
Multi-cloud and Multi-data Stores
The Challenges Behind Heterogeneous Data Models

Marcos Aurélio Almeida da Silva and Andrey Sadovykh
Research and Development, Softeam, 8 parc Ariane Immeuble Le Jupiter, SOFTEAM, 78284 CEDEX, Guyancourt, France

Keywords: Data Stores, NoSQL, Data Migration.

Abstract: The support to cloud enabled databases varies from one cloud provider to another. Developers face the task
of supporting applications living in different clouds, and therefore of supporting different database
management systems. To them, the challenge lies in understanding the differences in expressivity between
different data stores and their impact on the application. The advent of the NoSQL movement increased the
complexity of this task by leveraging the creation of a large number of cloud enabled database management
systems employing slightly different data models. In this paper, we will present a model the will allow us to
compare the differences in expressivity of the features supported by different databases and consider the
impact of these features to different concrete deployment scenarios in multiple clouds. This model is based
on the underlying data models adopted by the most used cloud database management systems. It has been
developed on the FP7 JUNIPER project and will be the basis of our approach for dealing with these issues.

1 INTRODUCTION

A decade after the advent of the first cloud based
solutions, it is clear to companies that migrating to
cloud platforms is cost effective (Rackspace, 2013).
The success of the cloud lead to the advent of
multiple cloud provider offerings. As in any nascent
market, there are no established standards.
Economically speaking, on the one hand, the
multiplication of offerings reduces the prices and
makes cloud and multi-cloud applications more and
more interesting to companies. On the other hand,
the consequent fragmentation of the market, makes
the life of cloud developers harder, since it increases
the complexity of the development and maintenance
of applications.

In this paper we focus on the challenges related
to data stored on the cloud. The problem stems from
the fact that different cloud providers support
different database management systems (DMS).
Developers have a variable degree of flexibility,
ranging from the one they have on Infrastructure As
a Service providers, in which virtually any DMS can
be installed; to the one they have in the Platform as
A Service providers, usually supporting a very
specific subset of DMSs. Finally, in the Software as
a Service providers, developers are usually only able

to store data opaquely and this data is only later
accessible by means of a provider specific APIs.

The consequences of this fragmentation of the
support of DMSs by cloud providers are amplified
by the so-called NoSQL “movement”. This
“movement” consists of a series of DMSs that strip
the well-known SQL based relational DMSs from
some for their characteristics in order to increase
their performance. The problem is that different
applications usually have different performance
bottlenecks, which leads to different sets of
optimizations that need to be applied to SQL DMSs
to make them adapted to each application. This lead
to the existence of a myriad of NoSQL DMSs, each
one based on a slightly different set of optimizations
on the SQL DMSs or even on completely different
data models, fine-tuned to specific applications.

For a developer, building and maintaining a
cloud application means dealing with all this
fragmentation. The main hypothesis of this paper
is that in order to deal with these concerns, one,
first of all, needs to understand the differences in
expressivity between the data models provided by
different DMSs and the potential difficulties in
migrating data from one model to another. In this
paper we are going to present the main concepts
behind most used cloud DMSs, and the semantic
gaps between them. We are then going to present a

703Aurélio Almeida da Silva M. and Sadovykh A..
Multi-cloud and Multi-data Stores - The Challenges Behind Heterogeneous Data Models.
DOI: 10.5220/0004974607030713
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (MultiCloud-2014), pages 703-713
ISBN: 978-989-758-019-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

classification of the DMSs according to these
concepts and we’ll use this classification in a case
study in which we identify the best DMSs to support
parts of the data manipulated by an application.

The present work is a first step towards what we
intend to achieve in the EU FP7 projects
MODAClouds and JUNIPER. They intend to tackle
such challenges by means of the model driven
approach to allow developers to model their
application on a very high level. Developers can
then have their models analysed by automated tools
and to have code automatically generated from it.
The MODAClouds project focuses on public clouds
and in providing automated tools to help data design.
The JUNIPER project focuses on private clouds and
in providing analysis tools to make sure that a
particular set of DMSs respects a given set of real
time constraints.

This paper is structured as follows. Section 2
details the context of data management in multi
cloud applications and introduces the fragmentation
of databases in this domain. Section 3 presents the
most important concepts used in multi-cloud DMSs
and a classification of the most important DMSs.
Section 4 presents the trade-offs in migrating to and
from different classes of DMS. Finally, in Sections 5
and 6 we present related works and conclusions of
this paper.

