
Service Consumer Framework
Managing Service Evolution from a Consumer Perspective

George Feuerlicht1,2 and Hong Thai Tran2
1Department of Information Technology, University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic

2Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia

Keywords: Service Evolution, Cloud Computing, Service-Oriented Architecture.

Abstract: As the complexity of service-oriented applications grows, it is becoming essential to develop methods to
manage service evolution and to ensure that the impact of changes on existing applications is minimized.
Service evolution has been the subject of recent research interest, but most of the research on this topic deals
with service evolution from the service provider perspective. There is an equal need to consider this
problem from the perspective of service consumers and to develop effective methods that protect service
consumer applications from changes in externally provided services. In this paper, we describe initial
proposal for Service Consumer Framework that attempts to address this problem by providing resilience to
changes in external services as these services are evolved or become temporarily unavailable. The
framework incorporates a service router and services adaptors and determines runtime behavior of the
system based on design-time decisions recorded in the service repository.

1 INTRODUCTION

With growing availability of various types of cloud
services organizations are beginning to rely on
external cloud providers to deliver a significant part
of their IT infrastructure and software services.
Cloud computing is associated with a number of
well documented benefits that include the
elimination of up-front costs, on-demand availability
(characterized by up and down scalability and pay-
per-use charging model), and a potential for overall
cost reduction (Armbrust et al., 2009). In this
environment, end user organizations (service
consumers) are mainly responsible for service
integration and management, with the service
provider responsible for most of the other IT related
functions. An important challenge, in particular in
situations where a large number of cloud providers
are involved, relates to dealing with service
evolution. In modern business environments
characterized by rapid change and technology
innovation, software services need to be
continuously maintained and upgraded introducing
new functionality. Services are often the subject of
uncontrolled change as service providers implement
functional enhancements and rectify defects
(Papazoglou, Andrikopoulos et al. 2011). As the

complexity of service-oriented applications grows, it
is becoming imperative to develop effective methods
to manage service evolution and to ensure that
service consumers are protected from service
changes and outages. While most service providers
attempt to carefully manage version releases and
maintain backward compatibility between service
versions, in practice changes that result in breaking
consumer applications are inevitable. In some cases
consumers of cloud services may be anonymous (i.e.
not known to the service provider) making
notification of changes difficult. Importantly, service
consumers have no control over the provider service
life-cycle and cannot predict when or how services
will change. Consequently, service consumers suffer
service disruptions and are forced to frequently
upgrade their applications to maintain compatibility
with new versions of services, resulting in ongoing
maintenance costs.

The topic of evolution of software systems has
been studied for several decades with Lehman and
Belady formulating key principles in 1984 (Lehman,
1984), but today, evolution of software services
presents new challenges that arise from the widely
distributed nature of services deployed over the
Internet. Service evolution has been the subject of
recent research interest(Andrikopoulos et al., 2012;

665Feuerlicht G. and Tran H..
Service Consumer Framework - Managing Service Evolution from a Consumer Perspective.
DOI: 10.5220/0004976606650672
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 665-672
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Papazoglou, 2008; Papazoglou et al., 2011;
Borovskiy and Zeier, 2008; Romano and Pinzger,
2012; Kajko-Mattsson, 2004; Kajko-Mattsson et al.,
2007; Fokaefs et al., 2011; Kajko-Mattsson and
Tepczynski, 2005; Eisfeld et al., 2012), however the
focus of these efforts has been mainly on developing
methodologies and tools that help service providers
to manage service evolution. There is a pressing
need to develop corresponding consumer-side
methodologies and tools to address these issues from
a service consumer perspective.

