
Toward a QoS Based Run-time Reconfiguration in Service-oriented
Dynamic Software Product Lines

Jackson Raniel Florencio da Silva, Aloisio Soares de Melo Filho and Vinicius Cardoso Garcia
Center of Informatics, Federal University of Pernambuco, Recife, Pernambuco, Brazil

Keywords: SPL, DSPL, SOA, Software Product Line, Dynamic Software Product Line.

Abstract: Ford invented the product line that makes possible to mass produce by reducing the delivery time and produc-
tion costs. Regarding the software industry, this, roughly presents both a manufacturing and mass production
that generates products that are denoted as individual software and standard software (Pohl et al., 2005): a clear
influence of Fordism in the development paradigm of Software Product Lines (SPL). However, this develop-
ment paradigm was not designed to support user requirements changes at run-time. Faced with this problem,
the academy has developed and proposed the Dynamic Software Product Lines (DSPL) (Hallsteinsen et al.,
2008) paradigm. Considering this scenario, we objective contribute to DSPL field presenting a new way of
thinking which DSPL features should be connected at run-time to a product based on an analysis of quality
attributes in service levels specified by the user. In order to validate the proposed approach we tested it on a
context-aware DSPL. At the end of the exploratory validation we can observe the effectiveness of the proposed
approach in the DSPL which it was applied. However, it is necessary to perform another studies in order to
achieve statistical evidences of this effectiveness.

1 INTRODUCTION

Cost, reusability and ”time-to-marketing” are aspects
of productivity that concern software manufactur-
ers. Moreover, the software configuration manage-
ment becomes increasingly more complex as they in-
crease the possible combinations of software features.
The paradigm of Software Product Lines (SPL) ad-
dress this problem by creating software products from
a common set of characteristics. The management
of the configuration occurs with the variabilities and
commonalities between members of the SPL.

According to the Software Engineering Institute
(SEI)1, a SPL is a set of software-intensive systems
that share a common, managed set of features, sat-
isfying the specific needs of a particular market seg-
ment or mission. The features are developed from a
common set of core assets in a prescribed way. The
benefits of adopting the SPL paradigm depend on the
context in which it is applied. Some of the most com-
mon benefits are the reduction of cost and “time-to-
marketing” promoted by reusing the SPL core assets.

However, dynamic changes in user requirements
and the environment in which the software is housed
at run-time are becoming increasingly frequent, so

1http://www.sei.cmu.edu/productlines/tools/framework/

there is an increasing demand for systems that can
automatically adapt. In 2008, Hallsteinsen (Hallstein-
sen et al., 2008) published a study that described the
concept of Dynamic Software Product Lines (DSPL).
These product lines differ from others by not man-
aging the variability during the design phase of the
software. Instead, it is managed, later at run-time.

The DSPL have five principal characteristics: a)
dynamic variability, b) biding of the elements of
DSPL changes during the life cycle of the application,
c) variation points change at runtime, d) unexpected
changes in the context, and e) development for one
specific context or environment in place of a market
segment (Hallsteinsen et al., 2008).

Optionally, DSPLs may be aware to the context
around them (Parra et al., 2009; Ali et al., 2009;
Alferez and Pelechano, 2011), have autonomic prop-
erties or have self-adaptation (Abbas et al., 2011;
Cetina et al., 2008), and have automatic decision mak-
ing. These characteristics are a challenge to a devel-
opment model of SPLs that manages the variability
out of the design phase.

We propose in this study an approach for analyze
which DSPL features should be connected at run-time
to a product based on an analysis of quality attributes
in service levels specified by the user. The Section

460 Florencio da Silva J., Soares de Melo Filho A. and Cardoso Garcia V..
Toward a QoS Based Run-time Reconfiguration in Service-oriented Dynamic Software Product Lines.
DOI: 10.5220/0004973404600465
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 460-465
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



2 presents in details the problem addressed, Section
3 presents an overview of the literature about DSPL,
the Section 4 presents the proposed approach that are
evaluated in Section 5.