2 MULTI-CLOUD
APPLICATIONS AND THE
NOSQL “MOVEMENT”

2.1 Overview

The cloud started as a way to offer all this as a
service, in a “pay as you” go way. That means that
the cloud provider would create a big data centre,
and would use it to offer virtual machines to clients.
On top of purely infrastructure driven cloud
solutions, platform driven ones came into being. In
this case, cloud providers do not offer virtual
machines and storage device, but instead, they offer
software platforms. The customer then is only
responsible for installing the necessary software on
the platform while the cloud provider will dimension
the needed machines, storages and load balance
strategies for the user’s application (Khajeh-
Hosseini, Greenwood, & Sommerville, 2010).

The main disadvantage of clouds is that users
have much less flexibility than in a “on premises”
solution. Each cloud provider provides only a

limited set of configurations of machines, storage
and platforms, while on premise solutions allow for
unlimited sets of configurations. Each cloud is also
optimized for a limited range of applications, i.e.
some clouds are optimized to running applications
involving fast running queries and long running
background processes; while others may also accept
long running queries over data. One way to mitigate
this heterogeneity problem is to use multiple cloud
providers, putting parts of the application on each
provider, trying to find the best match between the
cloud and the application (Liu, Katsuno, Sun, & Li,
2011) (Singh, Kandah, & Zhang, 2011).

As one could expect, the data storages supported
by each cloud provider vary from one offering to
another. This is so, because data storage is nowadays
a much complicated matter than it was years ago. It
doesn’t consist anymore of choosing between
traditional relational databases or home grown file
based data formats. Now, developers have a myriad
of Data Management Systems (DMS), each of them
optimized to a particular set of data structures. This
is the result of the NoSQL “movement”, which in
fact intends to improve the efficiency of relational
DMSs by constraining the data structures they
support and the queries that they can answer.

The downside for the programmer is that
designing a cloud application is not only a matter of
choosing the “cheapest cloud provider”, but
choosing the provider that supports the DMSs
backed by the best data structures to represent the
application data. One still needs to think about the
cost and performance costs involved in transferring
data from one cloud to another, and consequently
from one DMS and backed data structure to another.

The main objective of this paper is helping
developers in choosing the best DMSs for their
data and in understanding the performance and
expressiveness trade-offs involved in moving data
from one DMS to another. In order to do so, we
intend to provide a model of the data structures and
queries supported by existing NoSQL and SQL

Figure 1: Overview of the MiC Application.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

704

based DMS. Developers will then be able to develop
high performance applications, losing the least as
possible when moving data from one DMS to
another.

2.2 Motivating Example: The MiC
Application

The MiC (Meeting in the Cloud) application (F., D.,
M., D., & E., 2013) is a social network which allows
users to maintain user profiles in which they register
they topics of interests. The MiC application then
groups users by similarity, allowing users to interact
with their “best contacts”, based on the answers
given by each user in their profiles. Figure 1
overviews the main workflow of use of the MiC
application.

Figure 3 presents a simplified view of the data
model behind the MiC application. It stores,
Messages posted by UserProfiles in Topics
associated to Questions. UserRatings store
ratings given by UserProfiles to Topics.
UserRatings also include Pictures of users.
Finally, and UserSimilarity stores pairs of
similar users.

When developing this application, developers
need to decide on using an infrastructure or platform
as a service solution; and then on which specific
provider the application is going to be deployed.
When it comes to designing the data layer of the
application, the developer has to decide on which
DMSs will be reused and which part of the data is
going to be stored on each DMS.

In order to illustrate the complexity of these
choices, let us suppose the developers want to use
platform as a service cloud providers, in order to
reduce the cost of managing the infrastructure and to
focus on the application design. Suppose they want
to choose between Microsoft Azure, Heroku and
Google App Engine.

Provider DMS

Microsoft Azure
Table Service, Blob

Service

Heroku
Postgres, Cloudant

add-on
Google App Engine Datastore, Blobstore

Figure 2: Comparing possible platform as a service
providers for the MiC application.

Without going into the details on each DMS,
Figure 3 shows that each provider includes a variety
of different data stores. Each DMS supports slightly

different kinds of data, with different levels of
details.

For example, on the one hand, blob services
support hash like structures that associate binary
data to unique keys. On the other hand, table
services, Google Datastores and the Cloudant add-on
store multiple pieces of data associated to a single
key. The former are optimal for queries on leys,
while the later may support filters and more complex
queries on the values associated to each key.

On top of that, each provider has different
pricing strategies. The developer then needs to
understand the trade-offs when designing the MiC
application, in order to eventually store part of the
data in one cloud and part of the data on another.

