
Automated Generation of Test Cases from Logical Specification of
Software Requirements

Richa Sharma1 and K. K. Biswas2
1School of Information Technology, IIT Delhi, New Delhi, India

2Department of Computer Science and Engineering, IIT Delhi, New Delhi, India

Keywords: Test Cases, Logical Specification, Courteous Logic, Natural Language Processing.

Abstract: The quality of the delivered software relies on rigorous testing performed. However, designing good test
cases is a challenging task. The challenges are multi-fold and test-cases design is often delayed towards the
end of implementation phase. In this paper, we propose an approach to automatically generate test cases
from the logical form of requirements specifications during early phases of software development. Our
approach is based on courteous logic representation of requirements. The Knowledge stored in the courteous
logic predicates is used to automatically generate the test cases. We evaluate the effectiveness of our
generated test-cases through case-studies.

1 INTRODUCTION

Software testing is an important and integral activity
of the software development. The testing process
entails designing effective test-cases; generating
test-data; executing test-cases for the test data and
comparing the results of execution against actual
results mentioned in test cases (Ammann and Offutt,
2008). Amongst these activities, designing effective
test-cases, that can uncover crucial functional faults,
remains a key-challenge. Test cases can be derived
from requirements specifications, design artefacts or
the source code (Ammann and Offutt, 2008).
Requirements Specifications provide useful pointers
for conducting functional testing; the design
artefacts influence architectural testing and, the
source code provides technical know-how for test
case design as well as for the requisite test data
formats. The research effort towards automation of
testing has resulted in some very useful tools like
JUnit, Visual test, SQA test, Testmate (Incomplete
List of Testing tools, n.d.) etc. However, designing
functional test cases based on requirements is still a
hard problem. Several authors have proposed
approaches for designing functional test cases from
UML diagrams (Boghdady et al., 2011),
(Kansomkeat, Thiket and Offutt, 2010), (Li et al.,
2013); from use-case specifications (Heumann,
2001), (Ahlowalia, 2002) and also, from user-stories

used in Agile development (Kamalkar et al., 2013).
These suggested approaches assist test engineers by
providing them with automatically generated test-
cases. These test cases can be further refined by
manual intervention, if required, thereby reducing
the effort and time spent on writing out the test-
cases. However, the challenge involved with these
approaches arises from the fact that use-cases, user-
stories are expressed in Natural Language (NL) and,
the UML diagrams also depend on requirements
specifications expressed using NL. The inherent
ambiguities and inconsistencies, present in NL
specifications of requirements, often lead to
misinterpretations and difference of understanding
between the client and the development team.

In this paper, we propose an approach to
generate test-cases automatically from logical
specification of requirements to circumvent these
challenges. Logical specifications are formal in
nature and, have the advantage of automated
analysis and validation (Tsai and Weigert, 1991).
The adequacy of courteous logic based
representations of the software requirements for
inconsistency resolution has been shown in (Sharma
and Biswas, 2012). We use these representations of
requirements for automated test-case generation.
Since formal representations are not the preferred
form of representation in industry, therefore, we
have also proposed semi-automated approach
towards the generation of courteous logic form of

241Sharma R. and K. Biswas K..
Automated Generation of Test Cases from Logical Specification of Software Requirements.
DOI: 10.5220/0004972902410248
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 241-248
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

representation of requirements from their
corresponding NL representations in our work
(Sharma and Biswas, 2012). This increases
applicability of courteous logic based requirements
representations in industry.

Our approach involving test generation from
courteous logic representation of requirements
borrows heavily from semantic head-driven
approach for NL Generation (Shieber et al., 1989).

As our main focus is not NL generation, we have
adopted and modified their approach to formulate
functional test cases.

The paper is organized as follows: Section 2
presents an overview of the courteous logic form of
requirements specifications along with the related
work done. Section 3 presents our approach of
automated test-case generation followed by the case
study presented in section 4. In section 5, we present
discussion and conclusion.

2 RELATED WORK

2.1 Courteous Logic Representation of
Requirements

Courteous Logic as proposed by Grosof is a non-
monotonic logic form (Grosof, 1997). Courteous
Logical representation is an expressive subclass of
ordinary logical representation with which we are
familiar and, it has got procedural attachments for
prioritized conflict handling. First Order Logic
(FOL) has not become widely popular for two main
reasons: it is pure belief language and, secondly it is
logically monotonic; it can not specify prioritized
conflict handling which are logically non-
monotonic.

