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Abstract: The support to cloud enabled databases varies from one cloud provider to another. Developers face the task 
of supporting applications living in different clouds, and therefore of supporting different database 
management systems. To them, the challenge lies in understanding the differences in expressivity between 
different data stores and their impact on the application. The advent of the NoSQL movement increased the 
complexity of this task by leveraging the creation of a large number of cloud enabled database management 
systems employing slightly different data models. In this paper, we will present a model the will allow us to 
compare the differences in expressivity of the features supported by different databases and consider the 
impact of these features to different concrete deployment scenarios in multiple clouds. This model is based 
on the underlying data models adopted by the most used cloud database management systems. It has been 
developed on the FP7 JUNIPER project and will be the basis of our approach for dealing with these issues. 

1 INTRODUCTION 

A decade after the advent of the first cloud based 
solutions, it is clear to companies that migrating to 
cloud platforms is cost effective (Rackspace, 2013). 
The success of the cloud lead to the advent of 
multiple cloud provider offerings. As in any nascent 
market, there are no established standards. 
Economically speaking, on the one hand, the 
multiplication of offerings reduces the prices and 
makes cloud and multi-cloud applications more and 
more interesting to companies. On the other hand, 
the consequent fragmentation of the market, makes 
the life of cloud developers harder, since it increases 
the complexity of the development and maintenance 
of applications. 

In this paper we focus on the challenges related 
to data stored on the cloud. The problem stems from 
the fact that different cloud providers support 
different database management systems (DMS). 
Developers have a variable degree of flexibility, 
ranging from the one they have on Infrastructure As 
a Service providers, in which virtually any DMS can 
be installed; to the one they have in the Platform as 
A Service providers, usually supporting a very 
specific subset of DMSs. Finally, in the Software as 
a Service providers, developers are usually only able 

to store data opaquely and this data is only later 
accessible by means of a provider specific APIs. 

The consequences of this fragmentation of the 
support of DMSs by cloud providers are amplified 
by the so-called NoSQL “movement”. This 
“movement” consists of a series of DMSs that strip 
the well-known SQL based relational DMSs from 
some for their characteristics in order to increase 
their performance. The problem is that different 
applications usually have different performance 
bottlenecks, which leads to different sets of 
optimizations that need to be applied to SQL DMSs 
to make them adapted to each application. This lead 
to the existence of a myriad of NoSQL DMSs, each 
one based on a slightly different set of optimizations 
on the SQL DMSs or even on completely different 
data models, fine-tuned to specific applications. 

For a developer, building and maintaining a 
cloud application means dealing with all this 
fragmentation. The main hypothesis of this paper 
is that in order to deal with these concerns, one, 
first of all, needs to understand the differences in 
expressivity between the data models provided by 
different DMSs and the potential difficulties in 
migrating data from one model to another. In this 
paper we are going to present the main concepts 
behind most used cloud DMSs, and the semantic 
gaps between them. We are then going to present a 
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classification of the DMSs according to these 
concepts and we’ll use this classification in a case 
study in which we identify the best DMSs to support 
parts of the data manipulated by an application. 

The present work is a first step towards what we 
intend to achieve in the EU FP7 projects 
MODAClouds and JUNIPER. They intend to tackle 
such challenges by means of the model driven 
approach to allow developers to model their 
application on a very high level. Developers can 
then have their models analysed by automated tools 
and to have code automatically generated from it. 
The MODAClouds project focuses on public clouds 
and in providing automated tools to help data design. 
The JUNIPER project focuses on private clouds and 
in providing analysis tools to make sure that a 
particular set of DMSs respects a given set of real 
time constraints. 

This paper is structured as follows. Section 2 
details the context of data management in multi 
cloud applications and introduces the fragmentation 
of databases in this domain. Section 3 presents the 
most important concepts used in multi-cloud DMSs 
and a classification of the most important DMSs. 
Section 4 presents the trade-offs in migrating to and 
from different classes of DMS. Finally, in Sections 5 
and 6 we present related works and conclusions of 
this paper. 