Figure 3: The data model of the MiC Application.

This paper focuses on the trade-offs involved in
store different kinds of data in different DMSs,
eventually in different cloud providers. The cost
optimization involved in this task is out of the scope
of the present paper.

3 CLOUD BASED DMS
CONCEPTS AND
COMPARISSON

In this section we present the main concepts
concerning the data design in a Big Data Real-time
system. These concepts are going to be presented in
Section 3.1 and used to compare the most popular
DMSs in Section 3.2.

3.1 Main Concepts

The main concepts related to data structures are
summarized in Figure 5. They are based on an

Multi-cloud�and�Multi-data�Stores�-�The�Challenges�Behind�Heterogeneous�Data�Models

705

extensive review of relational and NoSQL DMSs
initially published in (SOFTEAM; University of
York, 2013). The first aspect to be dealt with at this
section is the Underlying Data Abstraction
supported by the database. That is important because
storing the same data under different data
abstractions may lead to data loss and/or increase the
complexity of the application code.

The next aspect is the one of how each system
uniquely identifies data stored in it. This is usually
done by means of a piece of data called Key. Notice
that keys are dispensable in object oriented
databases; because objects are unique by themselves,
no matter the data they contain. Keys may be atomic
or composed of many pieces of data (they are then
called Composite Keys). Additionally, File Paths
are special kinds of keys that uniquely identify
documents in file systems. Finally, keys may be
Ordered or not.

The Values stored in the database are
represented differently from one system to another.
They can represent Single or Multiple columns
containing primitive types only or Documents,
which stand for non-structured blobs of information.
Finally, columns may be Single or Multi-valued

Links between different pieces of information
are established differently in different kinds of
database. In tuple based ones, Foreign-Keys are
generally used, while in object oriented ones
Relationships are used. A relationship is a direct
link from an object to another, allowing navigation
usually in constant time. Foreign-keys link two
tuples by adding the key from one tuple as part of
the columns represented in another. Lookups from
tuples using foreign-keys may vary from logarithm

time complexity in single primitive ordered keys, to
linear time in non-ordered keys.

Different tools also provide different strategies
for Aggregating data. Tuple Spaces and Regions
group objects or tuples in different containers, so
that items that are most accessed together (from a
single region) can be retrieved more quickly. Tuple
spaces differ from regions by the fact that they are
also a concurrent programming mechanism:
processes can put and take tuples from the tuple
space, i.e. no two processes can take the same tuple
at the same time. The third aggregation technique is
called Column Families. In this case, the columns
that form each tuple are grouped into families of
columns that should be stored together, accelerating
analysis over the whole column (e.g. summing all
values).

3.2 Comparing Cloud based DMSs

Figure 5 presents and compares the main kinds of
Big Data databases based on the concepts presented
in the previous section and presents the main
implementations for each category of database.
Distributed File Systems represent data as an
association between file paths (used as keys) and
documents (that represent file content). The
underlying data abstraction paradigm is the object
oriented one, i.e. files are not uniquely identified by
their content, but only by their paths (usually,
several paths may point to a single file).

The Key-Value Stores represent data as simple
tuples containing simple primitive keys and a single
column of data. Ordered Key-Value stores support

Figure 4: Kinds of Data Structure related concepts.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

706

ordered keys, and therefore allow retrieval of ranges
in linear time on the length of the range, whereas in
Key-value systems this operation may be quadratic.
Document Stores are also a special case of key-
value stores in which the single column in each row
(apart from the key) can store a arbitrarily complex
document. Notice that these four kinds of data stores
may be referred to generally as Key-Value Stores.

Big Tables are tuples with a primitive key and
multiple columns aggregated in families and rows
that can be grouped into regions. Object Databases
represent objects which contain multiple columns
(or fields) and are connected by means of
relationships. Multivalued Databases are systems
that allow more than one value to be stored at a time
for a column. Expressiveness and PErformance
Trade-offs.

Tuple Stores are databases that support tuple
spaces. Finally, Relational Databases are tuple
based databases supporting composite keys and
foreign keys.

This section presents the trade-offs in the
different data structures used by different DMSs and
in the underlying limitations of these structures.
Notice that complexity estimates are given relative
to abstract algorithms needed to back such structures
on the general case. Specific versions of sets of
configuration parameters of some DMSs may
achieve better time or space complexity for specific
classes of input, which are out of the scope of this
paper.

