIRAC can use a
golden image which is configured for different pur-
poses and IaaS environments. This image manage-
ment saves operational costs and minimizes com-
plexity. Two contextualization approaches are con-
templated, HEPiX contextualization for cernvm im-
ages (Bunic et al., 2011), and ssh contextualization
for generic images, which require an available pub-
lic IP and sshd service running on boot. Both of
them can be combined with cvmfs software reposi-
tory (Jakob Blomer, 2010), simplifying the software
distribution in the VMs.

Fig. 1 shows the main part of VM allocation and
job brokering. User submits jobs to the DIRAC Work-
load Management System (WMS), which are initially
stored in the Task Queue (TQ), with an associated
SaaS workload. Then, VM Scheduler is checking
each of the queues and depending on workload it is
instantiating new VMs with specific requirements for
the queued jobs. Latter, when the VM is created, con-
textualized to run DIRAC VM agents and configured
with SaaS requirements, then, Job Agent starts and se-
cured connects to the Matcher to get the correspond-
ing SaaS payload.

Figure 1: DIRAC VM schedulig with job brokering.

For simplicity, further VM features are not drawn
in Fig. 1. It is worth to mention the VM stoppage
and status management. A VM runs many jobs un-
til some stoppage conditions are reached. VM Moni-
tor agent is in charge of VM status update, reporting
statistics to the VM Manager, as well as VM stoppage
control. VM Monitor is a client of the VM Manager

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

680



service at the DIRAC server side. Stop command can
be launched from VM when no jobs are running in the
VM for a certain period, or it can also be requested to
stop by an authorized external request from VM Man-
ager, then, VM Monitor is doing a graceful stoppage
after current job is finished.

3 CREDIT MODEL FOR CLOUD
GOVERNANCE

This section presents a credit model for cloud gover-
nance of multi-community environments for the use
of federated cloud resources. Fig. 2 shows such
model scheme. In the bottom of the diagram supply
is supported by Resource Providers (RP). In the top
of the diagram User Communities (UC) demand ser-
vices. Cloud Governance Actors (CGA) are found in
the mediation between RP and UC.

Figure 2: Credit model for cloud governance.

Previously to matching resources and services, it
is necessary to negotiate the governance conditions.
For this purpose each actor cover basic actions. GCA
takes the central part of the governance management.
To this concern it is necessary to have an overview of
the hold production, providing scientific directions for
the UC, including technical guidance of how to run
scientific software in the Cloud. GCA also require to
have an overview of the different RP technologies as
well as a know-how in federated cloud management
technologies. Cloud governance process is starting in
the left of the diagram, from bottom-up flow, Service
Level Agreements are continuously negotiated with
every RP to obtain an overall resource supply power.

Considering this power as a constrain of the model,
usage is negotiated with every UC attending to scien-
tific directions for the different use cases, as well as
the UC financing contribution to the overall system.

Governance specifications are updated through a
continuous negotiation process. Once supply and de-
mand are identify, it is possible to define governance
policies to be apply in three levels of the credit model,
which are shown in the central part of Fig. 2. Usually,
a user community is a Virtual Organization (VO) in
terms of authorization in the use of resources. Even-
tually, if a single VO is composed of many UCs, it can
be broken down into virtual groups. VO policies de-
scribe which running pods are assigned for each UC
or virtual group, to be able to run their SaaS request.
The running pod is an abstraction of the requisites to
be included in a VM which can be submitted to cer-
tain IaaS providers. Secondary, VO policies can de-
fine external links to third party VO authorization for
user and group management. Therefore, user service
requests can be matched with specific running pods.

Running pod policies define how many overall re-
source credits are assigned for an specific period of
usage. Furthermore, policies also describe which IaaS
RP can be used in the running pod, since UC can use a
subset of the federated resources to meet with particu-
lar SLA running requisites. Image requirements for a
SaaS running pod are also defined, including the con-
textualization parameters for the image configuration
to deploy the necessary VMs to provide the requested
SaaS. Thus, a SaaS request produces several resource
request attending to the workload.

Market management policies define maximum
available resources in each RP, including total com-
puting power, as well as the maximum VCPU, mem-
ory and disk per VM. It is a market with trades be-
tween resources and credit. In addition, it is possi-
ble to define some opportunistic use of the resources
which can be allocated for those running pods without
credit left. When the overall power demand is larger
than the power supply, then, it is required to define
overflow policies for the running pods, between sev-
eral options as follows:

� To increase the power supply with third party RP,
for example using cloud bursting. Another option
in hybrid clouds is to include in the federation the
use of commercial providers, delegating to such
IaaS providers the responsibility of providing as
much power as needed. This is the ideal solution
in terms of elasticity features, but it requires flex-
ible budget to acquire public cloud resources on-
demand and imposes additional financial issues.