2 MULTI-CLOUD 
APPLICATIONS AND THE 
NOSQL “MOVEMENT” 

2.1 Overview 

The cloud started as a way to offer all this as a 
service, in a “pay as you” go way. That means that 
the cloud provider would create a big data centre, 
and would use it to offer virtual machines to clients. 
On top of purely infrastructure driven cloud 
solutions, platform driven ones came into being. In 
this case, cloud providers do not offer virtual 
machines and storage device, but instead, they offer 
software platforms. The customer then is only 
responsible for installing the necessary software on 
the platform while the cloud provider will dimension 
the needed machines, storages and load balance 
strategies for the user’s application (Khajeh-
Hosseini, Greenwood, & Sommerville, 2010). 

The main disadvantage of clouds is that users 
have much less flexibility than in a “on premises” 
solution. Each cloud provider provides only a 

limited set of configurations of machines, storage 
and platforms, while on premise solutions allow for 
unlimited sets of configurations. Each cloud is also 
optimized for a limited range of applications, i.e. 
some clouds are optimized to running applications 
involving fast running queries and long running 
background processes; while others may also accept 
long running queries over data. One way to mitigate 
this heterogeneity problem is to use multiple cloud 
providers, putting parts of the application on each 
provider, trying to find the best match between the 
cloud and the application (Liu, Katsuno, Sun, & Li, 
2011) (Singh, Kandah, & Zhang, 2011). 

As one could expect, the data storages supported 
by each cloud provider vary from one offering to 
another. This is so, because data storage is nowadays 
a much complicated matter than it was years ago. It 
doesn’t consist anymore of choosing between 
traditional relational databases or home grown file 
based data formats. Now, developers have a myriad 
of Data Management Systems (DMS), each of them 
optimized to a particular set of data structures. This 
is the result of the NoSQL “movement”, which in 
fact intends to improve the efficiency of relational 
DMSs by constraining the data structures they 
support and the queries that they can answer.  

The downside for the programmer is that 
designing a cloud application is not only a matter of 
choosing the “cheapest cloud provider”, but 
choosing the provider that supports the DMSs 
backed by the best data structures to represent the 
application data. One still needs to think about the 
cost and performance costs involved in transferring 
data from one cloud to another, and consequently 
from one DMS and backed data structure to another. 

The main objective of this paper is helping 
developers in choosing the best DMSs for their 
data and in understanding the performance and 
expressiveness trade-offs involved in moving data 
from one DMS to another. In order to do so, we 
intend to provide a model of the data structures and 
queries   supported   by  existing  NoSQL  and  SQL 

 
Figure 1: Overview of the MiC Application. 
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based DMS. Developers will then be able to develop 
high performance applications, losing the least as 
possible when moving data from one DMS to 
another. 

2.2 Motivating Example: The MiC 
Application 

The MiC (Meeting in the Cloud) application (F., D., 
M., D., & E., 2013) is a social network which allows 
users to maintain user profiles in which they register 
they topics of interests. The MiC application then 
groups users by similarity, allowing users to interact 
with their “best contacts”, based on the answers 
given by each user in their profiles. Figure 1 
overviews the main workflow of use of the MiC 
application.  

Figure 3 presents a simplified view of the data 
model behind the MiC application. It stores, 
Messages posted by UserProfiles in Topics 
associated to Questions. UserRatings store 
ratings given by UserProfiles to Topics. 
UserRatings also include Pictures of users. 
Finally, and UserSimilarity stores pairs of 
similar users. 

When developing this application, developers 
need to decide on using an infrastructure or platform 
as a service solution; and then on which specific 
provider the application is going to be deployed. 
When it comes to designing the data layer of the 
application, the developer has to decide on which 
DMSs will be reused and which part of the data is 
going to be stored on each DMS. 

In order to illustrate the complexity of these 
choices, let us suppose the developers want to use 
platform as a service cloud providers, in order to 
reduce the cost of managing the infrastructure and to 
focus on the application design. Suppose they want 
to choose between Microsoft Azure, Heroku and 
Google App Engine.  