Category
Underlying

Data
Abstraction

Keys Values Links Aggregation Examples

Distributed File
Systems Object Primitive

(File Path)
Document - - HDFS, Lustre

Key-value Store Tuple Primitive Single
Column

- - Amazon
DynamoDB

Ordered Key-
value Store Tuple Ordered Single

Column
- - Memcache DB,

Redis

Document Store Tuple Primitive Document - -
MongoDB,

CouchDB, Riak
SimpleDB

Big Table Tuple Primitive Multiple
Columns -

Column
Families,
Regions

Google
BigTable,
Cassandra,

Object
Database/RDF

Store
Object -

Multiple
Columns Relationships -

Neo4j,
RavenDB,
FlockDB,

InfiniteGraph

Multivalued
databases Tuple

Multiple
Multivalued

Columns
 - jBASE, Caché

Tuple store Tuple - Multiple
Columns - Tuple Spaces

Gigaspace,
Javaspaces,
Tarantool

Relational
Database Tuple Composite

Primitive
Multiple
Columns

Foreign Keys - MySQL

Figure 5: Comparing cloud enabled databases.

Multi-cloud�and�Multi-data�Stores�-�The�Challenges�Behind�Heterogeneous�Data�Models

707

3.3 Underlying Data Abstraction:
Tuples x Objects

In practice, tuple based data models are the best
suited for data aggregation, while the object based
ones are the best suited for navigation. To illustrate
that, let us consider a social network with tenths of
millions of users. On the one hand, when storing
data for computing statistical information about
these users, e.g. they average age, one should prefer
a tuple based data model (probably on top of a
vertical partitioning scheme). On the other hand,
when storing data for computing properties of the
graph of friend-to-friend connections, e.g.
computing a series of suggestions of products to buy
for each user based on his/her friends, one should
prefer an object oriented data model (probably using
horizontal partitioning).

Expressiveness trade offs
Tuples are uniquely defined by their contents,

while objects are unique by themselves, the main
consequence of that is that two objects with the same
contents will be interpreted as the same tuple, unless
an internal identifier field is created to ensure
uniqueness of objects.

Performance trade offs
● Navigating between tuples is a linear time

operation1, while it is a constant time operation
for objects. Hashing techniques can be used to
reduce this time, but they imply extra memory
cost.

● Operations on all tuples (e.g. filtering,
aggregating and bulk updates) are cheap on
tuples but may be expensive on objects.

3.4 Keys

3.4.1 Primitive x Composite

Keys are used for uniquely identifying elements and
for retrieving them from the database.

Expressiveness trade offs
● Migrating from composite to primitive keys

has the disadvantage that the uniqueness
constraint on the multiple parts of the key
will not be enforced by the DMS, it thus
needs to be enforced by the application.

Performance trade offs
● Furthermore, the DMS may not be able to

retrieve an element my multiple keys, this
may increase the cost of element retrieval if
it needs to be implemented by the
application.

3.4.2 Non-Ordered x Ordered

This feature is mainly used to speed up retrieval
operations, it however slows down insert and
deletion operations.

Expressiveness trade offs
None
Performance trade offs
● This has a great impact on the query

patterns that are natively supported by
database systems and on their
computational cost. If keys are ordered, one
can retrieve a range of keys in linear time,
while for an unordered set, the worst case
of this operation has a quadratic time
complexity.

3.5 Values

3.5.1 Single x Multiple

The main advantage of supporting single columns is
that the schema of the database normally doesn’t
need to be defined in advance.

Expressiveness trade offs
● Migrating from single to multiple DMSs is

trivial. Conversely, multiple columns can
easily be simulated as metadata attached to
documents, however, in most databases, the
schema associated to multiple DMSs may
be lost in this translation.

● Single DMSs normally do not support
queries other than given a key returning or
changing the value associated to it.

Performance trade offs
● The ability of storing multiple columns for

a single value is a mere convenience
offered by the DMSs. Migrating from
multiple to single valued databases will
certainly increase the complexity of the
application code decoding the values stored
in the database or encoding sets of objects
into a single value.

3.5.2 Primitive x Documents

Documents are complex structured elements,
ranging from a binary blob annotated with metadata
to complex trees of elements. They are mainly used
to de-normalize the data model, and then increasing
retrieval speed of large amounts of data.

Expressiveness trade offs
● As for single x multiple values, documents

can be represented as primitive values, but

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

708

this will increase the complexity of the
application code.

Performance trade offs
● Going from primitive to document based

may be trivial, but will certainly sub
utilise the resources of the DMS.

3.5.3 Single x Multivalued

Multiple values are usually a syntactic sugar
provided by DMSs as they can usually be
implemented at application side without too much
increase in complexity.