In this paper, we describe a proposal for a
Service Consumer Framework (SCF) that attempts
to address this problem by providing resilience for
client applications to changes in external services as
these are evolved or become temporarily
unavailable. The SCF framework uses a combination
of service adaptors and a service router to protect
client applications from external changes. Evolution
of services is supported by using service adaptors
that transform service request and response
messages between internal and external services.
Service router determines which external services
are evoked at runtime, based on their availability and
pre-defined processing rules stored in the Service
Repository. In the next section (section 2) we review
related literature dealing with service evolution. In
the following section (section 3) we describe an
example Conference Management System used to
illustrate the proposed framework. Section 4 is a
description of the proposed Service Consumer
Framework, and section 5 contains our conclusions
and directions for future work.

2 RELATED WORK

Service evolution has been the subject of extensive
recent research interest and a number of methods
and tools have been proposed and developed to
address the challenges of managing evolution of
services. These approaches range from tools that
identify changes to service interfaces as services
evolve from version to version (Romano and
Pinzger, 2012; Fokaefs et al., 2011; Eisfeld et al.,
2012), to proposals that describe full life-cycle
methods that attempt to address changes that affect
multiple services (Papazoglou, 2008). In general,
service changes can be classified into changes to
functional characteristics (i.e. changes that affect
structure of service interfaces, business protocols,
policy assertions, and operational behavior) and
changes to non-functional characteristics (i.e. quality
of service attributes, e.g. security, availability,

accessibility, etc.). More specifically, functional
characteristics include (Andrikopoulos et al., 2012):
 Structural Changes, include changes in

message structure and service operations
 Business Protocol Changes that affect the

interactions between service providers and
service consumers, e.g. the sequence of
exchanged messages, etc.

 Policy induced Changes that include changes
in legal requirements, e.g. the terms of
international trade contracts, data protection
policy, etc.

 Operational behavior Changes, that include
the cascading effect of changing service
operations

Papazoglou et al. (Papazoglou, 2008;
Papazoglou et al., 2011) further classify service
changes into shallow and deep. Impact of shallow
changes is localized to a single service, while deep
changes cascade across a number of different
services.

Most service systems manage service evolution
via controlled releases of service versions that are
designed to maintain backward compatibility with
older versions of the services. This ensures that
applications that use existing versions of the services
are not impacted by the release of new versions. In
general, addition of new data types and operations
(e.g. in a WSDL interface) do not break existing
client applications and can be regarded as backward
compatible. However, it is difficult to avoid changes
that do not preserve version compatibility in
practice. Such changes include removal of elements
that form the service interface (e.g. operations,
complex data types, attributes, etc.) and result in
breaking the contract between the service provider
and service consumers. Furthermore, while service
versioning allows service consumers to decide when
and if to upgrade their applications to take advantage
of new service features, it also imposes additional
complexity on service providers as they need to
maintain multiple service versions and ensure that
service consumers are notified before old versions of
services are decommissioned. Versioning of
individual services independently cannot deal with
deep changes, and Papazoglou et al. propose a
change-oriented service life-cycle to address the
issues that arise with changes that cascade across
multiple services. The life-cycle starts with the
identification of the need for service change and
scoping its extent, and then progresses to a service
analysis phase that uses the model of the current
state of the services (as-is model) and the to-be
service model to perform gap analysis. Following

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

666

the analysis of the impact of the required changes,
decisions are made about how to deal with
overlapping and conflicting service functionality.
During the final change life-cycle phase new
services are aligned, integrated, tested and released
into production.

Borovskiy and Zeier (2008) focus on evolution
of Web Services and identify two main types of
drivers that cause service changes: intrinsic and
extrinsic. Intrinsic change drivers include poor
design and poor implementation, and extrinsic
change drivers include market and business
requirements drivers, operational process drivers,
legislative and regulatory drivers, and other type of
external drivers. Given this classification, the
authors discuss versioning and message conversion
techniques designed to address changes to Web
Service interfaces that involve removing operations
and parameters and cardinality mismatches. Fokaefs
et al. (2011) present an empirical study of WSDL
change analysis of Amazon EC2 service, PayPal
service and FedEx services. The paper provides a
detail analysis of Amazon EC2 service (18
versions), FedEx Rate service (9 versions), FedEx
Package Movement Information Service (3
versions), PayPal SOAP API service (4 versions),
and Bing Search service (2 versions). The authors
developed a tool (VTracker) based on a tree-
alignment algorithm to compare complex WSDL
specifications. VTracker calculates the tree
distances between a pair of operations for two
service versions. Service evolution is classified into
the following types:
 Operation Deletions: This is regarded as a deep

change, and existing consumers of the service
need to be notified as deleted operations might
result in breaking client applications.