Provider DMS 

Microsoft Azure 
Table Service, Blob 

Service 

Heroku 
Postgres, Cloudant 

add-on 
Google App Engine Datastore, Blobstore 

Figure 2: Comparing possible platform as a service 
providers for the MiC application. 

Without going into the details on each DMS, 
Figure 3 shows that each provider includes a variety 
of different data stores. Each DMS supports slightly 

different kinds of data, with different levels of 
details.  

For example, on the one hand, blob services 
support hash like structures that associate binary 
data to unique keys. On the other hand, table 
services, Google Datastores and the Cloudant add-on 
store multiple pieces of data associated to a single 
key. The former are optimal for queries on leys, 
while the later may support filters and more complex 
queries on the values associated to each key. 

On top of that, each provider has different 
pricing strategies. The developer then needs to 
understand the trade-offs when designing the MiC 
application, in order to eventually store part of the 
data in one cloud and part of the data on another. 

 

Figure 3: The data model of the MiC Application. 

This paper focuses on the trade-offs involved in 
store different kinds of data in different DMSs, 
eventually in different cloud providers. The cost 
optimization involved in this task is out of the scope 
of the present paper. 

3 CLOUD BASED DMS 
CONCEPTS AND 
COMPARISSON 

In this section we present the main concepts 
concerning the data design in a Big Data Real-time 
system. These concepts are going to be presented in 
Section 3.1 and used to compare the most popular 
DMSs in Section 3.2. 

3.1 Main Concepts 

The main concepts related to data structures are 
summarized in Figure 5. They are based on an 
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extensive review of relational and NoSQL DMSs 
initially published in (SOFTEAM; University of 
York, 2013). The first aspect to be dealt with at this 
section is the Underlying Data Abstraction 
supported by the database. That is important because 
storing the same data under different data 
abstractions may lead to data loss and/or increase the 
complexity of the application code.  

The next aspect is the one of how each system 
uniquely identifies data stored in it. This is usually 
done by means of a piece of data called Key. Notice 
that keys are dispensable in object oriented 
databases; because objects are unique by themselves, 
no matter the data they contain. Keys may be atomic 
or composed of many pieces of data (they are then 
called Composite Keys). Additionally, File Paths 
are special kinds of keys that uniquely identify 
documents in file systems. Finally, keys may be 
Ordered or not.  

The Values stored in the database are 
represented differently from one system to another. 
They can represent Single or Multiple columns 
containing primitive types only or Documents, 
which stand for non-structured blobs of information. 
Finally, columns may be Single or Multi-valued 

Links between different pieces of information 
are established differently in different kinds of 
database. In tuple based ones, Foreign-Keys are 
generally used, while in object oriented ones 
Relationships are used. A relationship is a direct 
link from an object to another, allowing navigation 
usually in constant time. Foreign-keys link two 
tuples by adding the key from one tuple as part of 
the columns represented in another. Lookups from 
tuples using foreign-keys may vary from logarithm 

time complexity in single primitive ordered keys, to 
linear time in non-ordered keys. 

Different tools also provide different strategies 
for Aggregating data. Tuple Spaces and Regions 
group objects or tuples in different containers, so 
that items that are most accessed together (from a 
single region) can be retrieved more quickly. Tuple 
spaces differ from regions by the fact that they are 
also a concurrent programming mechanism: 
processes can put and take tuples from the tuple 
space, i.e. no two processes can take the same tuple 
at the same time. The third aggregation technique is 
called Column Families. In this case, the columns 
that form each tuple are grouped into families of 
columns that should be stored together, accelerating 
analysis over the whole column (e.g. summing all 
values). 

3.2 Comparing Cloud based DMSs 

Figure 5 presents and compares the main kinds of 
Big Data databases based on the concepts presented 
in the previous section and presents the main 
implementations for each category of database. 
Distributed File Systems represent data as an 
association between file paths (used as keys) and 
documents (that represent file content). The 
underlying data abstraction paradigm is the object 
oriented one, i.e. files are not uniquely identified by 
their content, but only by their paths (usually, 
several paths may point to a single file). 