Expressiveness trade offs
 The ability of storing multiple values

can be seen as a mere convenience
offered by the DMSs, but migrating
from multiple to single valued
databases will certainly increase the
complexity of the application code
decoding the values stored in the
database or encoding sets of objects
into a single value.

Performance trade offs
None

3.6 Links: Relationships x
Foreign-Keys x No Relationships

To put it simply, relationships are links between
objects whereas foreign keys represent links
between tuples. In order to understand the trade-offs
between both cases, refer to the subsection on
objects and tuples.

Expressiveness trade offs
● Migrating from a DMS without

relationships to one with relationships or
foreign keys is easy, but the other way is
not. In this case one needs to simulate
relationships on the application code.

Performance trade offs
● The trade-off here will be between finding

elements in linear time or updating and
deleting elements in linear time.

● On tuple based DMSs,
navigating will take linear time, which may
become a bottleneck on the long run.

● On Document based DMSs, one
can try to de-normalize the data model, but
that will increase the complexity of the
code associated to update and delete
operations.

3.7 Aggregation: Column Families X
Regions or Tuple Spaces

Column families and regions are best suited to
completely different use cases. The former target
queries that aggregate information on a subset of
columns while the later target queries that collect
information on subsets of elements. These
approaches imply completely different partitioning
strategies: the former allocates columns to different
nodes while the later allocates elements to different
nodes.

Expressiveness trade offs
None
Performance trade offs
● Running queries that are not appropriate to

a particular kind of database may result in
huge bottlenecks since the DMS needs to
look up data in potentially all nodes in
order to answer to queries.

4 APPLICATION TO THE MIC
MULTI-CLOUD CASE STUDY

In this section we use our concepts and trade off
analysis to compare six DMS from three different
platform as a service providers on the MiC case
study presented in Section 2.2.

4.1 Method

The main objective of such comparison is to
understand the trade-offs involved in representing
data in one of the target DMSs. Notice that in this
case study we limited ourselves to comparing the
DMSs provided by large-scale generic providers
addressing any kind of application as they would be
the first clouds to consider for application
developers. As explained in Section 2.2, the
motivation for this analysis to developers, is to
understand the hidden costs involved into storing
parts of the application on different cloud providers.

The targeted use cases are mainly the choice of
initial DMS to store data, and besides to eventually
carry a migration from one data store to another. In
order to do that, our method consists in classifying
the data we need to represent and the data supported
by the target DMSs. The comparison of the needed
and available support will hopefully guide the
developer into writing the code of the application
and to avoid pitfalls involving eventual
incompatibilities between DMSs.

Multi-cloud�and�Multi-data�Stores�-�The�Challenges�Behind�Heterogeneous�Data�Models

709

Figure 6: Case study: comparing storage options for the MiC application.

Figure 6 presents the result of this comparison for
both the application data model and the target cloud
DMSs (detailed respectively in Sections 4.2 and 4.3.

4.2 Analysing the Application Data
Model

We divide the data model presented in Figure 3 into
three parts, presented on the top part of Figure 6. For
the sake of simplicity we didn’t include all parts of
the data model in this comparison. The three parts
are: (i) the UserProfile, concerning the user
profiles and related pieces of information; (ii) the
UserSimilarity, concerning the data store that
stores the users that are similar to a given user
profile; and (iii) the Picture, concerning the
picture linked to each user profile.

We classify each part of the data model using the
concepts presented in Section 3.1. User profiles are
object oriented information, because two profiles
may refer to the same pieces of information and still
represent different users. UserSimilarity and
Picture are different, because they should refer or
belong to a specific user profile. In all cases, no key
ordering is necessary in the MiC application.
However, the ability to group pieces information by
“region” is important in all cases: user profiles and
related data a very geographically specific, and
should all be located in the same geographic region
to speed up computation. When it comes to values
and links, user profiles should contain primitive
values to represent the pieces of information that
compose a user profile (e.g. name, gender, location,
data of birth etc.). Pictures only contain a binary
blob representing the picture, and the user similarity
only contain references to similar user profiles.

4.3 Analysing Target Cloud DMSs

At the bottom part of Figure 6, we present the
platform as a service providers presented in Figure 2
and their respective DMSs. We then classify the
DMSs according to the same criteria used to classify
the parts of the data model on the top of the table.
All DMSs represent tuples, i.e. they do not support
objects directly. They also enforce the use of
primitive keys and most of them (except for
Postgres, a relational database) do not support links
or foreign-keys between tuples. Only Azure DMSs
and the Google Data store support grouping
elements that need to be accessed in the proximity of
a geographic area. The main difference between the
supported DMSs is in the supported expressiveness
of columns/values: Azure Table Storage, Postgres
and the Google Datastore all support multiple
primitive single valued values. The Azure Blob
storage, Heroku cloudant and Google Blob storage
all support one single valued value, which may be a
document in Cloudant, or a single value in the other
ones.