 Inline Type Change: this is a non-destructive
change classified as a shallow change (e.g.
changing element type to its parent type).
Although this type of change does not impact on
existing clients they should be notified.

 Aggressive Evolution: this type of change
involves removing existing types and introducing
new types (for example, in FedEx Rate version 9
more than 50% of existing types were removed,
resulting in a significantly different new version
of the service).

 Renaming Variables: changes in variable names
can cause a mismatch between messages
generated by the old and new versions of the
service.

 Adding New Types: this type of change does not
normally result in breaking client applications.

 Changing Input or Output Types: this type of
change affects the service interface and impacts
on client applications.

Based on their empirical analysis of Amazon
EC2, PayPal and FedEx Web Services the authors
conclude that removal of existing elements is
relatively rare and that the evolution of services
involves mostly adding new elements that do not
break existing client applications.Romano and
Pinzger (2012) describe the WSDLDiff tool that is
used to identify fine-grained changes between
versions of a Web Services by comparing WSDL
interfaces. WSDLDiff is based on the UMLDiff
algorithm of Xing and Stroulia (2005) and identifies
most of the frequently occurring types of changes,
including changes in XSD elements, attributes,
references and enumerations. The authors use the
generic Matching Engine
(org.eclipse.compare.match) to compute a set of four
similarity metrics: type similarity (computes the
similarity between types), name similarity
(computes the similarity between attribute names),
value similarity (computes the similarity between
the values of attributes), and relations similarity
(computes the similarity based on the relationships).
To allow comparison with the results of Fokaefs et
al. (2011), Romano and Pinzger (2012)computed
metrics for Amazon EC2, PayPal and FedEx Web
Services using the WSDLDiff tool. The resulting
analysis shows the number of added, deleted, and
changed elements for each type of Web Service. The
authors identify differences in the evolution of Web
Services and suggest that this information can be
used to estimate the risk associated with the use of
Web Services from a particular provider. The
authors also investigated the correlation between the
number of interface changes and cohesion metric
defined by Perepletchikov et al. (2007). The
relationship between the quality of service interface
design and maintainability of service-oriented
applications has been investigated in the literature
(Feuerlicht, 2011; Papazoglou, 2002; Pautasso and
Wilde, 2009), and there is a general agreement that
maximizing service cohesion and minimizing
service coupling localizes the impact of changes and
leads to improved maintainability of service-oriented
applications. Reliable metrics that can identify poor
service design early during system development can
significantly reduce maintenance costs (Feuerlicht,
2013), but it is unlikely that the impact of service
evolution on client applications can be entirely
avoided.

Service�Consumer�Framework�-�Managing�Service�Evolution�from�a�Consumer�Perspective

667

3 MOTIVATING EXAMPLE

To illustrate the need for the Service Consumer
Framework (described in section 4) consider the
example scenario illustrated in Figure 1. The
Conference Management System (CMS) is a
simplified scenario based on a real-world
conference management application. The CMS
system supports a number of conference
management functions, including enrollment of
participants, online payments, and booking of
accommodation and transportation. CMS is a
service-based system that consumes both internal
(on-premise) and external (cloud) services. Internal
services (i.e. services supported by on-premise
applications) include Financial Management
(Finance), and Customer Relationship Management
(CRM) services.
Externally provided services include:
 Payment services:

Paypal Payment Gateway (www.paypal.com),
OnePay Payment Gateway (www.onepay.vn/),
SecurePay (www.securepay.com)