The Key-Value Stores represent data as simple 
tuples containing simple primitive keys and a single 
column of data. Ordered Key-Value stores  support 

 

Figure 4: Kinds of Data Structure related concepts. 
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ordered keys, and therefore allow retrieval of ranges 
in linear time on the length of the range, whereas in 
Key-value systems this operation may be quadratic. 
Document Stores are also a special case of key-
value stores in which the single column in each row 
(apart from the key) can store a arbitrarily complex 
document. Notice that these four kinds of data stores 
may be referred to generally as Key-Value Stores. 

Big Tables are tuples with a primitive key and 
multiple columns aggregated in families and rows 
that can be grouped into regions. Object Databases 
represent objects which contain multiple columns 
(or fields) and are connected by means of 
relationships. Multivalued Databases are systems 
that allow more than one value to be stored at a time 
for a column. Expressiveness and PErformance 
Trade-offs. 

Tuple Stores are databases that support tuple 
spaces. Finally, Relational Databases are tuple 
based databases supporting composite keys and 
foreign keys. 

This section presents the trade-offs in the 
different data structures used by different DMSs and 
in the underlying limitations of these structures. 
Notice that complexity estimates are given relative 
to abstract algorithms needed to back such structures 
on the general case. Specific versions of sets of 
configuration parameters of some DMSs may 
achieve better time or space complexity for specific 
classes of input, which are out of the scope of this 
paper. 

 

 

Category 
Underlying 

Data 
Abstraction 

Keys Values Links Aggregation Examples 

Distributed File 
Systems Object Primitive 

(File Path)
Document - - HDFS, Lustre 

Key-value Store Tuple Primitive Single 
Column

- - Amazon
DynamoDB

Ordered Key-
value Store Tuple Ordered Single 

Column
- - Memcache DB, 

Redis

Document Store Tuple Primitive Document - - 
MongoDB, 

CouchDB, Riak 
SimpleDB

Big Table Tuple Primitive Multiple 
Columns - 

Column 
Families, 
Regions 

Google 
BigTable, 
Cassandra, 

Object 
Database/RDF 

Store 
Object - 

Multiple 
Columns Relationships - 

Neo4j, 
RavenDB, 
FlockDB, 

InfiniteGraph 

Multivalued 
databases Tuple  

Multiple 
Multivalued 

Columns 
 - jBASE, Caché 

Tuple store Tuple - Multiple 
Columns - Tuple Spaces 

Gigaspace, 
Javaspaces, 
Tarantool

Relational 
Database Tuple Composite 

Primitive
Multiple 
Columns

Foreign Keys - MySQL 

Figure 5: Comparing cloud enabled databases. 
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3.3 Underlying Data Abstraction: 
Tuples x Objects 

In practice, tuple based data models are the best 
suited for data aggregation, while the object based 
ones are the best suited for navigation. To illustrate 
that, let us consider a social network with tenths of 
millions of users. On the one hand, when storing 
data for computing statistical information about 
these users, e.g. they average age, one should prefer 
a tuple based data model (probably on top of a 
vertical partitioning scheme). On the other hand, 
when storing data for computing properties of the 
graph of friend-to-friend connections, e.g. 
computing a series of suggestions of products to buy 
for each user based on his/her friends, one should 
prefer an object oriented data model (probably using 
horizontal partitioning). 

Expressiveness trade offs 
Tuples are uniquely defined by their contents, 

while objects are unique by themselves, the main 
consequence of that is that two objects with the same 
contents will be interpreted as the same tuple, unless 
an  internal identifier field is created to ensure 
uniqueness of objects. 

Performance trade offs 
● Navigating between tuples is a linear time 

operation1, while it is a constant time operation 
for objects. Hashing techniques can be used to 
reduce this time, but they imply extra memory 
cost.  