4.4 Analysing Cloud Migration
Scenarios

Figure 7 overviews the trade-offs that need to be
faced by a developer intending to develop the MiC
application and host it on the three target platform as
a service providers. Notice that different DMSs have
different trade-offs that need to be taken into
account during application development and future
maintenance and eventual migration. Let us show
how this table may be useful in two eventual
migration scenarios.

Based on the analyses provided in Figure 6 and
Figure 7, in the next section we will analyse to
specific hypothetical deployment and migration

Underlying

Data

Abstraction Keys Values Links Aggregation

Application Data

User Profile Objects Non‐ordered Multiple, Primitive, Single Yes Regions

UserSimilarity Tuple Non‐ordered ‐ Yes Regions

Picture Tuple Non‐ordered Single, Primitive, Single No Regions

PaaS under consideration DMS

Azure

Table Storage Tuple Primitive, Ordered Multiple, Primitive, Single ‐ Regions

Blob Storage Tuple Primitive Single, Primitive, Single ‐ Regions

Heroku

Postgres Tuple Primitive Multiple, Primitive, Single Foreign Keys ‐

Cloudant Tuple Primitive Single, Document, Single ‐ ‐

Google App Engine

Datastore Tuple Primitive Multiple, Primitive, Single ‐ Regions

Blob Storage Tuple Primitive Single, Primitive, Single ‐ ‐

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

710

Figure 7: Trade-offs between DMSs.

scenarios.

4.4.1 Migration Scenario 1

Let us suppose that the developer chooses the Azure
blob storage to store the user profile pictures since
there are no significant differences between the
required and provided expressiveness. If later the
company decides to migrate to Heroku Cloudant or
Google App Engine Blob Storage, the developer
needs to notice that these DMSs do not support the
aggregation of tuples by geographic region/access
frequency. Both databases provide a generic
algorithm that distributes data and then balances
query answering resources. As described in Section
3.7 this may generate a performance bottleneck if
data is not properly distributed. Developers should
be therefore aware of this potential limitation.

4.4.2 Migration Scenario 2

In this scenario, let us suppose that the developer
decided to deploy the UserSimilarity part of
the data model in an instance of Azure Table Storage
and that in the future, she or he decides to deploy
part of this information in Heroku Postgres (e.g. as
part of a spin off social network).

When initially deploying data on Azure, the
developer needs to handle the fact that links between
elements are not supported at this database. This
therefore needs to be implemented in the application
code (cf. Section 3.6). Since the target DMSs
supports links, this does not need to be supported by
the application any more. However, special care
needs to be taken during the data migration with the
application provided implementation of links. This
should be done in order to avoid data loss during the
migration or loss of functionality when part of the
old application code will be fulfilled by the DMS
itself.

5 RELATED WORK

The main problem addressed by this paper is the one
of understanding the trade-offs between different
cloud DMSs, in order to optimize the deployment of
application data in multiple clouds. Past work has
tried to address this problem but in different ways.
We classify these works into two categories: (i) the
ones that try to hide this complexity from the
developer, (ii) the ones that allow the developer to
work on surpassing such complexity.

We consider that approaches in the first category
are not best suited to developers that need to extract
the most from cloud data stores, since any black box
that hides the real complexity of the DMSs is going
to be efficient only in a restricted set of situations.
The present work falls in the second category, but
differently from other works, that try to provide
tools under which the developer can himself try to
bridge the semantic gap between different tools, we
show explicitly the gap and the involved gaps to the
developer.

In the first category we would put the systems
that try to automatically bridge the gap between
different database categories. This group starts out
by the tools that facilitate the use of relational data
stores by object oriented applications (DB-UML
Database Modeling Tool) (Hibernate: Relational
Persistence for Java and .NET) (DeMichiel, 2009).