 Flight tracking services:
FlightAware (flightaware.com), live flight
tracking maps, flight status, and airport
information,
Flight Explorer (www.flightexplorer.com) -
real-time aircraft position display and
management tool used for organizing
customer pick-up service

 Address validation services:
Google Geocoding API
(developers.google.com/maps/documentation)
QAS Pro Web (www.qas.com)

 Shipment tracking services:
FedEx Express (http://www.fedex.com/us/)

The CMS system operates in an environment

where external services continually evolve with
providers upgrading their services by adding and
removing interface elements and operations. In
addition, services are subject to outages and may
become temporarily unavailable due to
communications failures and site crashes. A key
requirement for the CMS system is to maintain
operation in this challenging environment. This is
facilitated by the SCF Framework that uses adaptors
to shield internal services from changes in external
services. For example, several internal applications
may use a payment service that communicates with
an external payment service via a payment adaptor
(i.e. avoiding direct communication with the
external payment service). This avoids the need to
modify multiple applications in response to changes
in the external payment service as the compatibility
with external services is maintained by upgrading
the adaptor (see section 4.3 for a detail description
of adaptor functionality). Another key requirement
for the CMS system is resilience against service
outages. This can be achieved by re-routing a
payment request to an alternative external service.
For example, when the PayPal Payment Gateway
becomes unavailable, the request is re-routed to
SecurePay or OnePay service (as described in
section 4.2).

Figure 1: Conference Management System.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

668

4 SERVICE CONSUMER
FRAMEWORK

The SCF framework is designed to manage changes
in both functional attributes (i.e. changes to message
structures, service operations, etc.) and non-
functional attributes (i.e. availability, cost, etc.). The
SFC Framework is illustrated in Figure 2 and
consists of three layers: Process Layer, Adaptor
Layer and Service Layer. The Service Layer
incorporates both internal and external services and
defines their native interfaces. The Adaptor Layer
contains adaptors that translate requests between the
native services (e.g. PayPal payment service) and the
corresponding internal services. The Process Layer
defines processes that are implemented using the
service router and processing rules stored in the
service repository.Service router determines at
runtime, which services are evoked based on their
availability and pre-defined processing rules.
Service repository maintains information about
services allowing substitution of services with
equivalent functionality to avoid service
interruptions. The information held in the service
repository also allows replacing external providers
in situations where their services become
incompatible with existing applications, or in order
to optimize a particular parameter (e.g. cost,
response time, etc.).

4.1 Service Repository

The function of the service repository is to maintain
information about available services and adaptors.
Each internal service can be associated with a
number of (alternative) external services.Internal
service description includes the following
information:

 Internal Service Identifier, Service Name,
Service Description, and Version Number

 Service Location (URL of the service)

External service description includes the following
information:
 External Service Identifier, Service Name,

Service Description, and Version Number
 Functional Parameters: WSDL, Service

Provider, Service Location (URL), Service
Authentication

 Non-functional Parameters: Availability,
Response Time, Cost, Security Attributes, etc.

 Service Adaptor: Adaptor Identifier, Adaptor
Name, Adaptor Location

 Corresponding Internal Service Identifier

The information held in the service repository is
used at design-time to identify suitable services and
to define the sequence of service execution. Quality
of Service (QoS) attributes stored in the repository
can be used to identify external services based on
their anticipated availability, response time, cost, or
some other QoS attribute, and to define the
processing rules that determine the sequence of
service execution at run-time.

4.2 Service Router

The function of the router is to control the routing of
requests to a provider according to priority rules
defined in the service repository. For example, a
payment request can be routed to an alternative
payment gateway (e.g. SecurePay or OnePay) via
corresponding service adaptors if the PayPal service
becomes unavailable. The service router uses
information in the service repository to execute a
service invocation sequence. Figure 3 illustrates the
service router sequence for the payment service. An

Figure 2: Service Consumer Framework.