� To enable priorities between running pods so that
whether power demand is larger than supply, run-

Cloud�Governance�by�a�Credit�Model�with�DIRAC

681



ning pods with less priority will fall into larger re-
sponse times. In this manner, higher priority run-
ning pods are less affected when no more comput-
ing power is available. This option can be applied
simultaneously with the first option.

� A variant of the priority approach is the option of
stopping VMs when demand is larger than sup-
ply. This feature can be configured for the running
pods which have non elastic requisites. This does
not resolve all the possible power requirements,
but it can be applied to first and second option for
a sensible use of the resources.

The second and third options are constraints to the
elasticity which is one of the assets of cloud com-
puting. Furthermore, it is necessary to consider ad-
ditional stoppage policies to avoid resource blocking
of some running pods with others of the same prior-
ity. Grateful stoppage avoids the loses of the current
payload when stopping a VM to free the resource for
other running pod.

The right part of the Fig 2 is the necessary ac-
counting of the resource and credits usage. An ex-
ample of such federated cloud accounting system
could the one promoted by EGI Fedcloud (EGI-
FedCloud, 2014) using APEL (APEL-EMI, 2014)
system. APEL was originally developed for grid in-
frastructures, and currently, it has available plug-ins
for OpenStack and OpenNebula, while more cloud
managers are coming. APEL is considering the re-
source usage per VO basis, but a direct metrics on
credit accounting. Credit accounting could be sep-
arated system, but will fall into inconsistencies be-
tween the two systems. For this reason double ac-
counting is something to avoid, so it would be manda-
tory to integrate RP accounting per VO basis with
credit model accounting which is per running pod ba-
sis.

4 A PROTOTYPE OF CLOUD
GOVERNANCE WITH DIRAC

Cloud governance prototype is a modification of pre-
vious DIRAC cloud extension, including an imple-
mentation of the credit model described in Section
3. Only VCPU hours are considered for the proto-
type metric leaving aside other metrics like memory
or IO usage. New configuration sections have been
included in the DIRAC configuration service (CS) to
support governance parameters. Core functionalities
has been included in the VM Manager to attend credit
status request of the VM Scheduler and credit updates
from the VM Monitor of each VM.

Governance process starts defining CS parameters
to associate a running pod with a particular group of
users. A user is part of many groups corresponding to
the running pods which is able to use. The prototype
adds the running pod governance parameters:

� Maximum number of deployed VCPUs

� Running pod campaign start and end dates

� Running pod total VCPU hours of credit for the
campaign.

Deployed VCPUs are the VM which have been
submitted even if they have not reached a running sta-
tus jet. They are corresponding to VMs which are
in status of booting, contextualizing or running. So
maximum running VMs can be lower than maximum
deployed, or equal, but never greater. For governance
purposes two new parameters are included at each
IaaS configuration section:

� Maximum number of deployed VCPUs

� Maximum number of opportunistic deployed VC-
PUs

VM Scheduler has a submission logic based in
previous features as well as in the credit model. For
each active running pod, VM Scheduler checks Task
Queue jobs and VM horizontal auto scaling policy.
Whether TQ and VM horizontal auto scaling policy
indicate the possibility of a new VM creation, further
governance conditions have to be checked with the
following algorithm:

If runningPod(deployed VCPUs < max VCPUs):
If there is credit left:
list = IaaS(deployed VCPUs < max VCPUs)

else:
list = IaaS(deployed VCPUs <

max oportunistic VCPUs)
if list not null:
candidate = random(list)
submit(VM, candidate)

- Algorithm: Credit checking -

Algorithm checks first if the maximum number
of deployed VCPUs for a running pod in a particu-
lar moment has been reached. It the limit has not
been reached, then it checks if there is credit in VCPU
hours for the running pod. If there is credit left an IaaS
site candidate list is created with those sites which
have not reached the maximum number of deployed
VCPUs of each site. If there is no credit left, then
the IaaS site candidate list is created with those sites
which have not reached the maximum number of de-
ployed VCPU for opportunistic purposes of each site.
Finally, a random selection from the candidate list is
chosen to submit a new VM.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

682



In parallel to the VM Scheduler process there is a
continuous credit update. Each VM is running a VM
Monitoring agent, which is reporting periodical heart
beats with statistical information to the VM Man-
ager. For governance purposes, heart beat includes
a parameter of the number of VCPUs of the VM. On
the server side, the VM Manger sets instance history
record in a database, calculates the gap between the
last heart beat of the instance and the current one, and
adds the VCPU hours to the used VCPU hours in the
running pod database. The VCPU is wall-time since
the resource is allocated even if not real CPU is used,
same as commercial clouds scheme.