● Operations on all tuples (e.g. filtering, 
aggregating and bulk updates) are cheap  on 
tuples but may be expensive on objects.  

3.4 Keys 

3.4.1 Primitive x Composite 

Keys are used for uniquely identifying elements and 
for retrieving them from the database.  

Expressiveness trade offs 
● Migrating from composite to primitive keys 

has the disadvantage that the uniqueness 
constraint on the multiple parts of the key 
will not be enforced by the DMS, it thus 
needs to be enforced by the application. 

Performance trade offs 
● Furthermore, the DMS may not be able to 

retrieve an element my multiple keys, this 
may increase the cost of element retrieval if 
it needs to be implemented by the 
application. 

 
 

3.4.2 Non-Ordered x Ordered 

This feature is mainly used to speed up retrieval 
operations, it however slows down insert and 
deletion operations. 

Expressiveness trade offs 
None 
Performance trade offs 
● This has a great impact on the query 

patterns that are natively supported by 
database systems and on their 
computational cost. If keys are ordered, one 
can retrieve a range of keys in linear time, 
while for an unordered set, the worst case 
of this operation has a quadratic time 
complexity. 

3.5 Values 

3.5.1 Single x Multiple 

The main advantage of supporting single columns is 
that the schema of the database normally doesn’t 
need to be defined in advance. 

Expressiveness trade offs 
● Migrating from single to multiple DMSs is 

trivial. Conversely,  multiple columns can 
easily be simulated as metadata attached to 
documents, however, in most databases, the 
schema associated to multiple DMSs may 
be lost in this translation. 

● Single DMSs normally do not support 
queries other than given a key returning or 
changing the value associated to it. 

Performance trade offs 
● The ability of storing multiple columns for 

a single value is a mere convenience 
offered by the DMSs. Migrating from 
multiple to single valued databases will 
certainly increase the complexity of the 
application code decoding the values stored 
in the database or encoding sets of objects 
into a single value. 

3.5.2 Primitive x Documents 

Documents are complex structured elements, 
ranging from a binary blob annotated with metadata 
to complex trees of elements. They are mainly used 
to de-normalize the data model, and then increasing 
retrieval speed of large amounts of data. 

Expressiveness trade offs 
● As for single x multiple values, documents 

can be represented as primitive values, but 
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this will increase the complexity of the 
application code.  

Performance trade offs 
● Going from primitive to document based 

may be trivial, but will certainly sub 
utilise the resources of the DMS.  

3.5.3 Single x Multivalued 

Multiple values are usually a syntactic sugar 
provided by DMSs as they can usually be 
implemented at application side without too much 
increase in complexity. 

Expressiveness trade offs 
 The ability of storing multiple values 

can be seen as a mere convenience 
offered by the DMSs, but migrating 
from multiple to single valued 
databases will certainly increase the 
complexity of the application code 
decoding the values stored in the 
database or encoding sets of objects 
into a single value. 

Performance trade offs 
None 

3.6 Links: Relationships x  
Foreign-Keys x No Relationships 

To put it simply, relationships are links between 
objects whereas foreign keys represent links 
between tuples. In order to understand the trade-offs 
between both cases, refer to the subsection on 
objects and tuples. 

Expressiveness trade offs 
● Migrating from a DMS without 

relationships to one with relationships or 
foreign keys is easy, but the other way is 
not. In this case one needs to simulate 
relationships on the application code. 

Performance trade offs 
● The trade-off here will be between finding 

elements in linear time or updating and 
deleting elements in linear time. 

● On tuple based DMSs, 
navigating will take linear time, which may 
become a bottleneck on the long run. 

● On Document based DMSs, one 
can try to de-normalize the data model, but 
that will increase the complexity of the 
code associated to update and delete 
operations. 

3.7 Aggregation: Column Families X 
Regions or Tuple Spaces 

Column families and regions are best suited to 
completely different use cases. The former target 
queries that aggregate information on a subset of 
columns while the later target queries that collect 
information on subsets of elements. These 
approaches imply completely different partitioning 
strategies: the former allocates columns to different 
nodes while the later allocates elements to different 
nodes. 