Our motivation behind using Courteous Logic
representation of requirements is that real-world
knowledge and system requirements for any system
in real-world correspond to common-sense form of
reasoning. This common-sense reasoning is non-
monotonic in nature and, therefore there is a need
for non-monotonic logic for representing real-world
requirements. Of various available forms of non-
monotonic logic like default logic (Reiter, 1980),
defeasible logic (Nute, 2001), we preferred
courteous logic for its simplicity, ease of use and
English-like constructs. Our Courteous Logic
representations for requirements are based on IBM’s
CommonRules, available under free trial license
from IBM alpha works (Grosof, 2004). In these
representations, prioritization is handled by
assigning optional labels to the rules (or predicates)

and, specifying priority relationship between the
rules using in-built “overrides” predicate. The scope
of ‘what is conflict’ is specified by pair-wise mutual
exclusion statements called “mutex's”. For example:
a mutex may specify that the grades of student can
have only one value at one point of time. There is an
implicit mutex between a rule (or predicate p) and its
classical negation.

An illustration of Requirements Representation in
Courteous Logic: Consider the scenario of book
issue in a library. The requirements are often
expressed with inconsistent and, possibly repetitive
statements as we observed:
 If a person is a library member, then he can

borrow the book.
 If a book is available, then library member can

borrow the book.

These two statements of requirements specification
are contradictory – the second statement adds one
more condition for borrowing the book in addition to
a person’s being library member, namely:
availability of the book. We have considered such a
simple scenario to illustrate how minor mistakes in
expressing the requirements can result in faulty
software. One may consider that everyone knows
about the library rules; however, it is not always
possible that requirements analysts as well as test
engineers are familiar with the domain knowledge
under study. In the absence of formal specifications,
requirements cannot be validated in the early phases
of software development, nor an appropriate set of
test-cases be generated. Ambiguity and
inconsistency in requirements may continue to the
test-cases as well. We have looked for solution to
such a scenario in our earlier work. The above-
mentioned requirements, when translated to
courteous logic representations appear as:

<rule1> if librarymember(?X) and

 book(?Y)
then borrow(?X, ?Y) .

<rule2> if librarymember(?X) and

 book(?Y) and status(?Y, available)
then borrow(?X, ?Y) .

These two rules correspond to the two requirements
statements stated above. Both of these rules are
labeled as <rule1> and <rule2> respectively.
Without any additional information, rule 1 may
allow a book to be issued even if it is not available.
This is contrary to real-world supposition that only
an available book can be issued to a library member.
The result of inference engine indicates that these
requirements are inconsistent in nature and the

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

242

requirements are corrected in consultation with
domain experts. The suggested correction to these
requirements can be added as another rule to above
courtoes logic representation of requirements as:

overrides(rule1, rule2).

Having obtained formal and consistent set of
requirements specifications, we can design better
test-cases; the process of which, we have automated
in this work.

2.2 Related Work

Automated functional test generation has been an
intriguing problem in research arena. Significant
amount of effort towards test case generation has
been reported in survey reports too like (Kaur and
Vig, 2012), (Gutierrez et al., 2006). Kaur and Vig
have attempted to find the most widely used UML
diagrams for automated test case generation and the
corresponding advantages. In addition to this, they
have explored the type of testing is addressed and
what are the challenges involved. Their findings
indicate that activity diagrams, state diagrams and a
combination of use-case diagram and activity
diagram have been mostly used for generating test
cases. They observe that functional testing has been
the extensively studied; however, the challenges
involved are incomplete or incorrect requirements
specifications and UML diagrams. The survey
conducted by Gutierrez et al. also suggests that
UML models and use-case specifications have been
mostly used for test case generation automatically.