2 PROBLEM STATEMENT

This study is under the MobiLine2 project, which is a
DSPL for context-aware mobile applications divided
into two abstraction levels: base and specific levels.
The base level has common features to the mobile
context-aware domain applications and the specific
level that consists of features that belongs to a par-
ticular business domain (Marinho et al., 2012).

Their applications use contextual information,
such as location, profile, visitor user preferences, and
requests to adapt their own behavior at run time. The
adaptation occurs while connecting features which
are Web services to the product on the mobile device.

The MobiLine project objectives the creation of
a mechanism for automatic adaptation at run-time,
choosing features of the application that will be en-
abled for the user and adapting them according to the
context in which the application operates. The oper-
ation of this mechanism may vary based on rules of
action or condition, may even be modeled by an opti-
mization problem.

The study by Martins (de Oliveira Martins, 2013)
talks about the mechanism of reconfiguration and ser-
vice discovery framework called DYMOS. In this
approach, whenever a reconfiguration occurs on the
client side, a reconfiguration happens on the server
side. However, this study selects what services are on
the server side in an arbitrary manner without making
any analysis of services that will compose the DSPL.

Figure 1 represents the hypothetical scenario that
exemplifies the problems addressed in this study. As
previously reported, the MobiLine product, in run-
time execution, collects contextual information (col-
lected by sensors or device status) and receives stim-
ulus from the user with the information which define
run time adaptations must occur.

When a mobile device adaptation happens, two
situations can occur: a) the request to a Web service
present and active on the server side or b) the request
of a missing or inactive Web service on the server
side.

For situation a), when the service of MobiLine
products are found they are consumed as expected.
In situation b), after the creation of DYMOS when
the service is not found, the framework is responsible

2http://mobiline.great.ufc.br/index.php

Figure 1: Problem Scenario.

for finding a service to replace what is available, in
accordance with an order of priority. If none of the
services organized by priority are available, any ser-
vice that meets the interface required by the mobile
application, is now available.

However, Alferez (Alferez and Pelechano, 2011)
argue that Web services are implemented in com-
plex and heterogeneous environments, and it is ap-
propriate adaptation mechanisms according to con-
textual changes affecting reconfiguration and increas-
ing quality of the service provided. According to Lin
(Lin et al., 2010), from a business perspective, it is
strongly desirable to maximize the quality of a ser-
vice provided given different understandings of what
quality is from different customers’ perspectives.

Hence, the aim of this article is to propose an ap-
proach for selection of features that will compose a
DSPL at run time based on an analysis of the respec-
tive quality attributes.

3 LITERATURE REVIEW AND
RELATED WORK

The aspects related to the reconfiguration in real time
in SPL is a study extensively explored by researchers,
which is treated as part of the derivation of the DSPL
called dynamic derivation (Parra et al., 2009).

In a systematic way of developing dynamically
configurable core assets in a feature oriented approach
Lee (Lee, 2006) developed a reconfigurator that accu-
mulates functions to monitor and manage the config-
uration of a product at run time. The authors believe
that the dynamic derivation can be accomplished by
grouping features in bind units and using a reconfigu-
rator that considers contexts (when to configure), re-
configuration strategies (how to reconfigure) and re-
configuration actions (what to reconfigure). Latter, in
a continuation of the study carried out by the same au-
thor (Lee and Kotonya, 2010) a possible solution for

Toward�a�QoS�Based�Run-time�Reconfiguration�in�Service-oriented�Dynamic�Software�Product�Lines

461



dynamic reconfiguration was described that combines
a feature-oriented analysis and a framework sensible
to the quality of services of an SPL.