Expressiveness trade offs 
None 
Performance trade offs 
● Running queries that are not appropriate to 

a particular kind of database may result in 
huge bottlenecks since the DMS needs to 
look up data in potentially all nodes in 
order to answer to queries. 

4 APPLICATION TO THE MIC 
MULTI-CLOUD CASE STUDY 

In this section we use our concepts and trade off 
analysis to compare six DMS from three different 
platform as a service providers on the MiC case 
study presented in Section 2.2.  

4.1 Method 

The main objective of such comparison is to 
understand the trade-offs involved in representing 
data in one of the target DMSs. Notice that in this 
case study we limited ourselves to comparing the 
DMSs provided by large-scale generic providers 
addressing any kind of application as they would be 
the first clouds to consider for application 
developers. As explained in Section 2.2, the 
motivation for this analysis to developers, is to 
understand the hidden costs involved into storing 
parts of the application on different cloud providers.  

The targeted use cases are mainly the choice of 
initial DMS to store data, and besides to eventually 
carry a migration from one data store to another. In 
order to do that, our method consists in classifying 
the data we need to represent and the data supported 
by the target DMSs. The comparison of the needed 
and available support will hopefully guide the 
developer into writing the code of the application 
and to avoid pitfalls involving eventual 
incompatibilities between DMSs. 
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Figure 6: Case study: comparing storage options for the MiC application. 

Figure 6 presents the result of this comparison for 
both the application data model and the target cloud 
DMSs (detailed respectively in Sections 4.2 and 4.3. 

4.2 Analysing the Application Data 
Model 

We divide the data model presented in Figure 3 into 
three parts, presented on the top part of Figure 6. For 
the sake of simplicity we didn’t include all parts of 
the data model in this comparison. The three parts 
are: (i) the UserProfile, concerning the user 
profiles and related pieces of information; (ii) the 
UserSimilarity, concerning the data store that 
stores the users that are similar to a given user 
profile; and (iii) the Picture, concerning the 
picture linked to each user profile.  

We classify each part of the data model using the 
concepts presented in Section 3.1. User profiles are 
object oriented information, because two profiles 
may refer to the same pieces of information and still 
represent different users. UserSimilarity and 
Picture are different, because they should refer or 
belong to a specific user profile. In all cases, no key 
ordering is necessary in the MiC application. 
However, the ability to group pieces information by 
“region” is important in all cases: user profiles and 
related data a very geographically specific, and 
should all be located in the same geographic region 
to speed up computation. When it comes to values 
and links, user profiles should contain primitive 
values to represent the pieces of information that 
compose a user profile (e.g. name, gender, location, 
data of birth etc.). Pictures only contain a binary 
blob representing the picture, and the user similarity 
only contain references to similar user profiles. 

 
 

4.3 Analysing Target Cloud DMSs 

At the bottom part of Figure 6, we present the 
platform as a service providers presented in Figure 2 
and their respective DMSs. We then classify the 
DMSs according to the same criteria used to classify 
the parts of the data model on the top of the table. 
All DMSs represent tuples, i.e. they do not support 
objects directly. They also enforce the use of 
primitive keys and most of them (except for 
Postgres, a relational database) do not support links 
or foreign-keys between tuples. Only Azure DMSs 
and the Google Data store support grouping 
elements that need to be accessed in the proximity of 
a geographic area. The main difference between the 
supported DMSs is in the supported expressiveness 
of columns/values: Azure Table Storage, Postgres 
and the Google Datastore all support multiple 
primitive single valued values. The Azure Blob 
storage, Heroku cloudant and Google Blob storage 
all support one single valued value, which may be a 
document in Cloudant, or a single value in the other 
ones.  

4.4 Analysing Cloud Migration 
Scenarios 

Figure 7 overviews the trade-offs that need to be 
faced by a developer intending to develop the MiC 
application and host it on the three target platform as 
a service providers. Notice that different DMSs have 
different trade-offs that need to be taken into 
account during application development and future 
maintenance and eventual migration. Let us show 
how this table may be useful in two eventual 
migration scenarios. 