In the non-relational word some tools try to do
the same. A first set of tools (Acid House)
(Kundera) (PlayORM) (DataNucleus Access
Platform) (Hibernate Object/Grid Mapper)
(Morphia) reuses the concepts defined by JPA,
which is a very popular system of annotations over
Java code (i.e. an object oriented model of data), to
translate an object oriented model represented by a
set of Java classes into a non-relational databases.
Other tools do the same thing for relational models
(Toad for Cloud) (eobjects.org MetaModel). They
provide a relational SQL-based interface to non-
relational NoSQL databases, allowing existing

Trade offs: Azure Heroku Google App Engine

Data x DMS Table Storage Blob Storage Postgres Cloudant Datastore Blob storage

User Profile

Objects x Tuples

No links

Objects x Tuples

Multiple = Single

value

No links

Objects x

Tuples

FK for links

No regions

Objects x tuples

Multiple => Single value

No regions

No links

Objects x Tuples

No links

Objects x

Tuples,

Multiple x

Single value,

No links,

No regions

UserSimilarity No links No links No regions No regions No links

No links,

No regions

Picture No regions No regions No regions

Multi-cloud�and�Multi-data�Stores�-�The�Challenges�Behind�Heterogeneous�Data�Models

711

relational modelling approaches to be reused to
model non-relational databases. Finally, Spring Data
(Spring Data), provides different interfaces for
different NoSQL databases.

This comes with the drawback of the inherent
loss of information in the translation process or the
loss of “object-orientedness” in the object oriented
model in some corner cases.

Other approaches do not try to hide the non-
relational concepts behind relational ones, but
instead, propose unified abstract modelling
languages. These languages try to represent the
common concepts that are present in many different
non-relational stores in a uniform way. Two
examples of such languages are FQL (Federated
Unfied Query Language, FunQL) and UnQL (UnQL
Specification). The former received this name
because it was created to support “federations” of
databases. A federation of databases is a set of data
stores, possibly storing data under different
paradigms (relational or non-relational). The FQL
language is then based on SQL but is able to query
non-relational data bases. Its main drawback is that
it supports only data retrieval, i.e. it provides no
Data Definition Language. A similar approach for
dealing with federated databases can be found in
(JBoss Teiid). The UnQL language stands for
Unstructured Query Language. It follows a similar
approach, but is limited to unstructured (and
therefore non-relational databases). It is targeted
only to data stores containing JSON documents.

On the second category we will find tools such
as such as Pentaho (Pentaho) and Yahoo! Pipes
(Yahoo Pipes), which are Data Integration tools.
They offer visual editors that allow one to describe
how data coming from different sources, following
different schemas and data types can be mapped into
different data types and then fed to other systems.
The semantic gap between different DMSs needs to
be understood and filled by the developer.

In scientific literature, some papers also discuss
the differences between the offerings of cloud
providers and their supported DMSs. A good
example of this kind of work is (Rimal, Sch. of Bus.
IT, Choi, & Lumb, 2009). In this work, the different
cloud providers are described along with their
features and storage solutions. However the referred
paper focuses on runtime characteristics (security,
load balancing, fault tolerance etc.) and not on the
impact of the design time storage choices to the
cloud application.

More recent works such as (Cattell, 2010),
(Hecht & Jablonski, 2011) and (Moniruzzaman &
Hossain, 2013) go into the concepts behind different

DMSs, their runtime properties, preferred use cases
and supported queries. However these works are
usually restricted to some specific kinds of cloud
storage (usually variations of key-valued stores), and
compare tools mostly based on runtime
characteristics instead of design time ones.

6 CONCLUSION

The multiplication of cloud providers has both
positive and negative impacts on industrial
applications. On the one hand, the increasing
availability and multiplicity of cloud providers
allows for the existence of clever applications
profiting from the best of different providers. On the
other hand, the fragmentation of the market makes
developing such applications much harder. In
particular, maintaining them (fixing bugs and
eventually moving to other clouds) becomes much
harder than for regular non-cloud applications.

In this paper we investigated this problem in the
point of view of the developer that needs to design
data structures that will be potentially deployed on
different clouds and on different data management
systems (DMS). More specifically, we investigated
the main concepts behind the different DMS and the
semantic gap between different databases.

The present work is a first step on the direction
of providing some automated support to developers
and is going to be extended as part of the FP7
projects MODAClouds and JUNIPER. As future
works, we are currently working on providing
automated tools for analysing data models and
proposing better data structures, and verifying if
they respect a given set of real-time constraints on a
multi-cloud setting. The extension of the model
presented in this paper with other concerns unrelated
to data structures (i.e. support to transactions,
programming language integration etc.) is also under
consideration.

ACKNOWLEDGEMENTS

The research reported in this article is partially
supported by the European Commission grant no.
FP7-ICT-2011-8- 318484 (MODAClouds).