Gomaa (Gomaa and Hashimoto, 2011) describes
an architecture for dynamic adaptation of SPL prod-
ucts based in Service-Oriented Architecture (SOA).
This architecture contains a monitoring service that
continuously checks the status of the running system
and forwards it to the calibration service that, perceiv-
ing a situation in the context that requires an action,
sends a request of feature selections to a dynamic de-
vice. This device determines if there is a need for
configuration changes in the running configuration.
It dynamically determines necessary changes for the
feature model of the application and sends the new set
of features for the change management service. It is
in charge of change management service and deter-
mines the difference between the new and actual fea-
tures selection, determines the components and con-
nectors need to be added or removed and generate a
sequence of commands that correspond to adapting to
the changes that need to be made.

Alferez (Alferez and Pelechano, 2011) developed
a method to design and implement autonomous and
context-aware Web services in SPL. The authors ar-
gue that Web services are characterized by features,
and that then the activation and deactivation of fea-
tures at run-time can guide the autonomic reconfig-
uration of services composition according to changes
in context. In this case, the products are a composition
of services. To make it possible for a service com-
position, the authors suggest the creation of a com-
position model made from a UML activity diagram.
This model illustrates the Web services and the flow
sequence between them that determines the order in
which each Web service must be activated.

The relationship between SPL and service-
oriented computing has clearly used by Yu (Yu et al.,
2010) by presenting a methodology for building-
based services for heterogeneous and dynamic envi-
ronments applications. The methodology is divided in
phases of domain engineering, application engineer-
ing and run-time. A development process focused on
domains and inspired by SPL-oriented architecture is
proposed. It is during run-time that, through dynamic
service composition, the reconfiguration happens.

It is interesting to note that SOA follows an ap-
proach of reuse and composition of services whereas
SPL corresponds to an approach by building and de-
composition (Parra et al., 2009). However, the char-
acteristics of these opposing paradigms (composition
and decomposition) are not conflicting since service
composition in a traditional SPL comes at a pre-
derivation time, and decomposition occurs at the the

product derivation moment.
Traditional DSPLs may also not present difficul-

ties for this antagonism. Nevertheless, this problem
certainly affects service-oriented DSPLs thats needs
to decides based on some analysis (e.g., priority, re-
sponse to context, and QoS), which services should be
plugged into at run-time, because derivation (decom-
position) and composition are occurring at the same
time.

About this question, we have examples as treated
by Yu (Yu et al., 2010) in which the service-oriented
DSPL makes the analysis of which services com-
pose the product only checking the availability of
services. Additionally, Lee (Lee, 2006) presents a
service-oriented DSPL where the features are mapped
to services. This DSPL performs an analysis and
planning at run time based on contextual changes to
define which features and, consequently, what ser-
vices should compose the product.

In a later study Lee (Lee and Kotonya, 2010) mod-
ified their approach. In the modified approach, the run
time analysis is made based on service level agree-
ments imposed by product line. In the same manner
as in the studies of Alferez (Alferez and Pelechano,
2011) and Gomaa (Gomaa and Hashimoto, 2011),
where when a break occurs in the service level agree-
ment the framework looks for another service that
satisfies the desired conditions. No details were ex-
pressed in the study about what those conditions (QoS
attributes) or how the trading is done.

The definition of the services that will compose
the service-oriented DSPL based on an analysis of
QoS attributes held for each user request is not present
in the literature studies. This is the objective of the
present study.

4 DYMOS QoS APPROACH

To achieve the objective of this study, we proposed ex-
tending the DYMOS (de Oliveira Martins, 2013) ap-
proach, which is starting to be called DYMOS QoS.
This proposed solution consists of an application de-
veloped in JAVA language and Open Services Gate-
way Initiative (OSGi) and that assesses individual and
collectively attributes of service quality available for
the reconfiguration of the SPL at run time.

Using DYMOS QoS, it is possible to change the
situation b) presented in Figure 1. In this situation,
the service selection to replace the unavailable ser-
vice occur according to the priority arbitrated. With
our proposed approach, the services selection occur
according to the quality of the services available upon
request. It selects the service that has the highest score

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

462



provided by the framework. Although this frame-
work, makes possible to occur a third scenario where
the request for a service ever return a great service for
a certain level of service required.