Survey reports summarize that UML diagrams
and requirements specifications in the form of use-
cases (an NL representation) have been explored
most for automated test case generation. Activity
Diagrams have been used for the purpose in the
works of (Boghdady et al., 2011), (Kansomkeat et
al., 2010) and (Li et al., 2013). The fact that activity
diagrams represent the behaviour of the real-world
system for a given scenario can be attributed to the
use of activity diagrams for test case generation.
State charts form the basis of generation of test cases
in the works of (Hartmann et al., 2005) and (Offutt
and Abdurazik, 1999). Use-cases also describe the
expected behaviour of the system. Therefore, use
cases have also been used for test case generation as
reported in the works of (Heumann, 2001) and
(Ahlowalia, 2002). The user-stories used in agile
development have also been considered for
automatically generating test cases (Kamalkar et al.,
2013). However as reported in the survey of Kaur
and Vig, the challenge involved with these

approaches is that of the representation of
requirements. NL requirements representation
results in ambiguity, incompleteness and
inconsistency of requirements and consequently,
generation of incorrect test cases.

However, there are few instances where test
cases have been generated from either formal
representation of requirements or using approaches
or formal intermediate requirements representation
like (Pretschner, 2001) and (Mandrioli et al., 1995).
We also support formalism in requirements
representation. In our work here, we have made use
of courteous logic based representation of the
requirements for automatically generating test cases.

3 OUR APPROACH

Our approach borrows from semantic-head-
generation algorithm for unification-based
formalisms as proposed by Sheiber et al., (1989).
However, our goal is different from NL generation.
NL generation has its own challenges. It requires
“glue-word” in addition to the grammar rules
followed for generating NL expressions from the
source input (Grasso, 2000). Our interest lies only in
generating the test-cases from courteous logic
representations of requirements. Our courteous logic
representations have been generated semi-
automatically (only override predicates have been
added manually), therefore the variable names and
the predicate names are more meaningful and self-
understood.

We first identify the pivot element for the input
rule like Shieber et al.’s approach but we are not
interested in considering it as semantic head unlike
their approach. In our case, the pivot element is
predicate or the rule-head of the given rule. For
example: for the library rules discussed in section
2.1, the pivot element is ‘borrow’. Next we consider
the body of the rule, which can simply be another
predicate or clause (like rule-head) or conjunction of
two or more predicates. We process each of these
predicates one by one as described in the algorithm
below. Test cases are laid out for null checks, invalid
and valid values of the variables. NL generation is
performed only for expressing the actual output.
Since the actual outputs of test-cases are in terms of
the pivot elements, which have been earlier
generated from NL document only, we need not
have to refer to any ‘glue-words’ in between. This
reduces the complexity considerably in our
approach. The algorithm for generating test-cases is
shown in figure 1 below:

Automated�Generation�of�Test�Cases�from�Logical�Specification�of�Software�Requirements

243

Algorithm: Test-case Generation from Courteous Logic
Representation of Requirements

Input: Set of requirements represented in the form of
courteous logic

Output: Set of test-cases for the input requirements

Processing Steps:

1. For each rule in the input file (collection of rule-
base):

2. Extract the label (optional) and the pivot
predicate (identified as predicate after 'then') and
store them for future reference.

3. Start generating test-cases for the rule-body:

4. If there is a single predicate in rule-body,

(i) Then, for each variable (recognised by a
prefix character '?'), add test-cases for
Nullness check and validity check. Express
actual result as “Error Message displayed”
for null and invalid values.

(ii) Else, store each of the predicates joined by
conjunctions separately. Process each of
these predicates as described in the step (i)

5. If the label encountered has higher precedence in
any of the 'override' predicates, then

(i) Search for the stored pivots and ensure that
conditions for both pivots corresponding to
the labels in ‘override’ hold good.

(ii) Add test-case stating: “Enter valid values for
variables such that both the <pivots> hold
good”.

(iii) Actual result in this case should be expressed
as: “The results obtained after executing the
test case should correspond to <prioritized
pivot >”.

Note: The pivots expressed in angular brackets <> are
to be replaced by their actual values for the rule under
process.

Figure 1: Algorithm for test-case generation.

4 CASE STUDY

We conducted our case-study for test-case
generation on requirements from various business
domains like banking, academics and health-
insurance. In this section, we will consider same
examples as illustrated in our earlier work (Sharma
and Biswas, 2012) so that establishing the
relationship between the requirements studied and
the generated test-cases will be easy. With this

current work, we have modified the previous
algorithm for generating the courteous logic
representations to generate predicates and variable
with complete words instead of mnemonics. This
modification has been done to reduce number of
look-ups in mnemonics database for test-case
generation. Therefore, the representations of
requirements illustrated in following sub-sections
will slightly differ in having complete words instead
of mnemonics.