Based on the analyses provided in Figure 6 and 
Figure 7, in the next section we will analyse to 
specific   hypothetical   deployment   and  migration 

Underlying 

Data 

Abstraction Keys Values Links Aggregation

Application Data

User Profile Objects Non‐ordered Multiple, Primitive, Single Yes Regions

UserSimilarity Tuple Non‐ordered ‐ Yes Regions

Picture Tuple Non‐ordered Single, Primitive, Single No Regions

PaaS under consideration DMS

Azure

Table Storage Tuple Primitive, Ordered Multiple, Primitive, Single ‐ Regions

Blob Storage Tuple Primitive Single, Primitive, Single ‐ Regions

Heroku

Postgres Tuple Primitive Multiple, Primitive, Single Foreign Keys ‐

Cloudant Tuple Primitive Single, Document, Single ‐ ‐

Google App Engine

Datastore Tuple Primitive Multiple, Primitive, Single ‐ Regions

Blob Storage Tuple Primitive Single, Primitive, Single ‐ ‐
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Figure 7: Trade-offs between DMSs. 

scenarios. 

4.4.1 Migration Scenario 1 

Let us suppose that the developer chooses the Azure 
blob storage to store the user profile pictures since 
there are no significant differences between the 
required and provided expressiveness. If later the 
company decides to migrate to Heroku Cloudant or 
Google App Engine Blob Storage, the developer 
needs to notice that these DMSs do not support the 
aggregation of tuples by geographic region/access 
frequency. Both databases provide a generic 
algorithm that distributes data and then balances 
query answering resources. As described in Section 
3.7 this may generate a performance bottleneck if 
data is not properly distributed. Developers should 
be therefore aware of this potential limitation. 

4.4.2 Migration Scenario 2 

In this scenario, let us suppose that the developer 
decided to deploy the UserSimilarity part of 
the data model in an instance of Azure Table Storage 
and that in the future, she or he decides to deploy 
part of this information in Heroku Postgres (e.g.  as 
part of a spin off social network).  

When initially deploying data on Azure, the 
developer needs to handle the fact that links between 
elements are not supported at this database. This 
therefore needs to be implemented in the application 
code (cf. Section 3.6). Since the target DMSs 
supports links, this does not need to be supported by 
the application any more. However, special care 
needs to be taken during the data migration with the  
application provided implementation of links. This 
should be done in order to avoid data loss during the 
migration or loss of functionality when part of the 
old application code will be fulfilled by the DMS 
itself. 

 
 

5 RELATED WORK 

The main problem addressed by this paper is the one 
of understanding the trade-offs between different 
cloud DMSs, in order to optimize the deployment of 
application data in multiple clouds. Past work has 
tried to address this problem but in different ways. 
We classify these works into two categories: (i) the 
ones that try to hide this complexity from the 
developer, (ii) the ones that allow the developer to 
work on surpassing such complexity.  

We consider that approaches in the first category 
are not best suited to developers that need to extract 
the most from cloud data stores, since any black box 
that hides the real complexity of the DMSs is going 
to be efficient only in a restricted set of situations. 
The present work falls in the second category, but 
differently from other works, that try to provide 
tools under which the developer can himself try to 
bridge the semantic gap between different tools, we 
show explicitly the gap and the involved gaps to the 
developer. 

In the first category we would put the systems 
that try to automatically bridge the gap between 
different database categories. This group starts out 
by the tools that facilitate the use of relational data 
stores by object oriented applications (DB-UML 
Database Modeling Tool) (Hibernate: Relational 
Persistence for Java and .NET) (DeMichiel, 2009).  