The framework is structured as shown in the
Figure 2. This architecture presents three descrip-
tor elements: the ServiceDescriptor that describes
what can be binded at run-time in the SPL product;
the VariabilityDescriptor that describes the variation
points; and finally the WSDescriptor that describes
the WSDL of each Web service.

Figure 2: DYMOS QoS Package Diagram.

The ServiceDescriptor uses an XML file to de-
scribe the services. This XML contains a list of struc-
tured fields for each Web service such as a “Id” field
to uniquely identify a Web service, a “serviceSpec”
and “serviceImpl” fields that contains the values that
identify the interface, and an implementation for the
service. Each service description has, optionally, a list
of alternative services that contains a reference for an-
other Web service.

The variability meta data structure utilized by
the VariabilityDescriptor defines a list of variabili-
ties with an identification (ID) by the “id” attribute,
a name via the “name” attribute, and a set of variants.
A variant consists of an ID, a name and a set of service
references.

The WSDescriptor is used for service discovery
operations, and its main function, according to a par-
ticular service provided, is describe attributes that are
not described in the ServiceDescriptor and are spe-
cific to each implementation of a service as “Service-
Name”, “PortType”, or “Target Namespace”. Thus,
WSDescriptor allows greater flexibility to the frame-
work, adding dynamic and loosely coupled character-
istics.

The components responsible for the QoS analysis
are the ServiceLevelProvider and the Broker. The first
one stores contextual information about the Web ser-
vices stored in a structured way in an XML file and
update this information according to changes in the
context. The Broker component is in charge of ana-

lyzing the quality attributes of each service in run time
during the service discovery.

In order to be possible to the Broker perform that
analysis the ServiceLevelProvider XML stores some
quality attributes, such as service level, maximum
capacity, current capacity, response time, and cost.
The broker analysis calculates the utility (Yu and Lin,
2005) of each service at the chosen service level and
sends to the ServiceContex component.

The utility function can be seen in the Equation 1,
where wb and wc are the weights of the benefit an the
cost, b(s; l) and c(s; l) are the benefit and the cost by
choosing service s in the level l, avgb and avgc are the
average benefit and the average cost for the available
services in the chosen service level, and finally stdb
and stdc are the standard deviation of benefit and cost.

F(s; l) = wb � (
b(s; l)�avgb

stdb
)+wc � (1�

c(s; l)�avgc

stdc
)

(1)

This equation uses the results of the benefit func-
tion that are calculated by subtracting the current ca-
pacity of a service from their max capacity on a ser-
vice level and dividing the result by the max capacity
in the chosen service level. That means that the bene-
fit is a rate of the Web service load.

The ServiceContext component makes use of all
descriptors components. The use of these components
allows the ServiceContext to get all the information
described in the form of Java objects, allowing man-
agement of variability and services described. This
management is to use the information on Variability
and services for manipulating the OSGi container.

The component ApplicationService was imple-
mented to act as a facade, creating an isolation be-
tween the client and the other framework components.
Thus, it reduced the number of objects that clients
needed to deal with. The main objective of the com-
ponent is to expose operations, thus allowing the ser-
vice discovery and the variability management.

These operations are provided by means of Web
services, so that all incoming requests should be dele-
gated to the ServiceContext component so that they
can be treated. This component was implemented
using iPOJO to get it in the form of OSGi bundle
and DOSGi CXF to expose their functionality through
Web services.

5 PRELIMINARY VALIDATION
CASE

In order to validate the proposed approach, we then
applies it in the products of the MobiLine. To do

Toward�a�QoS�Based�Run-time�Reconfiguration�in�Service-oriented�Dynamic�Software�Product�Lines

463



so, first it was necessary adequate the client side of
the DSPL and before configure the DYMOS QoS by
making the XML files necessary for the descriptors
and ServiceLevelProvider components.