4.1 Case Study – I

Example 1 - Representing and Prioritizing
Conflicting Views (Academic Grade Processing):
This example is about the specifications of students’
grade approval process where the students’ grades
are approved by the course-coordinator, the
department head and the dean. The expected
behaviour of the system refers to the fact that at any
point in time, approval from department head holds
higher priority over course-coordinator; and
approval from dean higher priority over department
head and in turn, the course coordinator. In order to
capture this observable behaviour, we have earlier
suggested the use of courteous logic representations
as shown below:

<new>

if assignGrades (

?RegistrationNumber, ?Year,
?Semester, ?Group, ?Subject,
?GradePoint)

then value_Status (

new, ?RegistrationNumber, ?Year,
?Semester, ?Group, ?Subject);

<cdn>

if approvedby (

?RegistrationNumber, ?Year

?Semester, ?Group, ?Subject, ?Point,
?Status, coordinator)

then value_Status (

coordinatorApproved,
?RegistrationNumber, ?Year,

?Semester, ?Group, ?Subject);

<hod>

if approvedby (

?RegistrationNumber, ?Year,
?Semester, ?Group, ?Subject, ?Point,
coordApproved, hod)

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

244

then value_Status (

hodApproved, ?RegistrationNumber,

?Year, ?Semester, ?Group,

?Subject);

<dean>

 if approvedby (

 ?RegistrationNumber, ?Year,

 ?Semester, ?Group, ?Subject,

 ?Point, hodApproved, dean)

 then value_Status (

 deanApproved, ?RegistrationNumber,

?Year, ?Semester, ?Group,

?Subject);

overrides(cdn, new);

overrides(hod, new);

overrides(dean, new);

overrides(hod, cdn);

overrides(dean, cdn);

overrides(dean, hod);

MUTEX

value_Status(?Status1,
?RegistrationNumber, ?Year,
?Semester, ?Group, Subject)

AND

value_Status(?Status2,
?RegistrationNumber, ?Year,
?Semester, ?Group, Subject)

GIVEN notEquals(?Status1, ?Status2);

The test cases generated corresponding to above
requirements for nullness and validity checks and
then for functional test-cases have been presented in
table 1 below:

4.2 Case Study - II

Example 2– Representing Default and Exceptional
Scenario Processing (Saving and Current Account
Processing): Consider the account processing part
of a bank customer where he can have more than
one account. Let’s consider that a bank customer can
have a current account and a saving account. The
customer can choose one of these accounts as
default account for any transaction that he wants to
carry out. The usual choice is current account but to
keep the use-case generic, let us assume that
customer has marked one of the accounts as default.
The customer is free to select the other account for
some of his transactions. In that case, the selected
account processing should override the default
processing.

Table 1: Test Cases – Case Study I.

Sl. No. TEST CASE ACTION PERFORMED ACTUAL RESULT

1. Null Checks for ‘assignGrades’ Enter null value of RegistrationNumber Error Message displayed

2. Enter null value of Year Error Message displayed

3. Enter null value of Semester Error Message displayed

4. Enter null value of GradePoint Error Message displayed

5. Validity Checks for
‘assignGrades’

Enter invalid value of RegistrationNumber Error Message displayed

6. Enter invalid value of Year Error Message displayed

7. Enter invalid value of GradePoint Error Message displayed

8. Execute assignGrades Enter valid values for variables:
RegistrationNumber, Year, Semester, Group,
Subject, GradePoint

Value of grade status is
‘new’

9. Execute approvedby (under
label – cdn)

Enter valid values for variables such that
both the ‘assignGrades’ and ‘approvedby’
hold good.

The results obtained after
executing the test case should
correspond to ‘approvedby’.
Value of grade status is
‘coordinatorApproved’

Automated�Generation�of�Test�Cases�from�Logical�Specification�of�Software�Requirements

245

Table 2: Test Cases – Case Study II.