In the non-relational word some tools try to do 
the same. A first set of tools (Acid House) 
(Kundera) (PlayORM) (DataNucleus Access 
Platform) (Hibernate Object/Grid Mapper) 
(Morphia) reuses the concepts defined by JPA, 
which is a very popular system of annotations over 
Java code (i.e. an object oriented model of data), to 
translate an object oriented model represented by a 
set of Java classes into a non-relational databases. 
Other tools do the same thing for relational models 
(Toad for Cloud) (eobjects.org MetaModel). They 
provide a relational SQL-based interface to non-
relational NoSQL databases, allowing existing 
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relational modelling approaches to be reused to 
model non-relational databases. Finally, Spring Data 
(Spring Data), provides different interfaces for 
different NoSQL databases. 

This comes with the drawback of the inherent 
loss of information in the translation process or the 
loss of “object-orientedness” in the object oriented 
model in some corner cases.  

Other approaches do not try to hide the non-
relational concepts behind relational ones, but 
instead, propose unified abstract modelling 
languages. These languages try to represent the 
common concepts that are present in many different 
non-relational stores in a uniform way. Two 
examples of such languages are FQL (Federated 
Unfied Query Language, FunQL) and UnQL (UnQL 
Specification). The former received this name 
because it was created to support “federations” of 
databases. A federation of databases is a set of data 
stores, possibly storing data under different 
paradigms (relational or non-relational). The FQL 
language is then based on SQL but is able to query 
non-relational data bases. Its main drawback is that 
it supports only data retrieval, i.e. it provides no 
Data Definition Language. A similar approach for 
dealing with federated databases can be found in 
(JBoss Teiid). The UnQL language stands for 
Unstructured Query Language. It follows a similar 
approach, but is limited to unstructured (and 
therefore non-relational databases). It is targeted 
only to data stores containing JSON documents. 

On the second category we will find tools such 
as such as Pentaho (Pentaho)  and Yahoo! Pipes 
(Yahoo Pipes), which are Data Integration tools. 
They offer visual editors that allow one to describe 
how data coming from different sources, following 
different schemas and data types can be mapped into 
different data types and then fed to other systems. 
The semantic gap between different DMSs needs to 
be understood and filled by the developer. 

In scientific literature, some papers also discuss 
the differences between the offerings of cloud 
providers and their supported DMSs. A good 
example of this kind of work is (Rimal, Sch. of Bus. 
IT, Choi, & Lumb, 2009). In this work, the different 
cloud providers are described along with their 
features and storage solutions. However the referred 
paper focuses on runtime characteristics (security, 
load balancing, fault tolerance etc.) and not on the 
impact of the design time storage choices to the 
cloud application. 

More recent works such as (Cattell, 2010), 
(Hecht & Jablonski, 2011) and (Moniruzzaman & 
Hossain, 2013) go into the concepts behind different 

DMSs, their runtime properties, preferred use cases 
and supported queries. However these works  are 
usually restricted to some specific kinds of cloud 
storage (usually variations of key-valued stores), and 
compare tools mostly based on runtime 
characteristics instead of design time ones. 

6 CONCLUSION 

The multiplication of cloud providers has both 
positive and negative impacts on industrial 
applications. On the one hand, the increasing 
availability and multiplicity of cloud providers 
allows for the existence of clever applications 
profiting from the best of different providers. On the 
other hand, the fragmentation of the market makes 
developing such applications much harder. In 
particular, maintaining them (fixing bugs and 
eventually moving to other clouds) becomes much 
harder than for regular non-cloud applications.  

In this paper we investigated this problem in the 
point of view of the developer that needs to design 
data structures that will be potentially deployed on 
different clouds and on different data management 
systems (DMS). More specifically, we investigated 
the main concepts behind the different DMS and the 
semantic gap between different databases.  

The present work is a first step on the direction 
of providing some automated support to developers 
and is going to be extended as part of the FP7 
projects MODAClouds and JUNIPER. As future 
works, we are currently working on providing 
automated tools for analysing data models and 
proposing better data structures, and verifying if 
they respect a given set of real-time constraints on a 
multi-cloud setting. The extension of the model 
presented in this paper with other concerns unrelated 
to data structures (i.e. support to transactions, 
programming language integration etc.) is also under 
consideration. 
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