To the DYMOS QoS approach to be fully func-
tional, each time a service will be called in the client
side the wanted service level and the end point of this
service need to be refreshed. This is done by making
a call to the requireLevel() and getServiceEndPoint()
methods of the ApplicationService Web service from
the framework.

The variabilities XML handled by the Variability-
Descriptor maps the variants to their respective vari-
abilities. Thus, to the framework a variant can be ac-
tivated by the client just when the variability is ac-
tivated. This is part of the static derivation process
of the MobiLine and is well described by Martins
(de Oliveira Martins, 2013).

Listing 1: Services XML File.
<?xml version="1.0"?>
<services>
...
<service id="imageService"
service-impl="com.assertLab.imageServiceImpl">
<service-spec>
com.assertLab.imageService
</service-spec>
<alternative-service ref="imageService1" />
<alternative-service ref="imageService2" />
<alternative-service ref="imageService3" />
<alternative-service ref="imageService4" />
<alternative-service ref="imageService5" />

</service>
<service id="imageService1"
service-impl="com.assertLab.imageService1">
<service-spec>
com.assertLab.imageService
</service-spec>
</service>
<service id="imageService2"
service-impl="com.assertLab.imageService2">
<service-spec>
com.assertLab.imageService
</service-spec>
</service>
<service id="imageService3"
service-impl="com.assertLab.imageService3">
<service-spec>
com.assertLab.imageService
</service-spec>
</service>
<service id="imageService4"
service-impl="com.assertLab.imageService4">
<service-spec>
com.assertLab.imageService
</service-spec>
</service>
<service id="imageService5"
service-impl="com.assertLab.imageService5">

<service-spec>
com.assertLab.imageService
</service-spec>
</service>
...
</services>
</variabilities>

Listing 2: QoS Attributes XML File.
...
<serviceLevel id="1">
<cost>2,07</cost>
<curCapacity>0</curCapacity>
<level>1</level>
<maxCapacity>42</maxCapacity>
<name>imageService1</name>
<responseTime>23379</responseTime>
<serviceSpec>
com.assertLab.imageService
</serviceSpec>
</serviceLevel>
<serviceLevel id="2">
<cost>0,29</cost>
<curCapacity>38</curCapacity>
<level>2</level>
<maxCapacity>48</maxCapacity>
<name>imageService1</name>
<responseTime>44639</responseTime>
<serviceSpec>
com.assertLab.imageService
</serviceSpec>
</serviceLevel>
...

Each variant in the DYMOS QoS framework can
be implemented by a class of Web services that are
bound dynamically in run-time to the DSPL. Each
Web service in the class implements the same service
interface. The services XML, shown in Listing 1, is
responsible to describing the services interfaces and
implementations. Also, each service implementation
has a set of QoS attributes, as shown in Listing 2.

To exemplify the operation of the DYMOS QoS
in a real situation we activated the variant “image-
Service” and all their alternative services described in
the Listing 1 with the cost, max capacity (cMax), cur-
rent capacity (cCurr), and utility function value (UF)
shown in the Table 1. We experimented with the three
situations described in Section 2.

Table 1: QoS Values.

Service cMax cCurr Cost UF
imageService1 42 0 2,07 0,82
imageService2 39 9 6,86 -0,58
imageService3 30 17 0,56 0,18
imageService4 23 22 6,97 -1,83
imageService5 43 26 9,69 -1,82

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

464



In the first situation the a request for the end point
of the variant “imageService” is made in the Mobi-
Line Product. The ServiceContext uses the descriptor
components of the framework to identify the imple-
mentation and the specification of the variant. Thus,
the service context verifies the availability of the ser-
vice in the OSGi container and sends the end point to
the mobile device.

For testing the second situation, we turned the ser-
vice “imageService” inactive in the OSGi Container
and maintained all the alternative services activated.
When a request for the end point of this variant is
made the ServiceContext requests from the Broker a
list of alternative services and their respective punctu-
ation for the utility function. Thus, the ServiceContext
will return the end point for the required variation by
considering the service active with the highest score
in the utility function in the OSGi container.