5 PROTOTYPE TEST

This section presents a test designed in order to eval-
uate elasticity key feature, including scale-up and
down. It also evaluates the overall system response
when some of the running pod is active but without
credit left, so it has to run the payload using oppor-
tunistic resources. The test is not aiming a stage with
a power demand larger than power supply. In this
sense it is a test with no job response time constrains,
the target is to validate the core features of the credit
model for cloud governance, particularly about elas-
ticity.

5.1 Test Set-up

Test set-up top down description defines two user
groups: A and B. Each group has two running pod
because it is uses different instance types, m1.small
flavour with 1 VCPU, 2GB of memory and 20 GB of
disk, and small instance type with 1VCPU, 1GB of
memory and 10 GB of disk. The job submissions of a
group can run in both instance type running pods, but
these jobs can not match with the VMs submitted by
the other running pod.

The RP of the test are part of the EGI Fedcloud.
CESGA cloud with OpenNebula and BIFI cloud with
OpenStack. Maximum number of VCPUs by each
IaaS provider is 25 VCPUs, with small instances for
CESGA and m1.small for BIFI. Both of them have a
maximum of 5 VCPUs for opportunistic use.

Submission pattern is composed by 10 series of
100 jobs each. The jobs of a single series are submit-
ted about the same moment using DIRAC parametric
jobs. The sequence is to start to submit the 100 jobs
series of a group, then the other group series, and re-
peating the period up to 10 series. Using this pattern it
is possible to evaluate the adaptability of the resources
for VMs which can be used by a particular group.

Job workload is running a fractal plotting software
(mandelbrot), with high CPU/IO ratio. The binary
is allocated in the VMs using the job input sandbox
and the fractal plot is put in the output sandbox. A
single job process has been previously tested in the
clouds, with very similar execution time between dif-
ferent providers. Group B has been configured with
a maximum VCPU hours to run 3 series of 100 jobs,
then opportunistic use of resources will apply.

VM horizontal auto scale policy is configured for
a compromise between VM efficiency and total wall
time. The VM is configured with 5 minutes of margin
time before halt. I.e. previously to stop a VM is nec-
essary a margin time without any workload running.
If more workload of the next series is matched within
this halting margin time, then the VM is not stopped.
Only jobs of the same group can match the payload of
a VM. Series pattern time gaps are taken as reference
a normal distribution with average in the half of the
time of the larger job response time, obtained from
a previous processing of 100 jobs from cold system.
The idea is not to simulate real user behaviour, but to
test the elastic scale up and down of the system, pro-
ducing series which uses previous VMs of the same
group, as well as new VMs, depending on the work-
load gap times and the available power for a group in
a specific moment.

The contextualization is done by ssh with an agent
is polling the VMs in waiting for context status. This
method is needing synchronization between submis-
sion time and contextualization time, which it is a
disadvantage compared with context methods inte-
grated in the cloud managers, like cloudinit or pro-
log and epilog. In the other hand ssh contextualiza-
tion is not requiring additional libraries in the images
neither particular implementations of the cloud man-
agers. With a public IP and a sshd running in the
VM, the same context scripts can be launched inde-
pendently of the IaaS site.

5.2 Test Result

This section presents different results of the test, start-
ing from general plots then breaking down in more
detailed metrics.

Fig. 3 shows the running VMs, those VMs which
has been submitted and booted, then contextualized
and finally declared running by the VM Monitor when
Job Agent starts to match jobs. During the VM run-
ning, the VM Monitor is sending periodical heart
beats. If a VM is not changing status or sending
running heart beat in 30 minutes then it is declared
stalled. Two VMs were stalled in the test, without
reaching the running status the VM were in error sta-

Cloud�Governance�by�a�Credit�Model�with�DIRAC

683



Figure 3: Overall Running VMs.

tus in the BIFI OpenStack dashboard. Additionally,
three VMs at CESGA an other three VMs at BIFI
were booted without problem, but they were not con-
textualized because they reached the 30 minutes limit
and declared stalled by DIRAC, when actually they
were not stalled.