Service�Consumer�Framework�-�Managing�Service�Evolution�from�a�Consumer�Perspective

669

Figure 3: Service Router Sequence for the Payment Service.

application (e.g. the Finance application) passes a
payment request to the internal payment service that
forwards this request to the external PayPal service
via the PayPal adaptor. The external PayPal service
response is sent back to the internal payment service
via the PayPal adaptor, and then to the Finance
application. If the PayPal service fails to respond
within a specified time period the request is routed
to the next external payment service (SecurePay in
our example) via the corresponding adaptor (i.e.
SecurePay adaptor). If the SecurePay service fails to
respond the request may be re-directed to another
payment service, or return an error status to the
application. The order of service execution is
defined at design-time based on designer
preferences. For example, the designer may choose
to call the least expensive payment service first, and
execute a more expensive service only in the event
of failure of the first service. Alternatively, the
designer may decide to call the service that gives the
best response time first, and only execute alternative
services in the event of failure.

4.3 Service Adaptor

The function of a service adaptor is to transform
outgoing requests into the format supported by the
current version of the corresponding external
service, and to ensure that incoming responses
maintain compatibility with internal applications.
For example, the PayPal adaptor accepts payment
requests from the CMS application with the interface
containing attributes <Membership_ID, Name,

Address, Payment_Type, Card_Type,
Card_Holder_Name, Credit_Card_Number,
Expiration_Date, Amount, CCV_Number, Note>.
The payment request is logged and transformed to a
PayPal payment request that has the interface
containing attributes <Acct, Expdate, Amt,
Comment1, Comment2, Cvv2, Firstname, Lastname,
Street, Swipe, Tender, Trxtype, Zip>. Following a
successful request execution the PayPal service
response is transformed into a message compatible
with the CMS application. The response message
from the external service indicates success or failure
of the request. For example, if the response indicates
a communication failure, the service adaptor will
mark the transaction as failed and the service router
will route the payment request to another adaptor.
Alternatively, the response message may indicate
that the transaction was declined due to invalid
credit card information (e.g. card number or
expiration date) and the router may request for the
information to be resubmitted.

5 CONCLUSIONS

Growing availability of various types of cloud-based
services and their incorporation into enterprise
applications greatly increases the dependence of
organizations on external service providers.
Notwithstanding the efforts of service providers to
manage the evolution of services and maintain
backward compatibility for service versions, in
practice changes that result in breaking consumer

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

670

applications are inevitable. Moreover, the
availability of cloud-based services cannot be fully
guaranteed, forcing service consumers to build in
redundancy into their applications, so that alternative
services can be substituted when required in order to
maintain service continuity.

Service evolution has been the subject of recent
research interest, but most of the research on this
topic deals with service evolution from the service
provider perspective. We have argued that there is
an equal need to consider this problem from the
perspective of service consumers and develop
effective methods to protect service consumer
applications from changes in external services. In
this paper we describe an initial proposal for Service
Consumer Framework that attempts to address this
problem by providing resilience for consumer
applications to changes to external services as these
are evolved or become temporarily unavailable. The
basic idea of the framework involves the use of
service adaptors in combination with a service router
that re-directs requests to different service providers
based on their availability at runtime. Service
adaptors ensure that consumer applications can use
services that are currently supported by service
providers, and that the timing of upgrades to new
service versions is determined by the service
consumers, rather than dictated by service providers.
Using this framework, application designers can
choose from a number of services that provide
identical functionality (e.g. payment services) and
define the sequence of service execution to optimize
the cost and performance of the applications.

We have implemented prototype versions of
several service adaptors, and we are currently
working on the implementation of service repository
and service router using Microsoft .NET
technologies. Our current efforts focus on
developing a proof-of-concept prototype of the SCF
framework and on developing additional adaptors.
We will use this prototype to further refine the
design of the framework.