6 CONCLUSIONS

This paper presents an approach to performing the
dynamic derivation in service-oriented DSPLs based
on a run time QoS analysis. The approach was de-
scribed and evaluated in a context-aware service ori-
ented DSPL called MobiLine.

We consider, according to our evaluation, that
the approach is functional and addresses the prob-
lem specified in Section 2. Moreover, interesting next
steps are the evaluation of the proposed approach be-
havior with a large number of services and variabili-
ties. It would be interesting for future investigations
too verify the performance of the proposed approach
and empirically compares the results with another ap-
proaches or with others DSPLs.

ACKNOWLEDGEMENTS

This research is sponsored by the Brazilian National
Council for Scientific and Technological Develop-
ment (CNPq) grants in the process 381305/2011-2.
It was also partially supported by the National In-
stitute of Science and Technology for Software En-
gineering (INES3) , funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08. It is
also part of UbiStructure - An infrastructure for devel-
oping and executing ubiquitous applications - CNPq
14/2011, process number 481417/2011-7.

3www.ines.org.br

REFERENCES

Abbas, N., Andersson, J., and Weyns, D. (2011). Knowl-
edge evolution in autonomic software product lines.
page 1, New York, New York, USA. ACM Press.

Alferez, G. H. and Pelechano, V. (2011). Context-Aware
Autonomous Web Services in Software Product Lines.
pages 100–109. Ieee.

Ali, R., Chitchyan, R., and Giorgini, P. (2009). Context for
goal-level product line derivation.

Cetina, C., Fons, J., and Pelechano, V. (2008). Applying
Software Product Lines to Build Autonomic Pervasive
Systems. Number ii, pages 117–126. Ieee.

de Oliveira Martins, D. A. (2013). DYMOS: Uma abor-
dagem para suporte a variabilidades dinâmicas em
Linhas de Produto de Software Orientado a Serviços
e Sensı́vel ao Contexto. Master’s thesis, Universidade
Federal de Pernambuco, Recife, Pernambuco, Brazil.

Gomaa, H. and Hashimoto, K. (2011). Dynamic software
adaptation for service-oriented product lines. page 1,
New York, New York, USA. ACM Press.

Hallsteinsen, S., Hinchey, M., Park, S., and Schmid, K.
(2008). Dynamic software product lines. Computer,
(April):93–95.

Lee, J. (2006). A Feature-Oriented Approach to Developing
Dynamically Reconfigurable Products in Product Line
Engineering. pages 131–140. Ieee.

Lee, J. and Kotonya, G. (2010). Combining service-
orientation with product line engineering. Number
June, pages 35–41.

Lin, K.-J., Zhang, J., Zhai, Y., and Xu, B. (2010). The de-
sign and implementation of service process reconfig-
uration with end-to-end QoS constraints in SOA. Ser-
vice Oriented Computing and Applications, 4(3):157–
168.

Marinho, F. G., Andrade, R. M., Werner, C., Viana, W.,
Maia, M. E., Rocha, L. S., Teixeira, E., Filho, J. a.
B. F., Dantas, V. L., Lima, F., and Aguiar, S. (2012).
MobiLine: A Nested Software Product Line for the
domain of mobile and context-aware applications.
Science of Computer Programming.

Parra, C., Blanc, X., and Duchien, L. (2009). Context
awareness for dynamic service-oriented product lines.
pages 131–140.

Pohl, K., Böckle, G., and van der Linden, F. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples, and Techniques.

Yu, J., Lalanda, P., and Bourret, P. (2010). An Approach for
Dynamically Building and Managing Service-Based
Applications. pages 51–58. Ieee.

Yu, T. and Lin, K.-J. (2005). Service selection algo-
rithms for Web services with end-to-end QoS con-
straints. Information Systems and e-Business Manage-
ment, 3(2):103–126.

Toward�a�QoS�Based�Run-time�Reconfiguration�in�Service-oriented�Dynamic�Software�Product�Lines

465