Figure 4: Running VMs by IaaS endpoint.

Peaks and valleys in Figs. 3, 4 and 5 are demon-
strating the ability of DIRAC to scale up and down
adapting to different workloads patterns in multi-
community environment. Let see next plots for fur-
ther details about scalability.

Running VMs by IaaS endpoint is shown in Fig. 4.
The running VMs shape is about the same than over-
all running VMs of previous plot. CESGA and BIFI
clouds, which are supported by different cloud man-
agers, with the same DIRAC configuration are ob-
taining very close results in terms of running VMs.
However, a workload analysis by endpoint shows that
63.5% of the workload has run in CESGA cloud,
while BIFI has run 36.5%. This is quite significant in
terms of power features. CESGA was providing for

this test instance types with 1VCPU, 1GB of memory
and 10GB of disk, while BIFI was giving instances
of 1VCPU, 2GB of memory and 20GB of disk. With
the same VCPU number per instance type, BIFI in-
stances provide more memory and disk, but it is able
to process about the half of the workload with near the
same running hours of VMs. Thefore VCPU provided
by CESGA have more power by near a factor two. It
is clear that VCPU/h is not an appropriate metric for
power, and therefore neither for credit.

Figure 5: Running VMs by running pod.

Fig. 5 shows running VMs by running pod. As
it was mentioned above in the test set-up, the jobs of
group A can run in A-small or A-m1.small, and equiv-
alent with group B. A group is divided in two running
pods to evaluate instance types differences and there-
fore IaaS provider differences in multi-community
stage. However, the response is equivalent in the level
of running pods of group A, and also equivalent for
group B running pods. This is demonstrating that high
level governance policies are working transparently in
multiple IaaS providers. At the same time, the scala-
bility is independent between groups, following sepa-
rated workload patterns.

Fig. 5 also shows opportunistic features. When
there is no credit is left for group B, running VMs
reach a plateau without trespassing the maximum
number of opportunistic resources per IaaS endpoint.

Fig. 6 is a job histogram which provides some in-
formation. The first series of each group are in a cold
system, therefore, they have the first jobs response
time near 1000 seconds, while in the rest of series the
first jobs are below 500 seconds. The opportunistic
features are producing larger serie 4 and even larger
in serie 5 of the group B.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

684



Figure 6: Jobs histogram.

6 CONCLUSIONS

The first conclusions are about elasticity. The
prototype result shows a good scaling features for
multi-community workloads which are using differ-
ent VMs. The credit model has been demonstrated
in the test, restricting the scale up to opportunistic re-
sources when no more credit is left, but it is not affect-
ing the scale down. Thus, the model is responding as
expected by the larger job response time for series of
the opportunistic cases.

The prototype has shown a secondary constrain
about scalability, which could be resolved in future
work. Complex scale up and down environments,
with multi-community support, are producing high
rates of creation and deletion. In this environment,
a lack of synchronization has been detected between
the submission rate and the ssh contextualization rate,
which has to be tuned in production stages to avoid
false positives in stalled machines. At the end of
the day, booting time is constrained by cloud man-
ager capabilities so there is no definitive solution from
DIRAC side. Furthermore, error status VMs are also
going to stalled as expected. Anyway, it is necessary
an additional DIRAC agent trying to halt the VMs
registered in stalled status, not only to clarify false
positives, but also to free resources when possible.

Test results have shown that VCPU is not a proper
credit metric, because it is not a power metric. For a
governance based in credit model it is important to
uses credits clearly related with the workloads. In
this sense CPU power can be calculated by bench-
marking the VMs power, as suggested in Rafhyc ar-
chitecture (Méndez et al., 2013b). At the same time
not only CPU power is consuming resources, memory
footprint requisites, permanent and temporal disk re-
quirements as well as network resources should also

be considered in the credit metric of cloud computing.
There are some conclusions about governance

policies. Notice that resource blocking stages have
not been considered in the prototype. Future work
shall consider to include a method to avoid resource
blocking for the cases of power supply lower than
demand. An tool for this method implementation
can be the VM graceful stoppage option of DIRAC.
Moreover, test has demonstrated that high level gov-
ernance policies are working transparently in multiple
IaaS providers. Further, each group workload is cor-
responding to separated elasticity pattern. Simulta-
neously, opportunistic policies are responding as ex-
pected in the credit model, not only terms of resource
use limits, but also in job response times.