Sl. No. TEST CASE ACTION PERFORMED ACTUAL RESULT

1. Null Checks for ‘deposit’ (Similarly
for withdraw)

Enter null value of TransactionId Error Message displayed

2. Enter null value of AccountId Error Message displayed

3. Enter null value of Amount Error Message displayed

4. Validity Checks for ‘deposit’ Enter invalid value of TransactionId Error Message displayed

5. Enter invalid value of AccountId Error Message displayed

6. Execute add_Amount Enter valid values of TransactionId ,
Client, Amount and AccountId

Add amount – Default
Account

7. Execute add_Amount Enter valid values of TransactionId ,
Client, Amount and AccountId and
option ‘select’ provided

Amount added to select
Account

The natural language expression for such default

operation and associated exception can be easily
understood by the involved stakeholders as well as
developers. But what is often overlooked by
developers is the implicit interpretation here – the
account chosen for default processing should remain
unaffected in case selection is made for the non-
default account and often, this is uncovered till
testing phase. Such overlooked implicit
interpretation results in implicit internal
inconsistency. Such a defect can be easily detected
during RE phase if we have an executable model for
representation of requirements that can sufficiently
express the domain knowledge. We have translated
the requirements for this scenario in courteous logic
from NL as:

<def>

if deposit(?TransactionId, ?Client,
?Amount) and

holds(?Client, ?AccountId) and
default(?AccountId)

then add_Amount(?Client, ?AccountId,
?Amount);

<sel>

if deposit(?TransactionId, ?Client,
?Amount) and

holds(?Client, ?AccountId) and

option(?Client, ?TransactionId,
select, ?AccountId)

then add_Amount(?Client, ?AccountId,
?Amount);

<def>

if withdraw(?TransactionId, ?Client,
?Amount) and

holds(?Client, ?AccountId) and

default(?AccountId)

then subtract_Amount(?Client,

 ?AccountId, ?Amount);

<sel>
if withdraw(?TransactionId, ?Client,
?Amount) and

holds(?Client, ?AccountId) and

option(?Client, ?TransactionId,
select, ?AccountId)

then subtract_Amount(?Client,
 ?AccountId, ?Amount);

overrides(sel, def);

MUTEX

add_Amount(?Client, ?Account1,
?Amount) AND

add_Amount(?Client, ?Account2,
?Amount)

GIVEN notEquals(?Account1,?Account2)

MUTEX
subtract_Amount(?Client, ?Account1,
?Amount) AND

subtract_Amount(?Client, ?Account2,
?Amount)

GIVEN notEquals(?Account1,?Account2)

The test cases generated corresponding to second
case-study have been presented in table 2 above. We
performed case-study on various other scenarios
from our requirements corpus and have found
satisfactory results. To check validity of our
generated test-cases, we compared our test-cases
against the corresponding system test-cases and
found that our test cases were actually a superset of
otherwise manually written test-cases. We also
checked the usability of our test-cases by executing

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

246

these test-cases on the system under study. The first
authors of this paper carried out this usability check
and the author did not find it difficult to comprehend
these automatically generated test-cases.

5 DISCUSSION AND
CONCLUSION

In this paper, we have presented an approach to
automatically generate functional test cases from
courteous logic representation of the requirements.
The approach borrows from semantic head-driven
approach for NL Generation proposed by Shieber et
al. The advantage of our approach is that courteous
logic representations have English-like constructs
and easy to process. Secondly, we are generating
these representations from NL requirements,
therefore the courteous rules representing
requirements become self-explanatory and with
limited set of support words, we have been able to
generate the functional test cases automatically. We
are interested in validation of our test-cases by test-
engineers themselves. We further plan to improve
our algorithm with the feedback obtained and design
a tool supporting our approach.

REFERENCES

Ammann, P. and Offutt, J., 2008, Introduction to Software
Testing, Cambridge University Press, USA.

Incomplete List of Testing Tools. Available from:
http://research.cs.queensu.ca/~shepard/testing.dir/unde
r.construction/tool_list.html. [20 January 2014].

Tsai, J.J.P. and Weigert, T., 1991, HCLIE: a logic based
requirement language for new Software Engineering
Paradigms, Software Engineering, vol. 6, no. 4, pp.
137-151.