ACKNOWLEDGEMENTS

Authors wish to acknowledge support of GAČR
(Grant Agency, Czech Republic) grant No.
P403/11/0574 and ARC (Australian Research
Council) Grant Design of Service Interfaces
(2004000242).

REFERENCES

Andrikopoulos, V., Benbernou, S. & Papazoglou, M. P,
2012. On the evolution of services. IEEE Transactions
on Software Engineering, vol. 38, pp. 609-628.

Armbrust, M., et al., 2009. Above the clouds: A berkeley
view of cloud computing. EECS Department,
University of California, Berkeley, Technical Report.
UCB/EECS-2009-28, 2009.

Borovskiy, V. & Zeier, A., 2008. Evolution management
of enterprise web services. Advanced Management of
Information for Globalized Enterprises, AMIGE 2008.
IEEE Symposium on, pp. 1-5.

Eisfeld, A., McMeekin, D. A. & Karduck, A. P., 2012.
Complex environment evolution: Challenges with
semantic service infrastructures. 6th IEEE
International Conference on Digital Ecosystems
Technologies (DEST).

Feuerlicht, G., 2011. Simple metric for assessing quality
of service design. In Service-oriented computing.
Springer Berlin Heidelberg, (Eds.) Maximilien, E. M.,
Rossi, G., Yuan, S.-T., Ludwig, H. & Fantinato, M.

Feuerlicht, G., 2013. Evaluation of quality of design for
document-centric software services. Service-Oriented
Computing-ICSOC 2012 Workshops, Springer, pp.
356-367.

Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E. &
Lau, A., 2011. An empirical study on web service
evolution. Web Services (ICWS), 2011 IEEE
International Conference on, pp. 49-56.

Kajko-Mattsson, M., 2004. Evolution and maintenance of
web service applications. Software Maintenance,
2004. Proceedings. 20th IEEE International
Conference on, pp. 492-493.

Kajko-Mattsson, M., Lewis, G. A. & Smith, D. B., 2007.
A framework for roles for development, evolution and
maintenance of soa-based systems. Systems
Development in SOA Environments, 2007. SDSOA '07:
ICSE Workshops 2007. International Workshop on,
pp. 7-7.

Kajko-Mattsson, M. & Tepczynski, M. A., 2005.
framework for the evolution and maintenance of web
services. Software Maintenance, 2005. ICSM'05.
Proceedings of the 21st IEEE International
Conference on, pp. 665-668.

Lehman, M. M., 1984. On understanding laws, evolution,
and conservation in the large-program life cycle. J.
Syst. Softw., vol. 1, pp. 213-221.

Papazoglou, M., Yang, J., 2002. Design methodology for
web services and business processes. Proceedings of
the 3rd VLDB-TES Workshop, Springer, pp. 54-64.

Papazoglou, M. P., 2008. The challenges of service
evolution. Proceedings of the 20th international
conference on Advanced Information Systems
Engineering. Springer-Verlag.

Papazoglou, M. P., Andrikopoulos, V. & Benbernou, S.,
2011. Managing evolving services. IEEE Software,
vol. 28, pp. 49-55.

Pautasso, C. & Wilde, E., 2009. Why is the web loosely
coupled?: A multi-faceted metric for service design.

Service�Consumer�Framework�-�Managing�Service�Evolution�from�a�Consumer�Perspective

671

18th international conference on World wide web,
ACM, pp. 911-920.

Perepletchikov, M., Ryan, C. & Frampton, K., 2007.
Cohesion metrics for predicting maintainability of
service-oriented software. qsic, vol., pp. 328-335.

Romano, D. & Pinzger, M., 2012. Analyzing the evolution
of web services using fine-grained changes. IEEE 19th
International Conference on Web Services (ICWS).

Xing, Z. & Stroulia, E., 2005. Umldiff: An algorithm for
object-oriented design differencing. Proceedings of the
20th IEEE/ACM international Conference on
Automated software engineering. Long Beach, CA,
USA: ACM.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

672