ACKNOWLEDGEMENTS

This work was supported by projects FPA2007-
66437-C02-01/02 and FPA2010-21885-C02-01/02,
assigned to UB. We are greatly in debt with EGI Fed-
cloud, in particular with BIFI and CESGA for provid-
ing the cloud resources for the test.

REFERENCES

Albor, V. F., Silva, J. J. S., Gómez-Folgar, F., López-
Cacheiro, J., and Diaz, R. G. (2011). Dirac integration
with cloudstack. In Proceedings of 3rd IEEE Inter-
national Conference on Cloud Computing Technology
and Science (IEEE CloudCom 2011).

APEL-EMI (2014). http://www.eu-emi.eu.
Bunic, P., Aguado-Sanches, C., Blomer, J., and Harutynun-

yan, A. (2011). Cernvm: Minimal maintenance ap-
proach to the virtualization. Journal of Physics Con-
ference Serires.

CloudStack (2014). http://www.cloud.com.
Cohen, S., Karagiannis, F., Courcoubetis, C., Iqbal, K., An-

dreozzi, S., and Heikkurinen, M. (2013). Comput-
ing einfrastructure cost estimation and analysis. pric-
ing and business models. Technical Report Deliver-
able D2.3, e FISCAL : Financial Study for Sustainable
Computing e Infrastructures.

EGI-FedCloud (2014). https://wiki.egi.eu/wiki/Fedcloud-
tf:Blueprint.

Graciani Diaz, R., Casajus Ramo, A., Carmona Aguero,
A., Fifield, T., and Sevior, M. (2011). Belle-dirac
setup for using amazon elastic compute cloud. Journal
of Grid Computing, 9:65–79. 10.1007/s10723-010-
9175-7.

Jakob Blomer, T. F. (2010). A fully decentralized file sys-
tem cache for the cernvm-fs. In Proceedings of 19th
International Conference, pages 1–6.

Cloud�Governance�by�a�Credit�Model�with�DIRAC

685



Konstantinou, I., Floros, E., and Koziris, N. (2012). Pub-
lic vs private cloud usage costs: the stratuslab case.
In Proceedings of the 2nd International WorkShop on
Cloud Computing Platforms.

Lerner, R. (2006). Amazon web services. Linux journal,
143:20.

Llorente, I. M., Montero, R. S., and Milojicic, D. (2011).
Opennebula: A cloud management tool. IEEE Inter-
net Computing, 15:14.

Méndez, V., Albor, V. F., Diaz, R. G., Ramo, A. C., a, T.
F. P., Arévalo, G. M., and Silva, J. J. S. (2012). The
integration of cloudstack and occi/opennebula with
dirac. Journal of Physics Conference Serires.

Méndez, V., Ramo, A. C., Albor, V. F., and Diaz, R. G.
(2013a). How to run scientific applications with dirac
in federated hybrid clouds. In ADVCOMP 2013 :
The Seventh International Conference on Advanced
Engineering Computing and Applications in Sciences,
pages 73–78. IARIA. ISBN: 978-1-61208-290-5.

Méndez, V., Ramo, A. C., Albor, V. F., Diaz, R. G., and
Arévalo, G. M. (2013b). Rafhyc: an architecture
for constructing resilient services on federated hybrid
clouds. Journal of Grid Computing, 11(4):753–770.

OpenStack (2014). http://openstack.org/.
Simon, A., Freire, E., Rosende, R., Diaz, I., Rey, P., Lopez-

Cacheiro, J., and C.Fernandez (2012). Egi fedcloud
task force. In IBERGRID, 6th Iberian Grid Infras-
tructure Conference Proceedings.

Tsaregorodtsev, A., Bargiotti, M., Brook, N.,
Casajus Ramo, A., Castellani, G., Charpentier, P.,
Cioffi, C., Closier, J., Graciani Diaz, R., Kuznetsov,
G., Li, Y. Y., Nandakumar, R., Paterson, S., Santinelli,
R., Smith, A. C., Miguelez, M. S., and Jimenez, S. G.
(2008). Dirac: a community grid solution. Journal of
Physics: Conference Series, 119(6):062048.

Ubeda, M., Méndez, V., andlippe Charpentier, F. S., and
closier, J. (2014). Integration of cloud resources in
the lhcb distributed computing. Journal of Physics
Conference Serires.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

686