Boghdady, P.N., Badr, N.L., Hashem, M. and Tolba, M.F.,
2011, A Proposed Test Case Generation Technique
Based on Activity Diagrams, International Journal of
Engineering and Technology, vol. 11, no. 3, pp. 35-52.

Kansomkeat, S., Thiket, P. and Offutt, J., 2010,
Generating Test Cases from UML Activity Diagrams
using the Condition Classifcation Method, In 2nd
International Conference on Software technology and
Engineering (ICSTE’10), San Juan, pp. V1-62 – V1-
66.

Li, L., Li, X., He T. and Xiong, J., 2013, Extenics-based
Test Case Generation for UML Activity Diagram, In
International Conference on Information Technology
and Quantitative Management (ITQM'13), pp. 1186-
1193.

Heumann, J., 2001, Generating Test Cases from Use
Cases, In the Rational Edge, e-zine for Rational
Community.

Ahlowalia, N., 2002, Testing from Use Cases Using Path
Analysis Technqiue, Analysis, In International
Conference on Software Testing Analysis and Review.

Kamalkar, S., Edward, S.H. and Dao, T.M., 2013,
Automatically Generating Tests from Natural
Language Descriptions of Software Behavior, In 8th
International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE’13).

Sharma R. and Biswas, K.K., 2012, A Semi-automated
Approach towards Handling Inconsistencies in
Software Requirements. In: Maciaszek, L.A. and
Filipe, J. (eds.), Evaluation of Novel Approaches to
Software Engineering, Springer Berlin Heidelberg, pp.
142-156.

Sharma, R. and Biswas, K.K. 2012, Using Norm Analysis
Patterns for Requirements Validation, In IEEE 2nd
International Workshop on Requirements Patterns
(RePa), pp.23-28.

Shieber, S.M., Noord, G.N, Moore R. and Pereira, C.N.,
1989, A Semantic-head-driven generation algorithm
for unification-based formalisms, In Proceedings of
the 27th Annual Meeting of the Association for
Computational Linguistics, pp. 7-17.

Reiter, R., 1980, A logic for default reasoning, Artificial
Intlligence, vol. 13, pp. 81-132.

Nute, D., 2001, Defeasible Logic, In Proceedings of
International Conference on Applications of Prolog
(INAP 2001), IF Computer Japan, 2001, pp 87-114.

Grosof, B.N., 1997. Courteous Logic Programs:
prioritized conflict handling for rules. IBM Research
Report RC20836, IBM Research Division, T.J. Watson
Research Centre.

Grosof, B.N., 2004. Representing E-Commerce Rules via
situated courteous logic programs in RuleML.
Electronic Commerce Research and Applications, Vol
3, Issue 1, 2004, pp 2-20.

Kaur, A. and Vig, V., 2012, Systematic Review of
Automatic Test Case Generation by UML Diagrams,
International Journal of Engineering Research and
Technology, vol. 1, no. 7.

Gutierrez, J.J., Escalona, M.J., Mejias, M. and Torres, J.,
2006, Generation of test cases from functional
requirements. A survey, In 4th workshop on System
Testing and Validation, Potsdam, Germany.

Hartmann, J., Vieira, M., Foster, H., Ruder, A., 2005, A
UML-based Approach to System Testing, Journal of
Innovations System Software Engineering, vol. 1, pp.
12-24.

Offutt, J. and Abdurazik, A., 1999, Generating Tests from
UML Specifications, In UML’99 – The Unified
Modeling Language, Springer Berlin Heidelberg, pp.
416 – 429.

Pretschner, A., 2001, Classical search strategies for test
case generation with Constraint Logic Programming,
In Proceedings of International Workshop of Formal
Approaches to Software Testing of Software, pp. 47-
60.

Automated�Generation�of�Test�Cases�from�Logical�Specification�of�Software�Requirements

247

Mandrioli, D., Morasca, S. and Morzenti, A., 1995,
Generating Test Cases for Real-Time Systems from
Logical Specifications, ACM Transactions on
Computer Systems, vol. 13, no. 4, pp. 365-398.

Grasso, F., 2000, Natural Language Processing: many
questions, no answers, Available from:
http://www.academia.edu/2824428/Natural_Language
_Processing_many_questions_no answers. [20
January, 2014]

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

248