The research reported in this article is partially
supported by the European Commission grant no.
FP7-ICT-2011-8- 318763 (JUNIPER).

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

712

REFERENCES

Acid house. (n.d.). Retrieved november 8, 2013, from
https://github.com/eiichiro/acidhouse

Cattell, R. (2010). Scalable SQL and NoSQL data stores.
ACM SIGMOD Record , 12-27.

DataNucleus Access Platform. (n.d.). Retrieved November
8, 2013, from http://
www.datanucleus.org/

DB-UML Database Modeling Tool. (n.d.). Retrieved
November 8, 2013, from http://argouml-db.tigris.org/

DeMichiel, L. (2009). JSR 131:Java Persistence API,
Version 2.0. Sun Microsystems.

eobjects.org MetaModel. (n.d.). Retrieved November 8,
2013, from http://metamodel.eobjects.org/
index.html

F., G., D., L., M., S. Y., D., A., & E., D. N. (2013). An
Approach for the Development of Portable
Applications on PaaS Clouds. Proceedings of the 3rd
International Conference on Cloud Computing and
Service Science (CLOSER 2013), (pp. 591-601).

Federated Unfied Query Language, FunQL. (n.d.).
Retrieved November 8, 2013, from http://funql.org/

Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on
NoSQL database . Pervasive Computing and
Applications (ICPCA), 2011 6th International
Conference on , (pp. 363 - 366). Port Elizabeth .

Hecht, R., & Jablonski, S. (2011). NoSQL evaluation: A
use case oriented survey . Cloud and Service
Computing (CSC), 2011 International Conference on ,
(pp. 336-341). Hong Kong .

Hibernate Object/Grid Mapper. (n.d.). Retrieved
November 8, 2013, from http://www.hibernate.org/
subprojects/ogm.html

Hibernate: Relational Persistence for Java and .NET.
(n.d.). Retrieved November 8, 2013, from
http://hibernate.org

JBoss Teiid. (n.d.). Retrieved November 8, 2013, from
http://www.jboss.org/teiid/

Khajeh-Hosseini, A., Greenwood, D., & Sommerville, I.
(2010). Cloud Migration: A Case Study of Migrating
an Enterprise IT System to IaaS . Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference
on , (pp. 450 - 457). Miami, FL .

Kundera. (n.d.). Retrieved November 8, 2013, from
https://github.com/impetus-opensource/Kundera

Liu, T., Katsuno, Y., Sun, K., & Li, Y. (2011). Multi
Cloud Management for unified cloud services across
cloud sites . IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS), (pp. 164-
169). Beijing.

Moniruzzaman, A. B., & Hossain, S. A. (2013). NoSQL
Database: New Era of Databases for Big data
Analytics - Classification, Characteristics and
Comparison. International Journal of Database
Theory and Application, 1-14.

Morphia. (n.d.). Retrieved November 8, 2013, from
http://code.google.com/p/morphia/

Pentaho. (n.d.). Retrieved November 8, 2013, from
http://www.pentaho.com/

PlayORM. (n.d.). Retrieved November 8, 2013, from
https://github.com/deanhiller/playorm

Rackspace. (2013, February 13). 88 per cent of cloud
users point to cost savings, according to Rackspace
Survey. Retrieved June 2013, from http://
blog.rackspace.co.uk/in-the-industry/88-per-cent-of-
cloud-users-point-to-cost-savings-according-to-
rackspace-survey/

Rimal, B., Sch. of Bus. IT, K. U., Choi, E., & Lumb, I.
(2009). A Taxonomy and Survey of Cloud Computing
Systems. Fifth International Joint Conference on INC,
IMS and IDC, 2009. NCM '09., (pp. 44-51). Seoul.

Singh, Y., Kandah, F., & Zhang, W. (2011). A secured
cost-effective multi-cloud storage in cloud computing .
IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), (pp. 619-624).
Shanghai.

SOFTEAM; University of York. (2013). D5.1 –
Foundations for MDE of Big Data Oriented Real-Time
Systems.

Spring Data. (n.d.). Retrieved November 8, 2013, from
http://www.springsource.org/spring-data

Toad for Cloud. (n.d.). Retrieved November 8, 2013, from
http://toadforcloud.com/index.jspa

UnQL Specification. (n.d.). Retrieved November 8, 2013,
from http://www.unqlspec.org

Yahoo Pipes. (n.d.). Retrieved November 8, 2013, from
http://pipes.yahoo.com/pipes/

Multi-cloud�and�Multi-data�Stores�-�The�Challenges�Behind�Heterogeneous�Data�Models

713

